
M A N N I N G

Jon P Smith
Foreword by Julie Lerman

SECOND EDITION

The following table provides a list of topics covered in this book, with a list of chapters
where that topic is covered, with the primary chapter at the front. It also lists any key
figures that go with this topic.

Topics Chapters Key figures (chapter.figure)

1.4, 2.7, 1.51, 2, 7, 8, 5Setting up EF Core

2.7, 2.8, 6.22, 5, 6Query the database

3.1, 3.2, 6.8 to 103, 5, 8, 11Create, Update, Delete

1.6, 1.8, 1.10, 6.8 to 6.101, 6How EF Core works inside

4.2, 4.4, 5.44, 5, 13Business Logic

5.1, 5.45, 2ASP.NET Core

5.2, 5.35, 14, 15Dependency injection

5.8, 5.95, 14Async/await

7.1, 7.27Configure non-relational

8.1, 8.2, 8.3, 8.48Configure relationships

8.12, 8.138Configure table mappings

9.2, 9.3, 9.5, 9.7, 9.89, 5Database migrations

10.3, 10.4, 10.5, 10.6, 10.7, 15.710, 15Concurrency issues

15.311, 6Using raw SQL

13.3, 4.2, 13.4, 13.513, 4Domain-Driven design

14.1, 15.2, 15.4, 15.9, 16.7, 16.814, 15, 16Performance tuning

16.1, 16.3, 16.4, 17.516, 17Cosmos DB & other databases

4, 7, 10Data Validation

17.2, 17.317Unit testing

A.2, A.1Appendix, 2LINQ language

Application’s DbContext
property access

A series of LINQ and/or
EF Core commands

An execute
command

co text.Books.Where(p =>n p.Title.StartsWith("Quantum").ToList();

An example of an Entity Framework Core database query

Praise for the first edition

This book helped highlight some issues my team was having with EF Core and has become an invaluable
resource that takes pride of place on our bookshelves.

—Evan Wallace, senior software Developer at Berkley Insurance Australia

The most complete go-to book for anything you need to know about EF Core! The #1 must-have EF Core
reference for your library!

 —Mauro Quercioli, senior independent software architect/developer, Siena I.T. Consulting Corporation

Knowing that EF Core in Action is right there on my desk, I am approaching my latest assignment—to
build out a new WebAPI application using Entity Framework Core—with complete confidence. The book
addresses everything we needed to know about EF Core and more!

—Phil Taffet, senior .NET developer, California Earthquake Authority

Finally a book to learn all about EF Core. It’s fun and engaging reading this. Be careful—whether you’re a
beginner or professional, you’ll learn something.

—Raushan Kumar Jha, SE-2, Microsoft India (R&D)

This is a solid book dealing well with the topic in hand but also handling the wider concerns around using
Entity Framework in real-world applications.

—Sebastian Rogers, technical director, Simple Innovations

Entity Framework
Core in Action

SECOND EDITION

JON P SMITH

FOREWORD BY JULIE LERMAN

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Marina Michaels
Technical development editor: Joel Kotarski

Manning Publications Co. Review editor: Aleksandar Dragosavljević
20 Baldwin Road Production editor: Keri Hales
PO Box 761 Copy editor: Keir Simpson
Shelter Island, NY 11964 Proofreader: Melody Dolab

Technical proofreader: Julien Pohie
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617298363
Printed in the United States of America

www.EBooksWorld.ir

www.manning.com

contents
foreword xxi
preface xxiii
acknowledgments xxv
about this book xxvii
about the author xxxii
about the cover illustration xxxiii

PART 1 .. 1

1 3Introduction to Entity Framework Core
1.1 What you’ll learn from this book 4
1.2 My “lightbulb moment” with Entity Framework 5
1.3 Some words for existing EF6.x developers 6
1.4 An overview of EF Core 7

The downsides of O/RMs 7

1.5 What about NoSQL? 8
1.6 Your first EF Core application 9

What you need to install 9 ■ Creating your own .NET Core console
app with EF Core 10

1.7 The database that MyFirstEfCoreApp will access 11
v

CONTENTSvi
1.8 Setting up the MyFirstEfCoreApp application 13
The classes that map to the database: Book and Author 13
The application’s DbContext 14

1.9 Looking under the hood of EF Core 15
Modeling the database 15 ■ Reading data from the database 17
Updating the database 20

1.10 The stages of development of EF Core 23
1.11 Should you use EF Core in your next project? 24

.NET is the future software platform, and it’s fast! 24 ■ Open
source and open communication 24 ■ Multiplatform applications
and development 24 ■ Rapid development and good features 25
Well supported 25 ■ Always high-performance 25

1.12 When should you not use EF Core? 26

2 27Querying the database

2.1 Setting the scene: Our book-selling site 28
The Book App’s relational database 28 ■ Other relationship types
not covered in this chapter 31 ■ The database showing all the
tables 32 ■ The classes that EF Core maps to the database 33

2.2 Creating the application’s DbContext 35
Defining the application’s DbContext: EfCoreContext 35
Creating an instance of the application’s DbContext 35
Creating a database for your own application 37

2.3 Understanding database queries 38
Application’s DbContext property access 39 ■ A series of LINQ/EF
Core commands 39 ■ The execute command 39 ■ The two types
of database queries 40

2.4 Loading related data 40
Eager loading: Loading relationships with the primary entity
class 40 ■ Explicit loading: Loading relationships after the
primary entity class 43 ■ Select loading: Loading specific parts of
primary entity class and any relationships 44 ■ Lazy loading:
Loading relationships as required 45

2.5 Using client vs. server evaluation: Adapting data
at the last stage of a query 47

2.6 Building complex queries 49
2.7 Introducing the architecture of the Book App 52

CONTENTS vii

2.8 Adding sorting, filtering, and paging 54
Sorting books by price, publication date, and customer ratings 54
Filtering books by publication year, categories, and customer
ratings 55 ■ Other filtering options: Searching text for a specific
string 56 ■ Paging the books in the list 58

2.9 Putting it all together: Combining Query Objects 58

3 61Changing the database content
3.1 Introducing EF Core’s entity State 62
3.2 Creating new rows in a table 62

Creating a single entity on its own 63 ■ Creating a book
with a review 64

3.3 Updating database rows 67
Handling disconnected updates in a web application 69

3.4 Handling relationships in updates 74
Principal and dependent relationships 75 ■ Updating one-to-one
relationships: Adding a PriceOffer to a book 76 ■ Updating one-to-
many relationships: Adding a review to a book 80 ■ Updating a
many-to-many relationship 83 ■ Advanced feature: Updating
relationships via foreign keys 87

3.5 Deleting entities 88
Soft-delete approach: Using a global query filter to hide entities 88
Deleting a dependent-only entity with no relationships 90
Deleting a principal entity that has relationships 90 ■ Deleting
a book with its dependent relationships 91

4 94Using EF Core in business logic
4.1 The questions to ask and the decisions you need to make

before you start coding 95
The three levels of complexity of your business logic code 95

4.2 Complex business logic example: Processing an order
for books 97

4.3 Using a design pattern to implement complex business
logic 98
Five guidelines for building business logic that uses EF Core 98

4.4 Implementing the business logic for processing an
order 99
Guideline 1: Business logic has first call on defining the database
structure 100 ■ Guideline 2: Business logic should have no

CONTENTSviii
distractions 101 ■ Guideline 3: Business logic should think that
it’s working on in-memory data 102 ■ Guideline 4: Isolate the
database access code into a separate project 105 ■ Guideline 5:
Business logic shouldn’t call EF Core’sSaveChanges 106 ■ Putting
it all together: Calling the order-processing business logic 108
Placing an order in the Book App 109 ■ The pros and cons of the
complex business logic pattern 111

4.5 Simple business logic example: ChangePriceOfferService 111
My design approach for simple business logic 112 ■ Writing the
ChangePriceOfferService code 112 ■ The pros and cons of this
business logic pattern 113

4.6 Validation business logic example: Adding review to a
book, with checks 113
The pros and cons of this business logic pattern 114

4.7 Adding extra features to your business logic handling 115
Validating the data that you write to the database 115 ■ Using
transactions to daisy-chain a sequence of business logic code 119
Using the RunnerTransact2WriteDb class 122

5 Using EF Core in ASP.NET Core web applications 125

5.1 Introducing ASP.NET Core 126
5.2 Understanding the architecture of the Book App 126
5.3 Understanding dependency injection 127

Why you need to learn about DI in ASP.NET Core 128 ■ A basic
example of dependency injection in ASP.NET Core 128 ■ The
lifetime of a service created by DI 129 ■ Special considerations
for Blazor Server applications 131

5.4 Making the application’s DbContext available via DI 131
Providing information on the database’s location 131
Registering your application’s DbContext with the DI provider 132
Registering a DbContext Factory with the DI provider 134

5.5 Calling your database access code from ASP.NET Core 134
A summary of how ASP.NET Core MVC works and the terms it
uses 135 ■ Where does the EF Core code live in the Book App? 135

5.6 Implementing the book list query page 136
Injecting an instance of the application’s DbContext via DI 137
Using the DbContext Factory to create an instance of a
DbContext 138

CONTENTS ix
5.7 Implementing your database methods as a DI service 140
Registering your class as a DI service 141 ■ Injecting
ChangePubDateService into the ASP.NET action method 142
Improving registering your database access classes as services 143

5.8 Deploying an ASP.NET Core application with a
database 146
Knowing where the database is on the web server 146 ■ Creating
and migrating the database 147

5.9 Using EF Core’s migration feature to change the
database’s structure 147
Updating your production database 147 ■ Having your
application migrate your database on startup 148

5.10 Using async/await for better scalability 151
Why async/await is useful in a web application using EF Core 151
Where should you use async/await with database accesses? 152
Changing over to async/await versions of EF Core commands 153

5.11 Running parallel tasks: How to provide the DbContext 154
Obtaining an instance of your application’s DbContext to run in
parallel 155 ■ Running a background service in ASP.NET
Core 156 ■ Other ways of obtaining a new instance of the
application’s DbContext 157

6 Tips and techniques for readin 159g and writing with EF Core

6.1 Reading from the database 160
Exploring the relational fixup stage in a query 160
Understanding what AsNoTracking and its variant do 161
Reading in hierarchical data efficiently 163 ■ Understanding how
the Include method works 165 ■ Making loading navigational
collections fail-safe 166 ■ Using Global Query Filters in real-world
situations 168 ■ Considering LINQ commands that need special
attention 172 ■ Using AutoMapper to automate building Select
queries 173 ■ Evaluating how EF Core creates an entity class
when reading data in 176

6.2 Writing to the database with EF Core 180
Evaluating how EF Core writes entities/relationships to the
database 181 ■ Evaluating how DbContext handles writing out
entities/relationships 182 ■ A quick way to copy data with
relationships 186 ■ A quick way to delete an entity 187

CONTENTSx

PART 2 .. 189

7 191Configuring nonrelational properties
7.1 Three ways of configuring EF Core 192
7.2 A worked example of configuring EF Core 193
7.3 Configuring by convention 196

Conventions for entity classes 196 ■ Conventions for parameters
in an entity class 196 ■ Conventions for name, type, and
size 197 ■ By convention, the nullability of a property is based
on .NET type 197 ■ An EF Core naming convention identifies
primary keys 198

7.4 Configuring via Data Annotations 198
Using annotations from
System.ComponentModel.DataAnnotations 199
Using annotations from
System.ComponentModel.DataAnnotations.Schema 199

7.5 Configuring via the Fluent API 199
7.6 Excluding properties and classes from the database 202

Excluding a class or property via Data Annotations 202
Excluding a class or property via the Fluent API 203

7.7 Setting database column type, size, and nullability 203
7.8 Value conversions: Changing data to/from

the database 204
7.9 The different ways of configuring the primary key 206

Configuring a primary key via Data Annotations 206
Configuring a primary key via the Fluent API 206
Configuring an entity as read-only 207

7.10 Adding indexes to database columns 208
7.11 Configuring the naming on the database side 209

Configuring table names 209 ■ Configuring the schema name and
schema groupings 210 ■ Configuring the database column names
in a table 210

7.12 Configuring Global Query Filters 211
7.13 Applying Fluent API commands based on the database

provider type 211
7.14 Shadow properties: Hiding column data inside EF Core 212

Configuring shadow properties 212 ■ Accessing shadow
properties 213

CONTENTS xi
7.15 Backing fields: Controlling access to data in an
entity class 214
Creating a simple backing field accessed by a read/write
property 215 ■ Creating a read-only column 215 ■ Concealing
a person’s date of birth: Hiding data inside a class 215
Configuring backing fields 216

7.16 Recommendations for using EF Core’s
configuration 218
Use By Convention configuration first 219 ■ Use validation Data
Annotations wherever possible 219 ■ Use the Fluent API for
anything else 220 ■ Automate adding Fluent API commands
by class/property signatures 220

8 Configuring relationships 226

8.1 Defining some relationship terms 227
8.2 What navigational properties do you need? 228
8.3 Configuring relationships 229
8.4 Configuring relationships By Convention 229

What makes a class an entity class? 229 ■ An example of an entity
class with navigational properties 230 ■ How EF Core finds
foreign keys By Convention 231 ■ Nullability of foreign keys:
Required or optional dependent relationships 232 ■ Foreign keys:
What happens if you leave them out? 232 ■ When does By
Convention configuration not work? 234

8.5 Configuring relationships by using Data
Annotations 234
The ForeignKey Data Annotation 234 ■ The InverseProperty Data
Annotation 235

8.6 Fluent API relationship configuration commands 236
Creating a one-to-one relationship 237 ■ Creating a one-to-many
relationship 239 ■ Creating a many-to-many relationship 240

8.7 Controlling updates to collection navigational
properties 243

8.8 Additional methods available in Fluent API
relationships 245
OnDelete: Changing the delete action of a dependent entity 245
IsRequired: Defining the nullability of the foreign key 248
HasPrincipalKey: Using an alternate unique key 249
Less-used options in Fluent API relationships 251

CONTENTSxii
8.9 Alternative ways of mapping entities to database tables 251
Owned types: Adding a normal class into an entity class 252
Table per hierarchy (TPH): Placing inherited classes into one
table 256 ■ Table per Type (TPT): Each class has its own
table 261 ■ Table splitting: Mapping multiple entity classes
to the same table 263 ■ Property bag: Using a dictionary as
an entity class 264

9 Handling database migrations 268

9.1 How this chapter is organized 269
9.2 Understanding the complexities of changing your

application’s database 269
A view of what databases need updating 270 ■ Handling a
migration that can lose data 271

9.3 Part 1: Introducing the three approaches to creating a
migration 271

9.4 Creating a migration by using EF Core’s add migration
command 272
Requirements before running any EF Core migration command 275
Running the add migration command 275 ■ Seeding your
database via an EF Core migration 276 ■ Handling EF Core
migrations with multiple developers 277 ■ Using a custom
migration table to allow multiple DbContexts to one database 278

9.5 Editing an EF Core migration to handle complex
situations 280
Adding and removing MigrationBuilder methods inside the
migration class 281 ■ Adding SQL commands to a
migration 282 ■ Adding your own custom migration
commands 284 ■ Altering a migration to work for multiple
database types 285

9.6 Using SQL scripts to build migrations 287
Using SQL database comparison tools to produce migration 287
Handcoding SQL change scripts to migrate the database 289
Checking that your SQL change scripts matches EF Core’s
database model 291

9.7 Using EF Core’s reverse-engineering tool 292
Running EF Core’s reverse-engineering command 294
Installing and running EF Core Power Tools reverse-engineering
command 294 ■ Updating your entity classes and DbContext
when the database changes 294

CONTENTS xiii
9.8 Part 2: Applying your migrations to a database 295
Calling EF Core’s Database.Migrate method from your main
application 296 ■ Executing EF Core’s Database.Migrate method
from a standalone application 298 ■ Applying an EF Core’s
migration via an SQL change script 298 ■ Applying SQL change
scripts by using a migration tool 300

9.9 Migrating a database while the application is
running 300
Handling a migration that doesn’t contain an application-breaking
change 302 ■ Handling application-breaking changes when you
can’t stop the app 302

10 Configuring advanced features and handling concurrency
conflicts 306

10.1 DbFunction: Using user-defined functions (UDFs)
with EF Core 307
Configuring a scalar-valued UDF 308 ■ Configuring a table-
valued UDF 310 ■ Adding your UDF code to the database 311
Using a registered UDF in your database queries 312

10.2 Computed column: A dynamically calculated
column value 313

10.3 Setting a default value for a database column 315
Using the HasDefaultValue method to add a constant value
for a column 316 ■ Using the HasDefaultValueSql method to add
an SQL command for a column 317 ■ Using the
HasValueGenerator method to assign a value generator to a
property 318

10.4 Sequences: Providing numbers in a strict order 319
10.5 Marking database-generated properties 320

Marking a column that’s generated on an addition or update 321
Marking a column’s value as set on insert of a new row 322
Marking a column/property as “normal” 322

10.6 Handling simultaneous updates: Concurrency
conflicts 323
Why do concurrency conflicts matter? 323 ■ EF Core’s concurrency
conflict–handling features 325 ■ Handling a
DbUpdateConcurrencyException 331 ■ The disconnected
concurrent update issue 334

CONTENTSxiv
11 340Going deeper into the DbContext
11.1 Overview of the DbContext class’s properties 341
11.2 Understanding how EF Core tracks changes 341
11.3 Looking at commands that change an entity’s State 343

The Add command: Inserting a new row into the database 344
The Remove method: Deleting a row from the database 344
Modifying an entity class by changing the data in that entity
class 345 ■ Modifying an entity class by calling the Update
method 346 ■ The Attach method: Start tracking an existing
untracked entity class 347 ■ Setting the State of an entity
directly 347 ■ TrackGraph: Handling disconnected updates
with relationships 348

11.4 SaveChanges and its use of ChangeTracker.DetectChanges 349
How SaveChanges finds all the State changes 350 ■ What to do if
ChangeTracker.DetectChanges is taking too long 351 ■ Using the
entities’ State within the SaveChanges method 356 ■ Catching
entity class’s State changes via events 358 ■ Triggering events
when SaveChanges/SaveChangesAsync is called 361 ■ EF Core
interceptors 362

11.5 Using SQL commands in an EF Core application 363
FromSqlRaw/FromSqlInterpolated: Using SQL in an EF Core
query 364 ■ ExecuteSqlRaw/ExecuteSqlInterpolated: Executing a
nonquery command 365 ■ AsSqlQuery Fluent API method:
Mapping entity classes to queries 365 ■ Reload: Used after
ExecuteSql commands 367 ■ GetDbConnection: Running your
own SQL commands 367

11.6 Accessing information about the entity classes
and database tables 368
Using context.Entry(entity).Metadata to reset primary keys 369
Using context.Model to get database information 371

11.7 Dynamically changing the DbContext’s
connection string 372

11.8 Handling database connection problems 373
Handling database transactions with EF Core’s execution
strategy 374 ■ Altering or writing your own execution
strategy 375

CONTENTS xv

PART 3 .. 379

12 Using entity events to so 381lve business problems
12.1 Using events to solve business problems 382

Example of using domain events 382 ■ Example of integration
events 383

12.2 Defining where domain events and integration
events are useful 384

12.3 Where might you use events with EF Core? 385
Pro: Follows the SoC design principle 386 ■ Pro: Makes
database updates robust 386 ■ Con: Makes your application
more complex 387 ■ Con: Makes following the flow of the code
more difficult 387

12.4 Implementing a domain event system with EF Core 387
Create some domain events classes to be triggered 388 ■ Add code
to the entity classes to hold the domain events 389 ■ Alter the entity
class to detect a change to trigger an event on 390 ■ Create event
handlers that are matched to the domain events 390 ■ Build an
Event Runner that finds and runs the correct event handler 391
Override SaveChanges and insert the Event Runner before
SaveChanges is called 394 ■ Register the Event Runner
and all the event handlers 395

12.5 Implementing an integration event system with EF Core 396
Building a service that communicates with the warehouse 398
Overriding SaveChanges to handle the integration event 399

12.6 Improving the domain event and integration event
implementations 400
Generalizing events: Running before, during, and after the call to
SaveChanges 401 ■ Adding support for async event handlers 402
Handling multiple event handers for the same event 403
Handling event sagas in which one event kicks off another event 403

13 Domain-Driven Design and other architectural approaches 405
13.1 A good software architecture makes it easier to build and

maintain your application 406
13.2 The Book App’s evolving architecture 406

Building a modular monolith to enforce the SoC principles 408
Using DDD principles both architecturally and on the entity
classes 409 ■ Applying a clean architecture as described by Robert
C. Martin 410

CONTENTSxvi

13.3 Introduction to DDD at the entity class level 410
13.4 Altering the Book App entities to follow

the DDD approach 411
Changing the properties in the Book entity to read-only 411
Updating the Book entity properties via methods in the entity
class 413 ■ Controlling how the Book entity is created 415
Understanding the differences between an entity and a value
object 416 ■ Minimizing the relationships between entity
classes 416 ■ Grouping entity classes 417 ■ Deciding when
the business logic shouldn’t be run inside an entity 418
Applying DDD’s bounded context to your application’s
DbContext 420

13.5 Using your DDD-styled entity classes in your
application 421
Calling the AddPromotion access method via a repository
pattern 422 ■ Calling the AddPromotion access method via
a class-to-method-call library 424 ■ Adding a Review to the Book
entity class via a repository pattern 426 ■ Adding a Review to the
Book entity class via a class-to-method-call library 427

13.6 The downside of DDD entities: Too many access
methods 428

13.7 Getting around performance issues in DDD-styled
entities 429
Allow database code into your entity classes 430 ■ Make the
Review constructor public and write nonentity code to add a
Review 431 ■ Use domain events to ask an event handler to add
a review to the database 432

13.8 Three architectural approaches: Did they work? 433
A modular monolith approach that enforces SoC by using projects 433
DDD principles, both architecturally and on the entity classes 434
Clean architecture as described by Robert C. Martin 435

14 438EF Core performance tuning
14.1 Part 1: Deciding which performance issues to fix 439

“Don’t performance-tune too early” doesn’t mean you stop
thinking 439 ■ How do you decide what’s slow and needs
performance tuning? 440 ■ The cost of finding and fixing
performance issues 441

14.2 Part 2: Techniques for diagnosing a performance issue 442
Stage 1: Get a good overview, measuring the user’s experience 443
Stage 2: Find all the database code involved in the feature you’re

CONTENTS xvii
tuning 444 ■ Stage 3: Inspect the SQL code to find poor
performance 444

14.3 Part 3: Techniques for fixing performance issues 446
14.4 Using good patterns makes your application

perform well 447
Using Select loading to load only the columns you need 447
Using paging and/or filtering of searches to reduce the rows you
load 448 ■ Warning: Lazy loading will affect database
performance 448 ■ Always adding the AsNoTracking method to
read-only queries 449 ■ Using the async version of EF Core
commands to improve scalability 449 ■ Ensuring that your
database access code is isolated/decoupled 449

14.5 Performance antipatterns: Database queries 450
Antipattern: Not minimizing the number of calls to the
database 450 ■ Antipattern: Missing indexes from a property
that you want to search on 451 ■ Antipattern: Not using the
fastest way to load a single entity 452 ■ Antipattern: Allowing
too much of a data query to be moved into the software side 453
Antipattern: Not moving calculations into the database 453
Antipattern: Not replacing suboptimal SQL in a LINQ query 454
Antipattern: Not precompiling frequently used queries 454

14.6 Performance antipatterns: Writes 455
Antipattern: Calling SaveChanges multiple times 456
Antipattern: Making DetectChanges work too hard 457
Antipattern: Not using HashSet<T> for navigational collection
properties 458 ■ Antipattern: Using the Update method when you
want to change only part of the entity 458 ■ Antipattern: Startup
issue—Using one large DbContext 458

14.7 Performance patterns: Scalability of database
accesses 459
Using pooling to reduce the cost of a new application’s DbContext 460
Adding scalability with little effect on overall speed 460 ■ Helping
your database scalability by making your queries simple 461 ■ Scaling
up the database server 461 ■ Picking the right architecture for
applications that need high scalability 461

15 Master class on performanc 463e-tuning database queries
15.1 The test setup and a summary of the four performance

approaches 464
15.2 Good LINQ approach: Using an EF Core Select

query 466

CONTENTSxviii
15.3 LINQ+UDFs approach: Adding some SQL to your LINQ
code 469

15.4 SQL+Dapper: Creating your own SQL 471
15.5 LINQ+caching approach: Precalculating costly query parts 473

Adding a way to detect changes that affect the cached values 475
Adding code to update the cached values 477 ■ Adding cache
properties to the Book entity with concurrency handling 480
Adding a checking/healing system to your event system 486

15.6 Comparing the four performance approaches with
development effort 488

15.7 Improving database scalability 489

16 Cosmos DB, CQRS, and ot 492her database types
16.1 The differences between relational and NoSQL databases 493
16.2 Introduction to Cosmos DB and its EF Core provider 494
16.3 Building a Command and Query Responsibility

Segregation (CQRS) system using Cosmos DB 495
16.4 The design of a two-database CQRS architecture

application 497
Creating an event to trigger when the SQL Book entity changes 498
Adding events to the Book entity send integration events 499
Using the EfCore.GenericEventRunner to override your
BookDbContext 500 ■ Creating the Cosmos entity classes and
DbContext 500 ■ Creating the Cosmos event handlers 502

16.5 Understanding the structure and data of a Cosmos DB
account 505
The Cosmos DB structure as seen from EF Core 505 ■ How the
CosmosClass is stored in Cosmos DB 506

16.6 Displaying books via Cosmos DB 507
Cosmos DB differences from relational databases 508 ■ Cosmos
DB/EF Core difference: Migrating a Cosmos database 511
EF Core 5 Cosmos DB database provider limitations 512

16.7 Was using Cosmos DB worth the effort? Yes! 514
Evaluating the performance of the two-database CQRS in the Book
App 515 ■ Fixing the features that EF Core 5 Cosmos DB database
provider couldn’t handle 518 ■ How difficult would it be to use
this two-database CQRS design in your application? 521

16.8 Differences in other database types 522

CONTENTS xix
17 525Unit testing EF Core applications
17.1 An introduction to the unit test setup 527

The test environment: xUnit unit test library 528 ■ A library I
created to help with unit testing EF Core applications 529

17.2 Getting your application’s DbContext ready for unit
testing 530
The application’s DbContext options are provided via its
constructor 530 ■ Setting an application’s DbContext options
via OnConfiguring 531

17.3 Three ways to simulate the database when testing
EF Core applications 532

17.4 Choosing between a production-type database
and an SQLite in-memory database 534

17.5 Using a production-type database in your unit tests 536
Providing a connection string to the database to use for the unit
test 536 ■ Providing a database per test class to allow xUnit to run
tests in parallel 537 ■ Making sure that the database’s schema is
up to date and the database is empty 540 ■ Mimicking the
database setup that EF Core migration would deliver 542

17.6 Using an SQLite in-memory database for unit testing 544
17.7 Stubbing or mocking an EF Core database 546
17.8 Unit testing a Cosmos DB database 549
17.9 Seeding a database with test data to

test your code correctly 551
17.10 Solving the problem of one database access breaking

another stage of your test 552
Test code using ChangeTracker.Clear in a disconnected state 553
Test code by using multiple DbContext instances in a disconnected
state 554

17.11 Capturing the database commands sent to a
database 555
Using the LogTo option extension to filter and capture
EF Core logging 555 ■ Using the ToQueryString method to show
the SQL generated from a LINQ query 558

appendix A A brief introduction to LINQ 561

569index

foreword
Have you ever worked on an application that doesn’t use data and requires some means
of interacting with a data store? In my decades as a software developer, every single
application I have worked on or have helped others with has depended on reading and
writing to some type of data store. When I became a solo entrepreneur in the 1990s, I
came up with the name The Data Farm for my company. I am definitely a data nerd.

 Over the past few decades, Microsoft has gone through many iterations of data
access frameworks. If you’ve been working in this arena for a while, you might remem-
ber DAO and RDO, ADO, and ADO.NET. In 2006, Microsoft shared the first itera-
tions of the as-yet-unnamed Entity Framework (EF), based on work done at Microsoft
Research in a private meeting at TechEd. I was one of the few people invited to that
meeting. It was my first time seeing an Object Relational Mapper (ORM), a library
that focuses on relieving developers from the redundant drudgery of building con-
nections and commands, writing SQL, transforming query results into objects, and
transforming object changes into SQL to persist back to the database.

 Many of us worried that this framework was yet another data access framework that
Microsoft would give up on in short order, forcing us to learn yet another one down
the road. But history has proved us wrong. Fifteen years later, Microsoft is still invest-
ing in Entity Framework, which has evolved into the cross-platform and open source
Entity Framework Core and continues to be Microsoft’s go-to data access library for
.NET developers.

 Over the 15 years that EF has been around and evolving, .NET has evolved as well.
EF and EF Core have grown in capability, but at the same time, the library has become
xxi

FOREWORDxxii
smarter about getting out of the developer’s way when it comes to building modern
software systems. We can customize mappings to support persistence with intricate
database schema. As a Domain-Driven Design practitioner, I have been extremely
happy with the attention that the team has paid to allowing EF Core to persist care-
fully designed entities, value objects, and aggregates that, by design, are not burdened
with knowledge of database schema.

 As an early adopter who worked closely with the EF team even before the initial
release, I wrote four books on Entity Framework between 2008 and 2011. Though I do
love to write, I eventually discovered that I also love creating videos, so I focused my
own efforts on creating and publishing courses on EF Core and other topics as a
Pluralsight author. I still write articles, but no more books, which is why I’m so happy
that Jon P Smith found his way to writing for Manning.

 When Jon published the first edition of Entity Framework Core in Action, I recognized
in him a fellow “curious cat” who left no stone unturned in his quest to understand
how EF Core works. Equally, he takes the role of sharing that information seriously,
ensuring that his readers are able to follow along and truly gain expertise. His work is
meticulous, and his knowledge is deep. As I have continued creating training resources
for those who prefer to learn from videos, I’ve been pleased to recommend Jon’s work
to those who are looking for a trustworthy book on EF Core. Updating content to
reflect the newest version, EF Core 5, is no small task. Jon has once again earned my
respect (and the respect of many other people) with the edition you now have in hand.

 With this book, you’re really getting three books in one. First, Jon handholds you
through the basics, even building some simple applications that use EF Core. When
you’ve become comfortable, it’s time to dig more deeply into intermediate-level use,
with relationships, migrations, and control beyond EF Core’s default behavior. Finally,
it’s time to use EF Core in real-world applications, tackling important topics such as
performance and architecture. Jon’s meticulous exploration and his own experience
working with large software applications make him a skilled and trustworthy guide.

—JULIE LERMAN

Julie Lerman is known as the foremost expert on Entity Framework and EF Core outside Micro-
soft. She is the author of the Programming Entity Framework book series and dozens of
courses on Pluralsight.com. Julie coaches businesses on modernizing their software. You can find
her presenting and keynoting on EF, Domain-Driven Design, and other topics at software confer-
ences around the world.

http://www.pluralsight.com

preface
Any software developer should be used to having to learn new libraries or languages,
but for me, the learning has been a bit extreme. I stopped coding in 1988, when I went
into technical management, and I didn’t come back to coding until 2009—a 21-year
gap. To say that the landscape had changed is an understatement; I felt like a child on
Christmas morning with so many lovely presents, I couldn’t take them all in.

 I made all the rookie mistakes at the beginning, such as thinking that object-oriented
programming is about using inheritance, which it isn’t. But I learned the new syntax
and new tools (wow!), and reveled in the amount of information I could get online. I
chose to focus on Microsoft’s stack, mainly because of the wealth of documentation
available. That was a good choice at the time, but with the .NET Core initiative with
its open source, multiplatform approach, it turns out to be an excellent choice.

 The first applications I worked on in 2009 were ones that optimized and displayed
healthcare needs geographically, especially around where to locate treatment centers.
That task required complex math (which my wife provided) and serious database
work. I went through ADO.NET, and LINQ to SQL. In 2013, I swapped to Entity Frame-
work (EF), when EF 5 supported SQL’s spatial (geographical) types, and then moved
to EF Core when it came out.

 Over the intervening years, I have used EF Core a lot, both on client projects and
for building open source libraries. In addition to writing this book, I’ve written exten-
sively on EF Core in my own blog (www.thereformedprogrammer.net). It turns out
that I like taking complex software ideas and trying to make them easy for other peo-
ple to understand, which I hope I manage to do in this book.
xxiii

https://www.thereformedprogrammer.net

PREFACExxiv
 Entity Framework Core in Action, Second Edition, covers all the features of EF Core
5.0, with plenty of examples and code you can run. I’ve also included numerous pat-
terns and practices to help you build robust and refactorable code. Part 3 of the
book, called “Using Entity Framework Core in real-world applications,” shows my
focus on building and shipping real applications. And I have not one, but three
chapters on performance-tuning EF Core so you have many performance improve-
ment techniques at your fingertips when your application is not performing as well
as you need it to.

 Some of the most pleasurable chapters to write were ones that delved into how
EF Core works inside (chapters 1, 6, and 11) and performance-tuning an applica-
tion (chapters 14, 15, and 16). Personally, I learned a lot from using a modular
monolith architecture (chapter 13) and building a substantial application with Cos-
mos DB (chapter 16). Along the way, I try to present the pros and cons of each
approach I use, as I don’t believe there is a “silver bullet” answer in software—only a
range of compromises that we as developers need to consider when choosing how to
implement something.

acknowledgments
Although I did most of the work on the book, I had a lot of help along the way, and I
want to say “Thank you” to all those who helped.

 Thanks to my wife, Dr. Honora Smith, for putting up with my sitting in front on my
computer for three-fourths of a year and for getting me back into programming. I
love her to bits. Another special mention goes to my great friend JC for his help and
support.

 Manning Publications has been great, with a robust and comprehensive process
that is hard but thorough, which produces an excellent end product. The team is
great, and I’m going to list the significant people in chronological order, starting with
Brian Sawyer, Breckyn Ely, Marina Michaels, Joel Kotarski, Rejhana Markanovic, Josip
Maras, Heather Tucker, Aleksandar Dragosavljević, and many others who helped with
production of the book. Marina Michaels was my main contact for the first edition,
and I obviously didn’t cause her too many problems, as she kindly agreed to help me
on the second edition.

 I also got a lot of help from the busy EF Core team. As well as answering numer-
ous issues that were raised on the EF Core GitHub repo, they checked a few of the
chapters in which their input was valuable. Arthur Vickers and Shay Rojansky get
special mention for reviewing some chapters. The other people on the team, in
alphabetical order, are Andriy Svyryd, Brice Lambson, Jeremy Likness, Maurycy
Markowski, and Smit Patel.

 I would also like to thank Julien Pohie, technical proofreader, and the reviewers: Al
Pezewski, Anne Epstein, Foster Haines, Hari Khalsa, Janek López, Jeff Neumann, Joel
xxv

ACKNOWLEDGMENTSxxvi
Clermont, John Rhodes, Mauro Quercioli, Paul G. Brown, Raushan Jha, Ricardo
Peres, Shawn Lam, Stephen Byrne, Sumit K Singh, Thomas Gueth, Thomas Overby
Hansen, and Wayne Mather. Your suggestions helped make this a better book.

about this book
Entity Framework Core in Action, Second Edition, is about writing EF Core database code
quickly, correctly, and ultimately for fast performance. To help with the “quick, cor-
rect, fast” aspects, I include a lot of examples with plenty of tips and techniques. And
along the way, I throw in quite a bit on how EF Core works on the inside, because that
information will help you when things don’t work the way you think they should.

 The Microsoft documentation is good but doesn’t have room for detailed exam-
ples. In this book, I try to give you at least one example of each feature I cover, and
you’ll often find unit tests in the GitHub repo (see the “About the code” section for
links) that test a feature in multiple ways. Sometimes, reading a unit test can convey
what’s happening much more quickly than reading the text in a book can, so consider
the unit tests to be a useful resource.

Who should read this book?
Entity Framework Core in Action, Second Edition, is aimed at both software developers
who’ve never used EF before and seasoned EF Core developers, plus anyone else
who wants to know what EF Core is capable of doing. I assume that you’re familiar
with .NET development with C# and that you have at least some idea of what a rela-
tional database is. You don’t need to be a C# expert, but if you’re new to C#, you
might find some of the code hard to read, as I don’t explain C#. The book starts
with basic EF Core commands, which should be accessible to most C# programmers,
but from part 2 onward, the topics get more complex as the content goes deeper
into EF Core’s features.
xxvii

ABOUT THIS BOOKxxviii
How this book is organized
I’ve tried to build a path that starts with the basics (part 1), goes deep into the details
(part 2), and ends with useful tools and techniques (part 3). I try not to assume you’ll
read the book cover to cover, especially the reference section in part 2, but at least
skim-reading the first six chapters will help you understand the basics that I use later
in the book.

Part 1: Getting started

■ Chapter 1 introduces EF Core with a super-simple console application so you
can see all the parts of EF Core in action. I also provide an overview of how EF
Core works and why you might like to use it.

■ Chapter 2 looks at querying (reading data from) the database. I cover the rela-
tionships between data stored in the database and how you can load that
related data by using EF Core.

■ Chapter 3 moves on to changing the data in a database: adding new data,
updating existing data, and deleting data from a database.

■ Chapter 4 looks at the different ways you can build robust business logic that
uses EF Core to access the database. Business logic is the name given to code that
implements business rules or workflow that’s specific to the business problem
your application solves.

■ Chapter 5 is about building an ASP.NET Core application that uses EF Core. It
pulls together the code developed in chapters 2, 3, and 4 to make a web applica-
tion. I also talk about deploying the web application and accessing the hosted
database.

■ Chapter 6 covers a wide range of topics. Most topics contain a description of an
aspect of EF Core combined with ways to exploit that feature in your code.

Part 2: Entity Framework Core in depth

■ Chapter 7 covers the configuration of nonrelational properties—properties
that hold a value, such as int, string, DateTime, and so on.

■ Chapter 8 covers the configuration of relationships—the links between classes,
such as a Book class linking to one or more Author classes. It also includes spe-
cial mapping techniques, such as mapping multiple classes to one table.

■ Chapter 9 covers all the ways you can change the database structure when using
EF Core. It also looks at the issues that arise when you need to change the struc-
ture of a database that’s being used by a live application.

■ Chapter 10 looks at advanced mapping features and the whole area of detecting
and handling concurrency conflicts.

■ Chapter 11 digs deep into how EF Core’s DbContext works, with a blow-by-blow
view of what the various methods and properties do inside your application’s
DbContext.

ABOUT THIS BOOK xxix

Part 3: Using Entity Framework Core in real-world applications

■ Chapter 12 introduces two approaches that send messages to the enhanced
SaveChanges/SaveChangesAsync methods. These two approaches provide
another way to combine multiple updates into one transactional database update.

■ Chapter 13 looks at applying Domain-Driven Design (DDD) approaches to your
classes mapped to the database by EF Core. It also describes another architec-
tural approach used in the part 3 Book App.

■ Chapter 14 lists all the issues that could affect the performance of your database
accesses and discusses what to do about them.

■ Chapter 15 is a worked example of performance-tuning an EF Core applica-
tion. I take the original Book App display query, developed in part 1, and apply
three levels of performance tuning.

■ Chapter 16 uses Cosmos DB to further performance-tune the Book App, which
uncovers the strengths and weakness of Cosmos DB and its EF Core provider.
The chapter ends with what you need to do when changing from one database
type to another.

■ Chapter 17 is all about unit testing applications that use EF Core. I’ve also cre-
ated a NuGet package that you can use to help in your own unit testing.

Appendix

■ Appendix A introduces the LINQ language that EF Core uses. This appendix
is useful for those who are unfamiliar with LINQ or who want a quick
refresher on LINQ.

About the code
I feel that I really know something only if I’ve written code to use that function or fea-
ture, so the companion GitHub repo at http://mng.bz/XdlG is available to you.

NOTE I strongly recommend cloning the code from the GitHub URL shown
above. The copy of the repo listed on the Manning book page has problems
with the Part3 branch because of long directory names.

This repo contains the code for the applications I show in the book and unit tests that
I ran to make sure that what I said in the book is correct. The repo has three
branches:

■ master, which covers part 1 of the book (chapters 1–6)
■ Part2, which covers part 2 of the book (chapters 7–11)
■ Part3, which covers part 3 of the book (chapters 12–17)

To run any of the applications, you should first read the Readme file at http://mng
.bz/yYjG in the GitHub repo. Each branch’s Readme file has three main sections:

■ What you need to install to run the example applications, which tells you the devel-
opment applications, .NET version, and database requirements to run any of

http://mng.bz/XdlG
http://mng.bz/yYjG
http://mng.bz/yYjG
http://mng.bz/yYjG

ABOUT THIS BOOKxxx
the applications in the GitHub repo. (This information is the same for every
branch.)

■ What you can run in this branch, which tells you what application(s) you can run
in the branch of the GitHub repo you have selected.

■ How to find and run the unit tests, which tells you where the unit tests are and the
various ways you can run them.

As you work through the three parts of the book, you can select each Git branch to
access the code specifically for that part. Also, look out for the associated unit tests,
grouped by chapter and feature.

NOTE For chapter 17, which is about unit testing, I used a library I created.
This library, which you can find at https://github.com/JonPSmith/EfCore
.TestSupport, is an updated version of the EfCore.TestSupport library I cre-
ated for the first edition of this book, now using new features available in EF
Core 5. This library is an open source (MIT license) library, so you can use
the NuGet package called EfCore.TestSupport (version 5 and later) in your
own unit tests.

Code conventions
The code samples in this book, and their output, appear in a fixed-width font and
are often accompanied by annotations. The code samples are deliberately kept as sim-
ple as possible because they aren’t intended to be reusable parts that can be plugged
into your code. Instead, the code samples are stripped down so that you can focus on
the principle being illustrated.

 This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes, code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even these changes were not enough, so some listings include
line-continuation markers (➥). Additionally, some comments in the source code have
been removed from the listings when the code is described in the text. Code annota-
tions accompany many of the listings, highlighting important concepts.

 Source code for the examples in this book is available for download from the
GitHub repo (http://mng.bz/XdlG).

liveBook discussion forum
Purchase of Entity Framework Core in Action, Second Edition, includes free access to a pri-
vate web forum run by Manning Publications where you can make comments about
the book, ask technical questions, and receive help from the author and from other

https://github.com/JonPSmith/EfCore.TestSupport
https://github.com/JonPSmith/EfCore.TestSupport
https://github.com/JonPSmith/EfCore.TestSupport
http://mng.bz/XdlG

ABOUT THIS BOOK xxxi
users. To access the forum, go to https://livebook.manning.com/book/entity-frame-
work-core-in-action-second-edition. You can also learn more about Manning’s forums
and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Online resources
Here are useful links to the Microsoft documentation and code:

■ Microsoft’s EF Core documentation—https://docs.microsoft.com/en-us/ef/core/
■ EF Core code—https://github.com/dotnet/efcore
■ ASP.NET Core, working with EF Core—https://docs.microsoft.com/en-us/aspnet/

core/data/
■ Stack Overflow EF Core tag [entity-framework-core]—https://stackoverflow.com

https://livebook.manning.com/book/entity-framework-core-in-action-second-edition
https://livebook.manning.com/book/entity-framework-core-in-action-second-edition
https://docs.microsoft.com/en-us/ef/core/
https://github.com/dotnet/efcore
https://docs.microsoft.com/en-us/aspnet/core/data/
https://docs.microsoft.com/en-us/aspnet/core/data/
https://stackoverflow.com
https://livebook.manning.com/#!/discussion

about the author
JON P SMITH is a freelance software developer and architect with a special focus on
.NET Core and Azure. He works mainly on the backend of client applications, typi-
cally using Entity Framework Core (EF Core) and ASP.NET Core web applications. He
works remotely for clients around the world, with many of the projects coming from
the United States. He typically helps with designing, performance-tuning, and writing
sections of the client’s application.

 Jon is interested in defining patterns and building libraries that improve the speed
of development of applications when using EF Core and ASP.NET Core. His libraries
were written because he found some repetitive part of a project he was working on
that could be turned into a useful library. You can see a summary of his main libraries
on his GitHub overview page (https://github.com/JonPSmith).

 Jon also writes on his technical blog at http://www.thereformedprogrammer.net,
where he has covered topics related to EF Core, ASP.NET Core, and different archi-
tectural approaches. The most popular article on his technical blog site is about an
improved ASP.NET Core authorization system; see http://mng.bz/ao2z. He has also
spoken at a few conferences and at many Meetups in the United Kingdom.
xxxii

https://github.com/JonPSmith
http://www.thereformedprogrammer.net/
http://mng.bz/ao2z

about the cover illustration
The figure on the cover of Entity Framework Core in Action, Second Edition, is captioned
“The Wife of a Franc Merchant.” The illustration is taken from Thomas Jefferys’ A Col-
lection of the Dresses of Different Nations, Ancient and Modern (four volumes), London,
published between 1757 and 1772. The title page states that these illustrations are
hand-colored copperplate engravings, heightened with gum arabic.

 Thomas Jefferys (1719–71) was called “Geographer to King George III.” He was an
English cartographer and the leading map supplier of his day. He engraved and
printed maps for government and other official entities, and produced a wide range
of commercial maps and atlases, especially of North America. His work as a mapmaker
sparked an interest in the local dress customs of the lands he surveyed and mapped,
which are brilliantly displayed in this collection. Fascination with faraway lands and
travel for pleasure were relatively new phenomena in the late 18th century, and collec-
tions such as this one were popular, introducing both the tourist and the armchair
traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness
and individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded
away. Now, it’s often hard to tell the inhabitants of one continent from another. Per-
haps (trying to view things optimistically) we’ve traded cultural and visual diversity
for more varied personal lives—or more varied and interesting intellectual and tech-
nical lives.
xxxiii

ABOUT THE COVER ILLUSTRATIONxxxiv
 At a time when it’s difficult to tell one computer book from another, Manning cel-
ebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of the regional life of two centuries ago, brought back to
life by Jeffreys’ pictures.

Part 1

Getting started

Data is everywhere, growing by petabytes per year, and a lot of it is stored in
databases. Millions of applications are also out there—at the beginning of 2021,
there were 1.2 billion websites—and most of them need to access data in data-
bases. And I haven’t started on the Internet of Things yet. So it shouldn’t be a
surprise that Gartner, a leading research and advisory company, says that global
IT spending will reach $3.7 trillion in 2021 (http://mng.bz/gonl).

 The good news for you is that your skills will be in demand. But the bad news
is that the pressure to develop applications quickly is unrelenting. This book is
about one tool that you can use to write database access code quickly: Microsoft’s
Entity Framework Core (EF Core). EF Core provides an object-oriented way to
access relational and nonrelational (NoSQL) databases in the .NET environ-
ment. The cool thing about EF Core and the other .NET Core libraries is that
they can run on the Windows, Linux, and Apple platforms, and they’re fast.

 In part 1, I get you into the code straightaway. In chapter 1, you’ll build a
super-simple console application, and by the end of chapter 5, you’ll build a rea-
sonably sophisticated web application that sells books. Chapters 2 and 3 explain
the reading and writing of data to a relational database, respectively, and chap-
ter 4 covers writing your business logic. In chapter 5, you’ll use Microsoft’s
ASP.NET Core web framework to build the example book-selling site. Chapter 6
expands your knowledge of how EF Core works inside through a series of use-
ful techniques for solving database problems, such as a quick way to copy data
in the database.

 You’ll have a lot of learning to do in part 1, even though I skip a few topics,
mainly by relying on a lot of EF Core’s default settings. Nevertheless, part 1

http://mng.bz/gonl

2 PART 1 Getting started
should give you a good understanding of what EF Core can do, with later parts grow-
ing your knowledge with extra EF Core features, more details on how you can config-
ure EF Core, and chapters devoted to specific areas such as performance tuning.

Introduction to Entity
Framework Core
Entity Framework Core, or EF Core, is a library that software developers can use to
access databases. There are many ways to build such a library, but EF Core is
designed as an object-relational mapper (O/RM). O/RMs work by mapping between
two worlds: the relational database, with its own API, and the object-oriented soft-
ware world of classes and software code. EF Core’s main strength is allowing software
developers to write database access code quickly in a language that you may know
better than SQL.

 EF Core is multiplatform-capable: it can run on Windows, Linux, and Apple. It
does this as part of the .NET Core initiative—hence the Core part of the EF Core name.
.NET 5 covers the whole range of desktop, web, cloud, mobile, gaming, Internet of
Things (IoT), and artificial intelligence (AI), but this book is focused on EF Core.

This chapter covers
 Understanding the anatomy of an EF Core

application

 Accessing and updating a database with EF Core

 Exploring a real-world EF Core application

 Deciding whether to use EF Core in your
application
3

4 CHAPTER 1 Introduction to Entity Framework Core
 EF Core isn’t the first version of Entity Framework; an existing, non-Core, Entity
Framework library is known as EF6.x. EF Core starts with years of experience built into
it via feedback from these previous versions, 4 to 6.x. It has kept the same type of inter-
face as EF6.x but has major changes underneath, such as the ability to handle nonrela-
tional databases, which EF6.x wasn’t designed to do. I had used EF5 and EF6 in many
applications before EF Core came along, which allowed me to see the significant
improvements EF Core made over EF6.x in both features and performance.

 This book is for software developers who are already using EF Core, as well as
developers who’ve never used Entity Framework, and seasoned EF6.x developers
who want to move over to EF Core. I do assume that you’re familiar with .NET devel-
opment using C# and that you have at least some idea of what relational databases
are. I don’t assume you know how to write Structured Query Language (SQL), the
language used by a majority of relational databases, because EF Core can do most of
that for you. But I do show the SQL that EF Core produces because it helps you
understand what’s going on; using some of the EF Core advanced features requires
you to have SQL knowledge, but the book provides plenty of diagrams to help you
along the way.

TIP If you don’t know a lot about SQL and want to learn more, I suggest the
W3Schools online resource: https://www.w3schools.com/sql/sql_intro.asp.
The SQL set of commands is vast, and EF Core queries use only a small sub-
set (such as SELECT, WHERE, and INNER JOIN), so that resource is a good place
to start.

This chapter introduces you to EF Core through the use of a small application that
calls into the EF Core library. You’ll look under the hood to see how EF Core inter-
prets software commands and accesses the database. Having an overview of what’s
happening inside EF Core will help you as you read through the rest of the book.

What you’ll learn from this book1.1
The book gives you an introduction to EF Core, starting with the basics and advancing
to some more complex parts of EF Core. To get the best out of this book, you should
be comfortable with developing applications using C#, including creating projects
and loading NuGet packages. You will learn

 The fundamentals of using EF Core to access a database
 How to use EF Core in an ASP.NET Core web application
 The many ways you can configure EF Core to work exactly as you need
 Some of the deeper database features you might want to use
 How to handle changes in the database layout as your application grows
 How to improve the performance of your database code
 Most important, how to make sure that your code is working correctly

https://www.w3schools.com/sql/sql_intro.asp

5My “lightbulb moment” with Entity Framework
Throughout the book I build simple but fully featured applications so that you can see
EF Core working in real situations. All these applications are available via the example
repo, which also includes lots of tips and techniques I have picked up while working as
a contract developer and on my own projects.

1.2 My “lightbulb moment” with Entity Framework
Before we get into the nitty-gritty, let me tell you about one defining moment I had
when using Entity Framework that put me on the road to embracing EF. It was my wife
who got me back into programming after a 21-year gap (that’s a story in itself!).

 My wife, Dr. Honora Smith, is a lecturer in mathematics at the University of South-
ampton, who specializes in the modeling of healthcare systems, especially focusing on
where to locate health facilities. I had worked with her to build several applications to
do geographic modeling and visualization for the UK National Health Service and
worked for South Africa on optimizing HIV/AIDS testing.

 At the start of 2013, I decided to build a web application specifically for healthcare
modeling. I used ASP.NET MVC4 and EF5, which had just come out and supported
SQL spatial types that handle geographic data. The project went okay, but it was
hard work. I knew that the frontend was going to be hard; it was a single-page appli-
cation using Backbone.js, but I was surprised at how long it took me to do the server-
side work.

 I applied good software practices and made sure that the database and business
logic were matched to the problem space—that of modeling and optimizing the loca-
tion of health facilities. That was fine, but I spent an inordinate amount of time writ-
ing code to convert the database entries and business logic to a form suitable to show
to the user. Also, I was using a Repository/Unit of Work pattern to hide EF5 code, and
I was continually having to tweak areas to make the repository work properly.

 At the end of a project, I always look back and ask, “Could I have done that bet-
ter?” As a software architect, I’m always looking for parts that (a) worked well, (b)
were repetitious and should be automated, or (c) had ongoing problems. This time,
the list was as follows:

 Worked well—The ServiceLayer, a layer in my application that isolated/adapted
the lower layers of the application from the ASP.NET MVC4 frontend, worked
well. (I introduce this layered architecture in chapter 2.)

 Was repetitious—I used ViewModel classes, also known as data transfer objects
(DTOs), to represent the data I needed to show to the user. Using a View-
Model/DTO worked well, but writing the code to copy the database tables to
the ViewModel/DTO was repetitious and boring. (I also talk about ViewMod-
els/DTOs in chapter 2.)

 Had ongoing problems—The Repository/Unit of Work pattern didn’t work for
me. Ongoing problems occurred throughout the project. (I cover the Reposi-
tory pattern and alternatives in chapter 13.)

6 CHAPTER 1 Introduction to Entity Framework Core
As a result of my review, I built a library called GenericServices (https://github.com/
JonPSmith/GenericServices) to use with EF6.x. This library automated the copying of
data between database classes and ViewModels/DTOs, and removed the need for a
Repository/Unit of Work pattern. It seemed to be working well, but to stress-test
GenericServices, I decided to build a frontend over one of Microsoft’s example data-
bases: the AdventureWorks 2012 Lite database. I built the whole application with the
help of a frontend UI library in 10 days!

The site wasn’t too pretty, but appearance wasn’t the point. By analyzing my use of the
Repository/Unit of Work pattern with EF6.x, I found a better approach. Then, by
encapsulating this better approach into my GenericServices library, I automated the
process of building Create, Read, Update, and Delete (CRUD) database commands.
The result allowed me to build applications really quickly—definitely a “lightbulb
moment,” and I was hooked on EF.

 Since then, I’ve built new libraries that work with EF Core, which I have found to
significantly speed the development of 90% of my database accesses. I work as a con-
tract developer, and these libraries, which are open source and available to you too,
automate some of the standard requirements, allowing me to concentrate on the
harder topics, such as understanding the client’s needs, writing custom business logic,
and performance-tuning where necessary. I will be talking about these libraries in
later chapters.

1.3 Some words for existing EF6.x developers

TIME-SAVER If you haven’t used Entity Framework 6.x, you can skip this section.

If you know EF6.x, much of EF Core will be familiar to you. To help you navigate this
book quickly, I’ve added EF6 notes.

EF6 Watch for notes like this throughout the book. They point out the
places where EF Core is different from EF6.x. Also be sure to look at the sum-
maries at the end of each chapter, which point out the biggest changes
between EF6 and EF Core in the chapter.

I’ll also give you one tip from my journey of learning EF Core. I know EF6.x well, but
that knowledge became a bit of a problem when I started using EF Core. I was using
an EF6.x approach to problems and didn’t notice that EF Core had new ways to solve
them. In most cases, the approaches are similar, but in some areas, they aren’t.

Entity Framework + the right libraries + the right approach

= quick development of database access code

https://github.com/JonPSmith/GenericServices
https://github.com/JonPSmith/GenericServices
https://github.com/JonPSmith/GenericServices

7An overview of EF Core
 My advice to you, as an existing EF6.x developer, is to approach EF Core as a new
library that someone has written to mimic EF6.x, but understand that it works in a dif-
ferent way. That way, you’ll keep your eyes open for the new and different ways of
doing things in EF Core.

1.4 An overview of EF Core
You can use EF Core as an O/RM that maps between the relational database and the
.NET world of classes and software code. Table 1.1 shows how EF Core maps the two
worlds of the relational database and .NET software.

The downsides of O/RMs1.4.1

Making a good O/RM is complex. Although EF6.x or EF Core can seem easy to use, at
times the EF Core “magic” can catch you by surprise. Let me mention two issues to be
aware of before we dive into how EF Core works.

 The first issue is object-relational impedance mismatch. Database servers and object-
oriented software use different principles; databases use primary keys to define that a
row is unique, whereas .NET class instances are, by default, considered unique by
their reference. EF Core handles much of the impedance mismatch for you, but your
.NET classes gain primary and foreign keys, which is extra data needed only for the
database. Your software-only version of the classes doesn’t need those extra properties,
but the database does.

 The second issue is that an O/RM—and especially an O/RM as comprehensive as
EF Core—is the opposite of the first issue. EF Core “hides” the database so well that
you can sometimes forget about the database underneath. This problem can cause
you to write code that would work well in C# but doesn’t work for a database. One
example is having an expression body property return the full name of a person by
combining the FirstName and LastName properties in the class, such as

public string FullName => $"{FirstName} {LastName}";

EF Core mapping between a database and .NET softwareTable 1.1

Relational database .NET software

.NET classTable

Class properties/fieldsTable columns

Elements in .NET collections—for instance,Rows List

A unique class instancePrimary keys: unique row

Reference to another classForeign keys: define a relationship

SQL—for instance, WHERE .NET LINQ—for instance, Where(p => …

8 CHAPTER 1 Introduction to Entity Framework Core
An expression body property such as the one just shown is the right thing to do in C#,
but the same property would throw an exception if you tried to filter or order on that
property, because EF Core needs a FullName column in the table so that it can apply
an SQL WHERE or ORDER command at the database level.

 That’s why I spend time in this chapter showing how EF Core works on the inside
and the SQL it produces. The more you understand about what EF Core is doing, the
better equipped you’ll be to write good EF Core code, and—more important—you’ll
know what to do when your code doesn’t work.

NOTE Throughout this book, I use a “Get it working, but be ready to make it
faster if I need to” approach to using EF Core. EF Core allows me to develop
quickly, but I’m aware that because of EF Core, or my poor use of it, the per-
formance of my database access code might not be good enough for a partic-
ular business need. Chapter 5 covers how to isolate your EF Core so you can
tune it with minimal side effects, and chapter 15 shows how to find and
improve database code that isn’t fast enough.

What about NoSQL?1.5
We can’t talk about relational databases without mentioning nonrelational databases,
also known colloquially as NoSQL (see http://mng.bz/DW63). Both relational and
nonrelational databases have a role in modern applications. I’ve used both SQL
Server (relational database) and Azure Tables (nonrelational database) in the same
application to handle two business needs.

 EF Core handles both relational and nonrelational databases—a departure from
EF6.x, which was designed around relational databases only. Most of the EF Core com-
mands covered in this book apply to both types of databases, but there are some dif-
ferences at the database level between relational databases and NoSQL databases,
which leave out some of the more complex database commands in favor of scalability
and performance.

 EF Core 3.0 added a database provider for the Azure NoSQL database called Cos-
mos DB, which I cover in chapter 16. In that chapter, I point out the differences
between a relational database and Cosmos DB; I was surprised by what I found. Now
that EF Core has been altered to handle NoSQL databases, I expect that more NoSQL
database providers will be written.

NOTE Cosmos DB and other NoSQL databases have many strengths com-
pared with SQL databases. It’s much easier, for example, to have multiple
copies of NoSQL databases around the world, which gives the user quicker
access, and if a data center goes down, other copies can take over the load.
But NoSQL databases also have some limitations compared with SQL data-
bases; read chapter 16 for an in-depth analysis of Cosmos DB’s benefits and
limitations.

http://mng.bz/DW63

9Your first EF Core application
Your first EF Core application1.6
In this chapter, you’ll start with a simple example so that we can focus on what EF
Core is doing rather than what the code is doing. For this example, you’re going to
use a small console application called MyFirstEfCoreApp, which accesses a simple
database. The MyFirstEfCoreApp application’s job is to list and update books in a sup-
plied database. Figure 1.1 shows the console output.

This application isn’t going to win any prizes for its interface or complexity, but it’s a
good place to start, especially because I want to show you how EF Core works inter-
nally to help you understand what’s going on later in this book.

 You can download this example application from the Git repo at http://mng
.bz/XdlG. You can look at the code and run the application. To do this, you need soft-
ware development tools.

1.6.1 What you need to install

Microsoft has two development tools for a .NET Core application: Visual Studio and
Visual Studio Code (shortened to VS Code). Visual Studio is slightly easier to use, and
I suggest that newcomers to .NET use Visual Studio. You can download Visual Studio
from www.visualstudio.com. Numerous versions exist, including a free community

List all four books.

Update Quantum
Networking book.

Commands: 1 (list), u (change url) and e (exit)
> 1
Refactoring by Martin Fowler

Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler

Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans

Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person

Published on 01-Jan-2057. - no web url given -
> u
New Quantum Networking WebUrl > httqs://entangled.moon
... Saved Changes called.
Refactoring by Martin Fowler

Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler

Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans

Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person

Published on 01-Jan-2057. httqs://entangled.moon
>

Figure 1.1 The console application provides a command that uses an EF Core query to read and display all the
books in your sample database, plus a command to update the database. These two commands show you how EF
Core works inside.

http://www.visualstudio.com
http://mng.bz/XdlG
http://mng.bz/XdlG
http://mng.bz/XdlG

10 CHAPTER 1 Introduction to Entity Framework Core

version, but you need to read the license to make sure that you qualify; see www
.visualstudio.com/vs/community.

 When you install Visual Studio on Windows, make sure to include the .NET Core
Cross-Platform Development feature and Data storage and processing, which are in
the Other Toolsets section during the Install Workloads stage. Selecting the .NET
Core Cross-Platform Development feature will also install the .NET Core software
development kit (SDK) on your system; you need this SDK to create applications with
.NET. See http://mng.bz/2x0T for more information.

 If you want to use VS Code, which is free, you can download it from https://
code.visualstudio.com. You will need to do more setting up on your system, such as
installing the latest .NET Core SDK on your computer and the localdb SQL Server. As
I said, if you are new to coding in Microsoft’s system, I suggest using Visual Studio on
Windows, as it sets up a lot of things for you.

 One version of Visual Studio runs on an Apple Macintosh machine, and versions
of VS Code run in Windows, on a Mac, and in Linux. If you want to run any of the
applications or unit tests, you must have an SQL Server instance on your system. You
may need to change the server name in the connection strings for the applications
and the unit-test project.

 You can run your unit tests by using Visual Studio’s built-in Test Explorer, available
from the Test menu. If you’re using VS Code, the test runner is also built in, but you
need to set up the build and test tasks in the VS Code tasks.json file, which allows you
to run all the tests via the Task > Test command.

Creating your own .NET Co1.6.2 re console app with EF Core

I know that many developers like to create their own applications, because building

the code yourself means that you know exactly what’s involved. This section details
how to create the .NET console application MyFirstEfCoreApp by using Visual Studio.

CREATING A .NET CORE CONSOLE APPLICATION

Visual Studio has a great set of tutorials, and you can find an example of creating a C#
console application at http://mng.bz/e56z.

TIP You can find out which version of .NET your application is using by
choosing Project > MyFirstEfCoreApp Properties from the main menu; the
Application tab shows the Target Framework. Some versions of EF Core
require a certain version of .NET Core.

ADDING THE EF CORE LIBRARY TO YOUR APPLICATION

You can install the NuGet library in various ways. The more visual way is to use the
NuGet Package Manager; you can find a tutorial at http://mng.bz/pVeG. For this
application, you need the EF Core package for the database that your application is
going to access. In this case, you choose the Microsoft.EntityFrameworkCore.SqlServer
NuGet package, because it’ll use the development SQL Server that was installed when
you installed Visual Studio.

http://mng.bz/e56z
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
http://mng.bz/2x0T
http://mng.bz/pVeG
http://www.visualstudio.com/vs/community
http://www.visualstudio.com/vs/community
http://www.visualstudio.com/vs/community

11The database that MyFirstEfCoreApp will access

 The other thing you need to look at is the version number of the NuGet package
you are about to install. EF Core has been built such that each major release has its
own number. A version number of 5.1.3, for example, means EF Core major version 5,
with minor release 1 and patch (bug fix) version 3. Often, you need to load different
EF Core packages in different projects. You might load Microsoft.EntityFramework-
Core in your data layer and Microsoft.EntityFrameworkCore.SqlServer in the web app,
for example. If you need to do this, you should try to use NuGet packages with the
same Major.Minor.Patch listed in your project's properties. If a match is not found,
make sure that the NuGet Major.Minor version matches your project's version.

1.7

Downloading and running the example application from the Git repo
You have two options for downloading and running the MyFirstEfCoreApp console
application in the Git repo: Visual Studio or VS Code. You can find another Visual Stu-
dio tutorial, “Open a project from a repo,” at http://mng.bz/OE0n. The repo associ-
ated with this book is http://mng.bz/XdlG.

Be sure to select the right branch. A Git repo has branches that allow you to switch
between different versions of the code. For this book, I created three main branches:
master, which contains the code for part 1 (chapters 1–6); Part2, which contains the
code for part 2 (chapters 7–11); and Part3, which contains the code for part 3 (chap-
ters 12–17).

By default, the repo will be opened in the master branch, so someone who is not used
to Git can get started straight away. The Readme file in each branch has more infor-
mation about what you need to install and what you can run.

The database that MyFirstEfCoreApp will access
EF Core is about accessing databases, but where does that database come from? EF
Core gives you two options: EF Core can create it for you, in what’s known as a code-first
approach, or you can provide an existing database you built outside EF Core, in what’s
known as a database-first approach. The first part of the book uses code-first because
it’s the approach that many developers use.

EF6 In EF6, you could use an EDMX/database designer to design your data-
base visually, an option known as design-first. EF Core doesn’t support this
design-first approach in any form, and there are no plans to add it.

In this chapter, we’re not going to learn about how a database is created. To allow the
MyFirstEfCoreApp application to work, the code will create the database and add the
test data if there isn’t an existing database.

NOTE In my code, I use a basic EF Core command meant for unit testing to
create the database, because it’s simple and quick. Chapter 5 covers how to get
EF Core to create a database properly, and chapter 9 presents the whole issue

http://mng.bz/OE0n
http://mng.bz/XdlG

12 CHAPTER 1 Introduction to Entity Framework Core
of creating and changing the structure of the database, known as the data-
base’s schema.

For this MyFirstEfCoreApp application example, I created a simple database, shown in
figure 1.2, with only two tables:

 A Books table holding the book information
 An Author table holding the author of each book

ADVANCED NOTE In this example, I let EF Core name the tables using its default
configuration settings. The Books table name comes from the DbSet<Book>
Books property shown in figure 1.5. The Author table name hasn’t got a
DbSet<T> property in figure 1.5, so EF Core uses the name of the class.

Figure 1.3 shows the content of the database. It holds only four books, the first two of
which have the same author: Martin Fowler.

Books

Tables

Columns

BookId

Title

Description

PublishedOn

AuthorId

PK

FK1

Author

AuthorId

Name

WebUrl

PK

Primary keys

Columns

Foreign key

Foreign-key

constraint

Our example relational database with two tables: Books and AuthorFigure 1.2

Refactoring1

Patterns of Enterprise Ap2

Domain-Driven Design3

Quantum Networking

Improving h

Written in d

Linking bus

Entanged q

08-Jul-1999

15-Nov-2002

30-Aug-2003

01-Jan-20574

1

1

2

3

Martin Fowler1

Eric Evans2

Future Person3

http://ma

http://don

null

Description AvailableFrom AuthBook Title WebUrlAuth NameRows

The content of the database, showing four books, two of which have the same authorFigure 1.3

13Setting up the MyFirstEfCoreApp application

Setting up the MyFirstEfCoreApp application1.8
Having created and set up a .NET console application, you can now start writing EF
Core code. You need to write two fundamental parts before creating any database
access code:

 The classes that you want EF Core to map to the tables in your database
 The application’s DbContext, which is the primary class that you’ll use to con-

figure and access the database

The classes that map to1.8.1 the database: Book and Author

EF Core maps classes to database tables. Therefore, you need to create a class that will
define the database table or match a database table if you already have a database.
Lots of rules and configurations exist (covered in chapters 7 and 8), but figure 1.4
gives the typical format of a class that’s mapped to a database table.

EF Core maps
.NET classes to
database tables.

In this case, the class
Book is mapped to
the table Books.

A class needs a primary key.
We’re using an EF Core naming
convention that tells EF Core
that the property BookId is
the primary key.

The AuthorId foreign key is used in the
database to link a row in the Books table
to a row in the Author table.

The Author property is an EF Core navigational property. EF Core uses this on a save
to see whether the Book has an Author class attached. If so, it sets the foreign key, AuthorId.

Upon loading a Book class, the method Include will fill this property with the Author
class that’s linked to this Book class by using the foreign key, AuthorId.

Books

BookId

Title

Description

PublishedOn

AuthorId

public class Book
{

public int { get; set; }BookId

public string Title { get; set; }
public string Description { get; set; }
public DateTime PublishedOn {

public int { get; set; }AuthorId

public Author { get; set; }Author
}

PK

FK1

These properties
are mapped to the
table’s columns.

Figure 1.4 The.NET class Book, on the left, maps to a database table called Books, on the right. This
is a typical way to build your application, with multiple classes that map to database tables.

Listing 1.1 shows the other class you’ll be using: Author. This class has the same struc-
ture as the Book class in figure 1.4, with a primary key that follows the EF Core naming
conventions of <ClassName>Id (see section 7.3.5). The Book class also has a naviga-
tional property of type Author and an int type property called AuthorId that matches
the Author’s primary key. These two properties tell EF Core that you want a link from

14 CHAPTER 1 Introduction to Entity Framework Core

the Book class to the Author class and that the AuthorId property should be used as
the foreign key to link the two tables in the database.

public class Author
{
 public int AuthorId { get; set; }
 public string Name { get; set; }
 public string WebUrl { get; set; }
}

The application’s DbContext1.8.2

The other important part of the application is DbContext, a class you create that
inherits from EF Core’s DbContext class. This class holds the information EF Core
needs to configure that database mapping and is also the class you use in your code to
access the database (see section 1.9.2). Figure 1.5 shows the application’s DbContext,
called AppDbContext, that the MyFirstEfCoreApp console application uses.

Listing 1.1 The Author class from MyFirstEfCoreApp

Holds the primary key of the Author row
in the DB. Note that the foreign key in
the Book class has the same name.

You must have a class that inherits from the EF Core class DbContext. This
class holds the information and configuration for accessing your database.

The database connection string holds
information about the database:
• How to find the database server
• The name of the database
• Authorization to access the database

In a console application, you configure
EF Core’s database options by
overriding the OnConfiguring method.
In this case, you tell it you’re using an
SQL Server database by using the
UseSqlServer method.

By creating a property called Books
of type DbSet<Book>, you tell EF Core
that there’s a database table named
Books, and it has the columns and
keys as found in the Book class.

public class AppDbContext : DbContext
{

private const string ConnectionString =
@"Server=(localdb)\mssqllocaldb;
Database=MyFirstEfCoreDb;
Trusted_Connection=True”;

protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)

{
optionsBuilder

.UseSqlServer(connectionString);
}

public DbSet<Book> { get; set; }Books

}

Our database has a table called Author, but you purposely didn’t create a property for that table.
EF Core finds that table by finding a navigational property of type Author in the Book class.

Figure 1.5 Two main parts of the application’s DbContext created for the MyFirstEfCoreApp console
application. First, the setting of the database options defines what type of database to use and where it can
be found. Second, the DbSet<T> property (or properties) tell(s) EF Core what classes should be mapped to
the database.

In our small example application, all the decisions on the modeling are done by EF
Core, which works things out by using a set of conventions. You have loads of extra

15Looking under the hood of EF Core

ways to tell EF Core what the database model is, and these commands can get com-
plex. It takes chapter 7, chapter 8, and a bit of chapter 10 to cover all the options avail-
able to you as a developer.

 Also, you’re using a standard approach to define the database access in a console
application: overriding the OnConfiguring method inside the application’s DbCon-
text and providing all the information EF Core needs to define the type and location
of the database. The disadvantage of this approach is that it has a fixed connection
string, which makes development and unit testing difficult.

 For ASP.NET Core web applications, this problem is bigger because you want to
access a local database for testing, and a different hosted database when running in
production. In chapter 2, as you start building an ASP.NET Core web application,
you’ll use a different approach that allows you to change the database string (see sec-
tion 2.2.2).

1.9 Looking under the hood of EF Core
Having run the MyFirstEfCoreApp application, you can now use it to see how an EF
Core library works. The focus isn’t on the application code, but on what happens
inside the EF Core library when you read and write data to the database. My aim is to
provide you a mental model of how EF Core accesses a database. This model should
help as you dig into the myriad commands described throughout the rest of this book.

1.9.1

Do you really need to know how EF Core works inside to use it?
You can use the EF Core library without bothering to learn how it works. But knowing
what’s happening inside EF Core will help you understand why the various commands
work the way they do. You’ll also be better armed when you need to debug your data-
base access code.

The following pages include lots of explanations and diagrams to show you what hap-
pens inside EF Core. EF Core “hides” the database so that you, as a developer, can
write database access code easily—which does work well in practice. But as I stated
earlier, knowing how EF Core works can help you if you want to do something more
complex or if things don’t work the way you expect.

Modeling the database

Before you can do anything with the database, EF Core must go through a process
that I refer to as modeling the database. This modeling is EF Core’s way of working out
what the database looks like by looking at the classes and other EF Core configuration
data. Then EF Core uses the resulting model in all database accesses.

The modeling process is kicked off the first time you create the application’s
DbContext, in this case called AppDbContext (shown in figure 1.5). It has one prop-
erty, DbSet<Book>, which is the way that the code accesses the database.

Figure 1.6 provides an overview of the modeling process, which will help you
understand the process EF Core uses to model the database. Later chapters introduce

16 CHAPTER 1 Introduction to Entity Framework Core
you to a range of commands that allow you to configure your database more precisely,
but for now, you’ll use the default configurations.

Figure 1.6 shows the modeling steps that EF Core uses on our AppDbContext, which
happens the first time you create an instance of the AppDbContext. (After that, the
model is cached, so that subsequent instances are created quickly.) The following text
provides a more detailed description of the process:

 EF Core looks at the application’s DbContext and finds all the public DbSet<T>
properties. From this data, it defines the initial name for the one table it finds:
Books.

 EF Core looks through all the classes referred to in DbSet<T> and looks at its
properties to work out the column names, types, and so forth. It also looks for
special attributes on the class and/or properties that provide extra modeling
information.

 EF Core looks for any classes that the DbSet<T> classes refer to. In our case, the
Book class has a reference to the Author class, so EF Core scans that class too. It

1. Looks at all the DbSet properties

2. Looks at the
properties in
the class

3. Does the same to
any linked classes

4. Runs OnModelCreating,
if present

5. The final result:
a model of the
database

Your application

AppDbContext
Class Model the database:

1. Look at DbSet<T> properties.

2. Look at the class for columns.

3. Inspect linked classes.

4. Run OnModelCreating method.

Properties

Books : DbSet<Book>

Methods

void OnModelCreating(...

The EF Core library

Output

Database model (cached)Book
Class
Properties

BookId : int

...

Author
Class
Properties

AuthorId : int

...

AuthorBooks

Figure 1.6 The figure shows how EF Core will create a model of the database your classes map to.
First, it looks at the classes you have defined via the DbSet<T> properties; then it looks down all
the references to other classes. Using these classes, EF Core can work out the default model of the
database. But then it runs the OnModelCreating method in the application’s DbContext, which
you can override to add your specific commands to configure the database the way you want it.

17Looking under the hood of EF Core
carries out the same search on the properties of the Author class as it did on the
Book class in step 2. It also takes the class name, Author, as the table name.

 For the last input to the modeling process, EF Core runs the virtual method
OnModelCreating inside the application’s DbContext. In this simple applica-
tion, you don’t override the OnModelCreating method, but if you did, you
could provide extra information via a fluent API to do more configuration of
the modeling.

 EF Core creates an internal model of the database based on all the information
it gathered. This database model is cached so that later accesses will be quicker.
Then this model is used for performing all database accesses.

You might have noticed that figure 1.6 shows no database. This is so because when EF
Core is building its internal model, it doesn’t look at the database. I emphasize that
fact to show how important it is to build a good model of the database you want; other-
wise, problems could occur if a mismatch exists between what EF Core thinks the data-
base looks like and what the actual database is like.

 In your application, you may use EF Core to create the database, in which case
there’s no chance of a mismatch. Even so, if you want a good and efficient database,
it’s worth taking care to build a good representation of the database you want in your
code so that the created database performs well. The options for creating, updating,
and managing the database structure are a big topic, detailed in chapter 9.

1.9.2 Reading data from the database

You’re now at the point where you can access the database. The console application
has a list (l) command, which reads the database and prints the information on the
terminal. Figure 1.7 shows the result of running the console application and typing l.

The following listing shows the code that’s called to list all the books, with each author,
out to the console.

Commands: 1 (list), u (change url) and e (exit)
> 1
Refactoring by Martin Fowler

Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler

Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans

Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person

Published on 01-Jan-2057. - no web url given -
>

Output of the console application when listing the content of the databaseFigure 1.7

18 CHAPTER 1 Introduction to Entity Framework Core
public static void ListAll()
{
 using (var db = new AppDbContext())
 {
 foreach (var book in
 db.Books.AsNoTracking()

 .Include(book => book.Author))
 {
 var webUrl = book.Author.WebUrl == null
 ? "- no web URL given -"
 : book.Author.WebUrl;
 Console.WriteLine(
 $"{book.Title} by {book.Author.Name}");
 Console.WriteLine(" " +
 "Published on " +
 $"{book.PublishedOn:dd-MMM-yyyy}" +
 $". {webUrl}");
 }
 }
}

EF Core uses Microsoft’s .NET’s Language Integrated Query (LINQ) to carry the com-
mands it wants done, and normal .NET classes to hold the data. Listing 1.2’s query
doesn't include any LINQ methods, but later in the book, you’ll see plenty of LINQ
examples.

NOTE Learning LINQ will be essential to you, as EF Core uses LINQ commands for
database accesses. The appendix provides a brief introduction to LINQ. Plenty
of online resources are also available; see http://mng.bz/YqBN.

Two lines of code in bold in listing 1.2 cause the database access. Now let’s see how EF
Core uses that LINQ code to access the database and return the required books with
their authors. Figure 1.8 follows those lines of code down into the EF Core library,
through the database, and back.

 The process to read data from the database is as follows:

 The query db.Books.AsNoTracking().Include(book => book.Author) accesses
the DbSet<Book> property in the application’s DbContext and adds a .Include
(book => book.Author) at the end to ask that the Author parts of the relation-
ship are loaded too. This is converted by the database provider into an SQL
command to access the database. The resulting SQL is cached to avoid the cost
of retranslation if the same database access is used again.

EF Core tries to be as efficient as possible on database accesses. In this case, it com-
bines the two tables it needs to read, Books and Author, into one big table so that it
can do the job in one database access. The following listing shows the SQL created by
EF Core and the database provider.

Listing 1.2 The code to read all the books and output them to the console

You create the application’s
DbContext through which all
database accesses are done.

Reads all the books. AsNoTracking
indicates that this access is read-only.

The include causes the
author information to be
loaded with each book.
See chapter 2 for more
information.

http://mng.bz/YqBN

19Looking under the hood of EF Core
SELECT [b].[BookId],
[b].[AuthorId],
[b].[Description],
[b].[PublishedOn],
[b].[Title],
[a].[AuthorId],
[a].[Name],
[a].[WebUrl]
FROM [Books] AS [b]
INNER JOIN [Author] AS [a] ON
[b].[AuthorId] = [a].[AuthorId]

After the database provider has read the data, EF Core puts the data through a pro-
cess that (a) creates instances of the .NET classes and (b) uses the database relational
links, called foreign keys, to correctly link the .NET classes by reference—called a rela-
tional fixup. Because we added the AsNoTracking method, the relational fixup uses a
simplified fixup for speed reasons.

NOTE I discuss the differences between the AsNoTracking simplified rela-
tional fixup and the normal relational fixup in section 6.1.2.

SQL command produced to readListing 1.3 Books and Author

Refactoring

LINQ query translation

foreach (var book in
db.Books
.AsNoTracking()
.Include (a => a.Author))

1. Create classes.

2. Relational fixup (simple)

3. Tracking snapshot

Instances

Relational

links

Database provider

1

Patterns of Ent2

Domain-Driven3

Quantum Netw

Improving the

Written in dire

Link g businein

Entanged qua

Martin Fowler

Martin Fowler

Eric vansE

Future Person

08-Jul-1999

15-Nov-2002

30-Aug-2003

01-Jan-20574

1

1

2

3

htt //martinfop:

htt //martinfop:

http://domainl

null

1

1

2

3

LINQ query

translation

cache

Database

SQL server

Database commands; e.g.,

SELECT
Books.BookId,

Books.Title,

etc. ...

Book Author
Book

Book
Book

Author

WebUrlAuth Auth NameDescriptionBookId Title AvailableFrom

1. he NQ c atedT LI ode is transl
into SQL and is cached.

3. Because of the .AsNoTracking method,
no tracking snapshot is made.

2. The data is turned into instances of .NET classes, and the relational links are
set up appropriately. (.AsNoTracking uses a simplified fixup for speed reasons.)

All data read in one
command (Books and
Authors combined)

Author
Author

A look inside EF Core as it executes a database queryFigure 1.8

20 CHAPTER 1 Introduction to Entity Framework Core
The result is a set of .NET class instances with the Book’s Author property linked to an
Author class containing the author’s information. In this example, two books have the
same author, Martin Fowler, so there are two instances of the Author class, both hold-
ing the same information on Martin Fowler.

 Because the code includes the command AsNoTracking, EF Core knows to sup-
press the creation of a tracking snapshot. Tracking snapshots are used for spotting
changes to data, as you’ll see in the example of editing the WebUrl database column
in section 1.9.3. Because this query is read-only, suppressing the tracking snapshot
makes the command faster.

Updating the database1.9.3

Now you want to use the second command, update (u), in MyFirstEfCoreApp to
update the WebUrl column in the Author table of the book Quantum Networking. As
shown in figure 1.9, you first list all the books to show that the last book has no author
URL set. Then you run the command u, which asks for a new author URL for the last
book, Quantum Networking. You input a new URL of httqs://entangled.moon (it’s a
fictitious future book, so why not a fictitious URL!), and after the update, the com-
mand lists all the books again, showing that the author’s URL has changed (with the
two ovals showing you the before and after URLs).

No URL set on
the last book

URL set via the
u command

Commands: 1 (list), u (change url) and e (exit)
> 1
Refactoring by Martin Fowler

Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler

Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans

Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person

Published on 01-Jan-2057. - no web url given -
> u
New Quantum Networking WebUrl > httqs://entangled.moon
... Saved Changes called.
Refactoring by Martin Fowler

Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler

Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans

Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person

Published on 01-Jan-2057. httqs://entangled.moon
>

Figure 1.9 This figure shows an update in action. The first command is l (list), which shows each book with
the author’s name and URL on the next line. Then you press u (update), which allows you to update the URL
of the last book’s author. The update command called the list command, so that you can see that your update
was successful.

21Looking under the hood of EF Core
The code for updating the WebUrl column in the Author table linked to the book
with the title Quantum Networking is shown here.

public static void ChangeWebUrl()
{
 Console.Write("New Quantum Networking WebUrl > ");
 var newWebUrl = Console.ReadLine();

 using (var db = new AppDbContext())
 {
 var singleBook = db.Books
 .Include(book => book.Author)
 .Single(book => book.Title == "Quantum Networking");

 singleBook.Author.WebUrl = newWebUrl;
 db.SaveChanges();
 Console.WriteLine("... SavedChanges called.");
 }

 ListAll();
}

Figure 1.10 shows what is happening inside the EF Core library and follows its prog-
ress. This example is a lot more complicated than the previous read example, so let
me give you some pointers on what to look for.

 First, the read stage, at the top of the diagram, is similar to the read example and
so should be familiar. In this case, the query loads a specific book, using the book’s
title as the filter. The important change is point 2: that a tracking snapshot is taken of
the data.

 This change occurs in the update stage, in the bottom half of the diagram. Here,
you can see how EF Core compares the loaded data with the tracking snapshot to find
the changes. From this data, it sees that only the WebUrl property has been updated,
and EF Core creates an SQL command to update only the WebUrl column in the cor-
rect row of the Author table.

 I’ve described most of the steps, but here is a blow-by-blow account of how the
author’s WebUrl column is updated:

1 The application uses a LINQ query to find a single book with its author infor-
mation. EF Core turns the LINQ query into an SQL command to read the rows
where the Title is Quantum Networking, returning an instance of both the Book
and the Author classes, and checks that only one row was found.

2 The LINQ query doesn’t include the .AsNoTracking method you had in the
previous read versions, so the query is considered to be a tracked query. There-
fore, EF Core creates a tracking snapshot of the data loaded.

Listing 1.4 The code to update the author’s WebUrl of the book Quantum Networking

Reads in from
the console
the new URL

Loads the author
information with
the bookSelects only the

book with the
title Quantum

Networking
To update the
database, you
change the data
that was read in.SaveChanges tells EF Core

to check for any changes to
the data that has been read

in and write out those
changes to the database.

Lists all
the book
information

22 CHAPTER 1 Introduction to Entity Framework Core
3 Then the code changes the WebUrl property in the Author class of the book.
When SaveChanges is called, the Detect Changes stage compares all the classes
that were returned from a tracked query with the tracking snapshot. From this,
it can detect what has changed—in this case, only the WebUrl property of the
Author class, which has a primary key of 3.

LINQ query translation

var book = db.Books
.Include(a => a.Author)
.Single(b =>

b.Title == "Quantum Networking");

book =

1. Create classes.

2. Relational fixup

3. Tracking snapshot

Database provider

Future PersonEntanged quaQuantum Netw 01-Jan-2057 null34 3

LINQ query

translation

cache

Database

SQL server

Database commands, e.g.,

SELECT TOP(2)
Books.BookId
etc. ...

WHERE Title = 'Q...

Book Author Book

OK

Author

Database

SQL server

1. Detect changes.

2. Start transaction.

3. End transaction.

book.Author.WebUrl =
"http://entangled.com";

db.SaveChanges();

rDatabase provide

WebUrlAuth Auth NameDescriptionBookId Title AvailableFrom

1.The LINQ code is translated
into SQL commands.

Get book

Update WebUrl

2. A tracking snapshot
is created to hold
the original values.

5. SQL command to
update database is
created and run.3. The Detect Changes stage

works out what has changed.

4. A transaction is started.
Either all changes are
applied, or none are applied
if there’s a problem.

Compares tracked classes with
snapshot to find changes

Database commands, e.g.,

UPDATE Authors
SET WebUrl = @p0
WHERE AuthorId = @p1

Figure 1.10 This figure shows what EF Core does inside when you update an Author’s WebUrl
property and ask EF Core to write it to the database. This figure is quite complex, but if you start at
the top and follow the numbered text, it should be easier to understand. It starts with a read to get
the required Book and Author. (Note that in this process, the tracking snapshot is present; see step
2.) Then, when your code updates the WebUrl and calls SaveChanges, EF Core creates and
executes the correct SQL command to update the WebUrl column in the correct row.

23The stages of development of EF Core
4 As a change is detected, EF Core starts a transaction. Every database update is
done as an atomic unit: if multiple changes to the database occur, either they all
succeed, or they all fail. This fact is important, because a relational database
could get into a bad state if only part of an update were applied.

5 The update request is converted by the database provider to an SQL command
that does the update. If the SQL command is successful, the transaction is com-
mitted, and the SaveChanges method returns; otherwise, an exception is raised.

1.10 The stages of development of EF Core
EF Core and .NET Core have come a long way since the first release. Over time, Mic-
rosoft has been working hard to improve the native performance of .NET Core while
adding more features, to the point that .NET 5 can take over from the existing .NET
Framework 4.8.

 Figure 1.11 shows the history of the major releases of EF Core so far. The EF Core
version numbers follow the NET Core version number. Note that the releases at the
top of the figure are long-term-support (LTS) releases, meaning that release is sup-
ported for three years after the initial release. Major releases are expected every year,
with LTS releases coming every two years.

June
2016

August
2017

May
2018

December
2018

December
2019

November
2020

November
2021

EF Core 1 0EF Core 2.

Core 2.1EF

2.2EF Core

3.1EF Core

5.0EF Core

6.0EF Core

First release!
Usable but
had limitations.

NetStandard2.0
Owned types, Query
Filters, improved
query translations

Lots of new
features: lazy
loading, value
converters,
and so on

Small update
added spatial
(geography)
data

Big overhaul of
LINQ translations.
First support of
Cosmos DB.

NetStandard2.1
Lots of new features:
auto many-to-many,
improved migrations

Regular major
updates planned
for every year

LTS

Figure 1.11 This figure depicts the development of EF Core, which runs alongside the development of the NET
open source developer platform. The EF Core 5 version is highlighted because this book covers all the EF Core
features up to and including EF Core 5.

24 CHAPTER 1 Introduction to Entity Framework Core
1.11 Should you use EF Core in your next project?
Now that you have a quick overview of what EF Core is and how it works, the next
question is whether you should start using EF Core in your project. For anyone who’s
planning to switch to EF Core, the key question is “Is EF Core sufficiently superior to
the data access library I currently use to make it worth using for my next project?” A
cost is associated with learning and adopting any new library, especially complex
libraries such as EF Core, so this question is a valid one. Here is my take on EF Core
and .NET Core in general.

1.11.1 .NET is the future software platform, and it’s fast!

Over time, Microsoft has been working hard to improve the native performance of
.NET Core while adding more features. This focus on performance has propelled
Microsoft’s ASP.NET Core web application from ~250th for ASP.NET MVC to around
the 10th to 40th position for ASP.NET Core (depending on workload); see http://
mng.bz/Gxaq. Similar but smaller performance gains have been added to EF Core.

 Microsoft did say that .NET 5 would take over from the existing .NET Framework
4.8, but the COVID-19 outbreak derailed that plan a bit, and now .NET 6 will replace
.NET Framework 4.8. But the writing on the wall is clear: if you’re starting a new proj-
ect, and .NET 5 and EF Core have the features your project needs, moving to EF Core
means you aren’t going to be left behind.

1.11.2 Open source and open communication

Over many years, Microsoft has transformed itself. All its .NET Core work is open
source, with lots of external people getting involved with fixing bugs and adding new
features, so you can have direct access to the code if you need it.

 Also, the level of open communication about what is happening in .NET Core and
other products is impressive. The EF Core team, for example, produces weekly
updates on what it is doing, providing lots of early previews of new releases and mak-
ing nightly builds of EF Core available to all. The team takes feedback seriously, and
all work and defects are shown in the issue pages of the EF Core repo.

1.11.3 Multiplatform applications and development

As I said at the start of the chapter, EF Core is multiplatform-capable; you can develop
and run EF Core applications on Windows, Linux, and Apple. This fact means that
you can run Microsoft-based applications on cheap Linux systems. Also, developing
different platforms is quite possible. In fact, Arthur Vickers, who is one of the lead
engineers on the EF Core team, decided to move from Windows to Linux as his pri-
mary development platform. You can read about his experiences at http://mng.bz/
zxWa.

http://mng.bz/zxWa
http://mng.bz/zxWa
http://mng.bz/zxWa
http://mng.bz/Gxaq
http://mng.bz/Gxaq
http://mng.bz/Gxaq

25Should you use EF Core in your next project?
1.11.4 Rapid development and good features

I work as a contract developer as my day job. In a typical data-driven application, I
write a lot of database access code, some of it complex. With EF Core, I can write data
access code really quickly, and in a way that makes access code easy to understand and
refactor if it’s too slow. This is the main reason I use EF Core.

 At the same time, I need an O/RM that has lots of features so that I can build a
database the way I want without hitting too many barriers in EF Core. Sure, some
things are ruled out, such as building SQL Common Table Expressions, but a bit of
raw SQL gets around things like that if I need it to.

1.11.5 Well supported

EF Core has good documentation (https://docs.microsoft.com/en-us/ef/core/index),
and of course, you have this book, which brings together the documentation with
deeper explanations and examples, plus patterns and practices to make you a great
developer. The internet is full of blogs on EF Core, including mine at https://www
.thereformedprogrammer.net. And for questions and bugs, there is always Stack Over-
flow; see http://mng.bz/0mDx.

 The other part of support is the development tools. Microsoft seems to have
changed focus by providing support for multiple platforms, but it has also created a
free cross-platform development environment called VS Code. Microsoft has also
made its main development tool, Visual Studio (Windows and Mac), free to individual
developers and small businesses; the Usage section near the bottom of its web page at
www.visualstudio.com/vs/community details the terms. That’s a compelling offer.

1.11.6 Always high-performance

Ah, the database performance issue. Look, I’m not going to say that EF Core is going
to, out of the box, produce blistering database access performance with beautiful SQL
and fast data ingest. That’s the cost you pay for quick development of your data access
code; all that “magic” inside EF Core can’t be as good as hand-coded SQL, but you
might be surprised how good it can be. See chapter 15, where I tune up an applica-
tion’s performance progressively.

 But you have lots of options to improve the performance of your applications. In
my applications, I find that only about 5–10% of my queries are the key ones that
need hand-tuning. Chapters 14 and 15 are dedicated to performance tuning, as is part
of chapter 16. These chapters show that you can do a lot to improve the performance
of EF Core database accesses.

 But there is no reason you can’t drop down to raw SQL for some of the database
accesses. That’s the great thing: build the application quickly by using EF Core and
then convert the (few) places where EF Core isn’t delivering good performance to raw
SQL commands via ADO.NET or Dapper.

https://docs.microsoft.com/en-us/ef/core/index
https://www.thereformedprogrammer.net
https://www.thereformedprogrammer.net
https://www.thereformedprogrammer.net
http://mng.bz/0mDx
http://www.visualstudio.com/vs/community

26 CHAPTER 1 Introduction to Entity Framework Core
When should you not use EF Core?1.12
I’m obviously pro-EF Core, but I won’t use it on a client project unless using it makes
sense. So let’s look at a few blockers that might suggest not using EF Core.

 The first one is obvious: Does it support the database you want to use? You can find
a list of supported databases at https://docs.microsoft.com/en-us/ef/core/providers.

 The second factor is the level of performance you need. If you’re writing, say, a
small RESTful service or Serverless system, I’m not sure that pulling in the whole of
EF Core is worthwhile; you could use a fast but development-time-hungry library
because there aren’t many database accesses to write. But if you have a large applica-
tion, with lots of boring admin accesses and a few important customer-facing accesses,
a hybrid approach could work for you. (See chapter 15 for an example of a mixed EF
Core/Dapper application.)

 Also, EF Core isn’t that good at bulk commands. Normally, tasks such as bulk-loading
large amounts of data and deleting all the rows in a table can be implemented quicker
by raw SQL. But several EF Core bulk CRUD extensions (some open source and some
paid) can help; try searching for EF Core bulk loading to find possible libraries.

Summary
 EF Core is an object-relational mapper (O/RM) that uses Microsoft’s Language

Integrated Query (LINQ) to define database queries and return data to linked
instances of .NET classes.

 EF Core is designed to make writing code for accessing a database quick and
intuitive. This O/RM has plenty of features to match many requirements.

 You’ve seen various examples of what’s happening inside EF Core. These exam-
ples will help you understand what the EF Core commands described in later
chapters can do.

 There are many good reasons to consider using EF Core: it’s built on a lot of
experience, is well supported, and runs on multiple platforms.

For readers who are familiar with EF6.x:

 Look for EF6 notes throughout the book. These notes mark differences between
the EF Core approach and EF6.x’s approach. Also, check the summaries at the
end of each chapter, which will point you to the major EF Core changes in that
chapter.

 Think of EF Core as a new library that someone has written to mimic EF6.x but
that works in a different way. That mindset will help you spot the EF Core
improvements that change the way you access a database.

 EF Core no longer supports the EDMX/database designer approach that ear-
lier forms of EF used.

https://docs.microsoft.com/en-us/ef/core/providers

Querying the database
This chapter covers
 Modeling three main types of database

relationships

 Creating and changing a database via migration

 Defining and creating an application DbContext

 Loading related data

 Splitting complex queries into subqueries

This chapter is all about using EF Core for reading, called querying, the database.
You’ll create a database that contains the three main types of database relationships
found in EF Core. Along the way, you’ll learn to create and change a database’s
structure via EF Core.

Next, you’ll learn how to access a database via EF Core, reading data from the
database tables. You’ll explore the basic format of EF Core queries before looking
at various approaches to loading related data with the main data, such as loading
the author with the book from chapter 1.

After learning the ways to load related data, you’ll start to build the more com-
plex queries needed to make a book-selling site work. This task covers sorting,
filtering, and paging, plus approaches that combine these separate query com-
mands to create one composite database query.
27

28 CHAPTER 2 Querying the database

TIP I use unit tests to ensure that what I write in this book is correct. You
might like to look at/run these unit tests, as they may help you understand
what is going on. You can find them in the associated GitHub repo at
http://mng.bz/XdlG. Look at the Readme file in the repo for information on
where to find the unit tests and how to run them.

2.1 Setting the scene: Our book-selling site
In this chapter, you’ll start building the example book-selling site, referred to as the
Book App from now on. This example application provides a good vehicle for looking
at relationships in queries. This section introduces the database, the various classes,
and EF Core parts that the Book App needs to access the database.

2.1.1 The Book App’s relational database

Although we could have created a database with all the data about a book, its author(s),
and its reviews in one table, that wouldn’t have worked well in a relational database,
especially because the reviews are variable in length. The norm for relational data-
bases is to split out any repeated data (such as the authors).

 We could have arranged the various parts of the book data in the database in sev-
eral ways, but for this example, the database has one of each of the main types of rela-
tionships you can have in EF Core. These three types are

 One-to-one relationship—PriceOffer to a Book
 One-to-many relationship—Book with Reviews
 Many-to-many relationship—Books linked to Authors and Books linked to Tags

ONE-TO-ONE RELATIONSHIP: PRICEOFFER TO A BOOK

A book can have a promotional price applied to it with an optional row in the Price-
Offer, which is an example of a one-to-one relationship. (Technically, the relationship
is one-to-zero-or-one, but EF Core handles it the same way.) See figure 2.1.

Books

One-to-zero-or-one relationship

The PriceOffers table has a
foreign key that links to the
Books table’s primary key.

EF Core uses its conventions to detect that
this is a one-to-one relationship. It therefore
adds a unique index to the foreign key to
ensure that there can be only one per book.

Foreign key

BookId

Title

Description

... etc.

PK

PriceOffers

1

0..1

PriceOfferId

NewPrice

PromotionalText

BookIdFK1

PK

Primary key

Figure 2.1 The one-to-one relationship between a Book and an optional PriceOffer. If a
PriceOffer is linked to a Book, the NewPrice in the PriceOffer overrides the Price in the Book.

https://shortener.manning.com/XdlG

29Setting the scene: Our book-selling site
To calculate the final price of the book, you need to check for a row in the PriceOffer
table that’s linked to the Books via a foreign key. If such a row is found, the NewPrice
supersedes the price for the original book, and the PromotionalText is shown onscreen,
as in this example:

$40 $30 Our summertime price special, for this week only!

ADVANCED FEATURE In this example, I have a primary key and a foreign key
to make the relationship easier to understand. But for one-to-one relation-
ships, you can make the foreign key be the primary key too. In the PriceOffer
table shown in figure 2.1, you would have a primary key, called BookId, which
would also be the foreign key. As a result, you lose the PriceOfferId column,
which makes the table slightly more efficient from the database side. I cover
this topic later in the book, in section 8.6.1.

ONE-TO-MANY RELATIONSHIP: REVIEWS TO A BOOK

You want to allow customers to review a book; they can give a book a star rating and
optionally leave a comment. Because a book may have no reviews or many (unlimited)
reviews, you need to create a table to hold that data. In this example, you’ll call the
table Review. The Books table has a one-to-many relationship to the Review table, as
shown in figure 2.2.

In the Summary display, you need to count the number of reviews and work out the
average star rating to show a summary. Here’s a typical onscreen display you might
produce from this one-to-many relationship:

Votes 4.5 by 2 customers

Books

One-to-many relationship

The Review table is linked to
the Books table via the
foreign key called BookId.

Foreign key

BookId

Title

Description

PublishedOn

... etc.

PK

Review

1

0..*

ReviewId

VoterName

NumStars

Comment

BookIdFK1

PK

Primary key

Figure 2.2 The one-to-many relationship between a Book and its zero-to-many Reviews.
These Reviews work the same as they do on any e-commerce site, such as Amazon.

30 CHAPTER 2 Querying the database
MANY-TO-MANY RELATIONSHIP: MANUALLY CONFIGURED

Books can be written by one or more authors, and an author may write one or more
books. Therefore, you need a table called Books to hold the books data and another
table called Authors to hold the authors. The link between the Books and Authors
tables is called a many-to-many relationship, which in this case needs a linking table to
achieve this relationship.

 In this case, you create your own linking table with an Order value in it because the
names of the authors in a book must be displayed in a specific order (figure 2.3).

A typical onscreen display from the many-to-many relationship would look like this:

by Dino Esposito, Andrea Saltarello

MANY-TO-MANY RELATIONSHIP: AUTOCONFIGURED BY EF CORE

Books can be tagged with different categories—such as Microsoft .NET, Linux, Web,
and so on—to help the customer to find a book on the topic they are interested in.
A category might be applied to multiple books, and a book might have one or more
categories, so a many-to-many linking table is needed. But unlike in the previous
BookAuthor linking table, the tags don’t have to be ordered, which makes the link-
ing table simpler.

 EF Core 5 and later can automatically create the many-to-many linking table for
you. Figure 2.4 shows your database with the automatic BookTag table that provides a
many-to-many link between the Books table and the Tags table. The BookTag table is
grayed out to represent the fact that EF Core creates it automatically and that it isn’t
mapped to any of the classes you have created.

Books

Many-to-many relationship

This table uses the foreign keys as the primary keys. Because primary keys must be
unique, this ensures that only one link can exist between a book and an author.

BookId

Title

Description

PublishedOn

... etc.

PK

Authors

10..*1 0..*
AuthorId

Name

PK

BookAuthor

The BookAuthor table is the key to creating the many-to-many

relationship and is known as a linking table.

BookId

AuthorId

Order

PK, FK1

PK, FK2

Figure 2.3 The three tables involved in creating the many-to-many relationship between
the Books table and the Authors table. I use a many-to-many relationship because books
can have many authors, and authors may have written many books. The extra feature
needed here is the Order value, because the order in which authors are listed in a book
matters, so I use the Order value to display the authors in the correct sequence.

31Setting the scene: Our book-selling site

2.1.2

Books

BookIdPK

Title
Description
PublishedOn

... etc.

1 0..*

Many-to-many relationships: automatically created by EF Core

BookTag

BooksBookIdPK,FK2

TagsTagIdPK,FK1

Tags

TagIdPK

BookTag

PK,FK2 BooksBookId

PK,FK1 TagsTagId

0..* 1

The BookTags table is automatically created by EF Core
when you set up a many-to-many relationship that
doesn’t need any extra columns in the linking table.

This table has two primary keys, which are both unique,
so that there is only one many-to-many link between a
Books row and a Tags row.

Figure 2.4 The Books and Tags tables are created by you, and EF Core detects
the many-to-many relationship between the Books table and the Tags table. EF
Core automatically creates the linking table needed to set up the many-to-many
relationships.

NOTE Chapter 8 covers the different ways to set up many-to-many relationships.

A typical onscreen display from a many-to-many relationship would look like this:

Categories: Microsoft .NET, Web

Other relationship types not covered in this chapter

The three types of relationships I covered in section 2.1.1 are the main relationships
you will be using: one-to-one, one-to-many, and many-to-many. But EF Core does have
some other variations. Here is a quick rundown on what is coming later in chapter 8:

 Owned Type class—Useful for adding grouped data, such as an Address class, to
an entity class. The Address class is linked to the main entity, but your code can
copy around the Address class rather than copying individual Street, City,
State, and related properties.

 Table splitting—Maps multiple classes to one table. You could have a summary
class with the basic properties in it and a detailed class containing all the data,
for example, which would give you a quicker load of the summary data.

 Table per hierarchy (TPH)—Useful for groups of data that are similar. If you have
a lot of data with only a few differences, such as a list of animals, you can have a
base Animal class that Dog, Cat, and Snake classes can inherit, with per-type
properties such as LengthOfTail for Dog and Cat and a Venomous flag for the
Snake. EF Core maps all the classes to one table, which can be more efficient.

 Table per type (TPT)—Useful for groups of data that have dissimilar data. TPT,
introduced in EF Core 5, is the opposite of TPH, in which each class has its own
table. Following the Animal example for TPH, the TPT version would map the
Dog, Cat, and Snake classes to three different tables in the database.

32 CHAPTER 2 Querying the database
These four relationship patterns are built into EF Core to allow you to optimize the
way you handle or store data in the database. But another relationship type doesn’t
need specific EF Core commands to implement: hierarchical data. A typical example of
hierarchical data is an Employee class that has a relationship pointing to the employee’s
manager, who in turn is an employee. EF Core uses the same approaches as one-to-one
and one-to-many to provide hierarchical relationships; I talk more about this type of
relationship in chapters 6 and 8.

The database showing all the tables2.1.3

Figure 2.5 shows the Book App’s database that you’ll be using for the examples in this
chapter and in chapter 3. It contains all the tables I’ve described so far, including all
the columns and relationships in the Books table.

NOTE The database diagram uses the same layout and terms as in chapter 1:
PK means primary key, and FK means foreign key.

Books

Many-to-many relationship: BookAuthor and BookTags

One-to-many
relationship

One-to-one-or-zero
relationship

BookId

Title

Description

PublishedOn

Publisher

Price

ImageUrl

PK

Authors

11..*1 1..*
AuthorId

Name

PK

Review

ReviewId

VoterName

NumStars

Comment

BookIdFK1

PK

PriceOffers

PriceOfferId

NewPrice

PromotionalText

BookIdFK1

PK

BookAuthor

BookId

AuthorId

Order

PK, FK1

PK, FK2

0..*0..1

1 1

0..*1 kTagBoo

BooksBookId

TagsTagId

PK, FK1

PK, FK2

kTagBoo

BooksBookId

TagsTagId

PK, FK1

PK, FK2

Tags

TagIdPK10..*

The BookTags table is
created automatically
by EF Core.

Figure 2.5 The complete relational database schema for the Book App, showing all the
tables and their columns used for holding the book information. You create classes to map
to all the tables you see in this figure, apart from the BookTags table (shown as grayed
out). EF Core created the BookTags table automatically when it found the direct many-to-
many relationship between the Books and Tags tables.

33Setting the scene: Our book-selling site
To help you make sense of this database, figure 2.6 shows the onscreen output of the list
of books but focuses on only one book. As you can see, the Book App needs to access
every table in the database to build the book list (figure 2.10 in section 2.6). Later, I
show you this same book display, but with the query that supplies each element).

The classes that EF Core maps to the database2.1.4

I’ve created five .NET classes to map to the six tables in the database. These classes are
called Book, PriceOffer, Review, Tag, Author, and BookAuthor for the many-to-many-
linking table, and they are referred to as entity classes to show that they’re mapped by
EF Core to the database. From the software point of view, there’s nothing special
about entity classes. They’re normal .NET classes, sometimes referred to as plain old
CLR objects (POCOs). The term entity class identifies the class as one that EF Core has
mapped to the database.

 The primary entity class is the Book class, shown in the following listing. You can
see that it refers to a single PriceOffer class, a collection of Review class instances, a
collection of Tag class instances, and finally a collection of BookAuthor classes that
links the book data to one or more Author classes containing the author’s name.

public class Book
{

Downloading and running the example application from the Git repo
If you want to download the Book App code and run it locally, follow the steps defined
in the sidebar with the same name in section 1.6.2. The master branch contains all
the code for part 1 of the book, which includes the BookApp ASP.NET Core project.

TheListing 2.1 Book class, mapped to the Books table in the database

From Authors table
(via BookAuthor
linking table)

From Review table

From PriceOffers table

From Tag table
(via BookTags
linking table)

From Books
table

Figure 2.6 A listing of a single book showing which database table provides each part of the information.
As you can see, the listing requires information from all five of the database tables to create this view. In
this chapter, you will build the code to produce this display, with various ordering, filtering, and paging
features to make a proper e-commerce application.

The Book class contains the
main book information.

34 CHAPTER 2 Querying the database
 public int BookId { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime PublishedOn { get; set; }
 public string Publisher { get; set; }
 public decimal Price { get; set; }
 public string ImageUrl { get; set; }

 //---
 //relationships

 public PriceOffer Promotion { get; set; }
 public ICollection<Review> Reviews { get; set; }
 public ICollection<Tag> Tags { get; set; }
 public ICollection<BookAuthor>
 AuthorsLink { get; set; }
}

NOTE In part 1, the entity classes use the default (empty) constructor. If you
want to create specific constructors for any of your entity classes, you should
be aware that EF Core may use your constructor when reading and creating
an instance of an entity class. I cover this topic in section 6.1.11.

For simplicity, we use EF Core’s By Convention configuration approach to model the
database. We use By Convention naming for the properties that hold the primary key
and foreign keys in each of the entity classes. In addition, the .NET type of the naviga-
tional properties, such as ICollection<Review> Reviews, defines what sort of rela-
tionship we want. Because the Reviews property is of the .NET type ICollection
<Review>, for example, the relationship is a one-to-many relationship. Chapters 7 and
8 describe the other approaches for configuring the EF Core database model.

ADVANCED NOTE In the Book App, when I have navigational properties that
are collections, I use the type ICollection<T>. I do so because the new eager
loading sort capability (see section 2.4.1) can return a sorted collection, and
the default HashSet definition says it holds only a collection “whose elements
are in no particular order.” But there is a performance cost to not using
HashSet when your navigational properties contain a large collection. I cover
this issue in chapter 14.

What happens if you want to access an existing database?
The examples in this book show how to define and create a database via EF Core
because the most complex situation is when you need to understand all the configu-
ration options. But accessing an existing database is much easier, because EF Core
can build your application’s DbContext class and all your entity classes for you, using
a feature called reverse engineering, which is covered in section 9.7.

We use EF Core’s By Convention
configuration to define the primary
key of this entity class, so we use
<ClassName>Id, and because the
property is of type int, EF Core assumes
that the database will use the SQL
IDENTITY command to create a unique
key when a new row is added.

Link to the optional one-to-
one PriceOffer relationship.

There can be zero
to many reviews
of the book.

EF Core 5’s automatic
many-to-many relationship
to the Tag entity class

Provides a link to the many-to-many linking
table that links to the Authors of this book

35Creating the application’s DbContext
Creating the appl2.2 ication’s DbContext
To access the database, you need to do the following:

1 Define your application’s DbContext, which you do by creating a class and inher-
iting from EF Core’s DbContext class.

2 Create an instance of that class every time you want to access the database.

All the database queries you’ll see later in this chapter use these steps, which I describe
in detail in the following sections.

Defining the application’2.2.1 s DbContext: EfCoreContext

The key class you need to use EF Core is the application’s DbContext. You define
this class by inheriting EF Core’s DbContext class and adding various properties to
allow your software to access the database tables. It also contains methods you can
override to access other features in EF Core, such as configuring the database mod-
eling. Figure 2.7 gives you an overview of the Book App’s DbContext, pointing out
all the important parts.

 One point to note about figure 2.7 is that the Book App’s DbContext doesn’t
include DbSet<T> properties for your Review entity class and the BookAuthor linking
entity class. In the book app, both entity classes are accessed not directly, but via the
Book class navigational properties, as you’ll see in section 2.4.

NOTE I skip configuring the database modeling, which is done in the OnModel-
Creating method of the application’s DbContext. Chapters 7 and 8 cover
how to model the database in detail.

Creating an instance of the application’s DbContext2.2.2

Chapter 1 showed you how to set up the application’s DbContext by overriding its
OnConfiguring method. The downside of that approach is that the connection string
is fixed. In this chapter, you’ll use another approach, because you’d want to use a dif-
ferent database for development and unit testing. You’ll use a method that provides
that database via the application’s DbContext constructor.

 Listing 2.2 provides the options for the database at the time you create the applica-
tion DbContext, called EfCoreContext. To be honest, this listing is based on what I
use in the unit-testing chapter (chapter 17), because it has the benefit of showing you
each step of creating an instance of the application’s DbContext. Chapter 5, which is
about using EF Core in an ASP.NET Core application, presents a more powerful way
to create the application’s DbContext, using a feature called dependency injection.

The other possibility is that you don’t want EF Core to change the database structure,
but want to look after that task yourself, such as via an SQL change script or a data-
base deployment tool. I cover that approach in section 9.6.2.

36 CHAPTER 2 Querying the database

-

const string connection =
 "Data Source=(localdb)\\mssqllocaldb;"+
 "Database=EfCoreInActionDb.Chapter02;"+
 "Integrated Security=True;";
var optionsBuilder =
 new DbContextOptionsBuilder
 <EfCoreContext>();

optionsBuilder.UseSqlServer(connection);
var options = optionsBuilder.Options;

using (var context = new EfCoreContext(options))
{

 var bookCount = context.Books.Count();
 //... etc.

Creating an instance of the application’s DbContext to access the databaseListing 2.2

This is the name of the DbContext that defines your database.
You will be using this in your application to access the database.

Any application DbContext must inherit
from the EF Core’s DbContext class.

These public properties of type
DbSet<T> are mapped by EF Core to
tables in your database, using the name
of the property as the table name. You
can query these tables via LINQ methods
on a property.

The classes, such as Book, Author, Tag
and PriceOffer, are entity classes. Their
properties are mapped to columns in
the appropriate database table.

For your ASP.NET Core application, you
need a constructor to set up the
database options. This allows your
application to define what sort of
database it is and where it’s located.

The OnModelCreating method
contains configuration information
for EF Core. I explain this in
chapters 7 and 8.

public bC
{

public DbSet<Book> Books { get; set };
public DbSet<Author> Authors { get; et; }s
public DbSet<Tag> Tags { get; set; }
public DbSet<PriceOffer> Pric Offers { get; set; }e

public
DbContextOptions<EfCoreC
: base(options)

protected override void
OnModelCreating Bu

{
//... code left out

}
}

Figure 2.7 The application’s DbContext is the key class in accessing the database. This figure shows the main
parts of an application’s DbContext, starting with its inheriting EF Core’s DbContext, which brings in lots of code
and features. You have to add some properties with the class DbSet<T> that map your classes to a database
table with the same name as the property name you use. The other parts are the constructor, which handles
setting up the database options, and the OnModelCreating method, which you can override to add your own
configuration commands and set up the database the way you want.

The connection string, with its format
dictated by the sort of database
provider and hosting you’re using

You need an EF Core DbContextOptionsBuilder<>
instance to set the options you need.

You’re accessing an SQL
Server database and using the
UseSqlServer method from
the Microsoft.EntityFramework
Core.SqlServer library, and this
method needs the database
connection string.

Creates the all-important
EfCoreContext, using the options you’ve

set up. You use a using statement
because the DbContext is disposable.

Uses the DbContext to
find out the number of
books in the database

37Creating the application’s DbContext
At the end of this listing, you create an instance of EfCoreContext inside a using
statement because DbContext has an IDisposable interface and therefore should be
disposed after you’ve used it. So from now on, if you see a variable called context, it
was created by using the code in listing 2.2 or a similar approach.

2.2.3 Creating a database for your own application

You have a few ways to create a database using EF Core, but the normal way is to use
EF Core’s migration feature. This feature uses your application’s DbContext and the
entity classes, like the ones I’ve described, as the model for the database structure.
The Add-Migration command first models your database and then, using that model,
builds commands to create a database that fits that model.

TIP If you have cloned the Git repo that goes with this book (http://mng.bz/
XdlG), you can see what a migration looks like by looking at the Migration
folder in the DataLayer project. Also, all the correct NuGet packages are
added to the DataLayer and BookApp projects to allow migrations to be cre-
ated and applied to an SQL Server database.

The great thing about migrations, besides handling database creation, is the fact that
they can update the database with any changes you make in the software. If you
change your entity classes or any of your application’s DbContext configuration, the
Add-Migration command will build a set of commands to update the existing data-
base. Here are the steps you need to go through to add a migration and create or
migrate a database. This process is based on a ASP.NET Core application (see chapter
5 for more on ASP.NET Core) with your DbContext in a separate project and on
developing with Visual Studio. (I cover other options in chapter 9.)

1 The project that contains your DbContext needs the NuGet package Micro-
soft.EntityFrameworkCore.SqlServer or another database provider if you are
using a different database.

2 The ASP.NET Core project needs the following NuGet packages:
a Microsoft.EntityFrameworkCore.SqlServer (or same database provider as in

step 1)
b Microsoft.EntityFrameworkCore.Tools

3 The ASP.NET Core’s Startup class contains the commands to add an EF Core
database provider, and the appsettings.json file contains the connection string
for the database you want to create/migrate. (EF Core uses the ASP.NET Core’s
CreateHostBuilder(args).Build() methods to obtain a valid instance of your
DbContext.)

4 In Visual Studio, open the Package Manager Console (PMC) by choosing Tools
> NuGet Package Manager > Package Manager Console.

5 In the PMC window, make sure that the default project is your ASP.NET Core
project.

https://shortener.manning.com/XdlG
https://shortener.manning.com/XdlG
https://shortener.manning.com/XdlG

38 CHAPTER 2 Querying the database

6 In PMC, run the command Add-Migration MyMigrationName -Project Data-
Layer. This command creates a set of classes that migrate the database from its
current state to a state that matches your application’s DbContext and the
entity classes at the time that you run your command. (The MyMigrationName
shown in the command is the name that will be used for the migration.)

7 Run the command Update-Database to apply the commands created by the Add-
Migration command to your database. If no database exists, Update-Database
will create one. If a database exists, the command checks whether that database
has this database migration applied to it, and if any database migrations are
missing, this command applies them to the database. (See chapter 9 for more
on migration commands.)

NOTE You can also use EF Core’s .NET Core command-line interface (CLI)
to run these commands (see http://mng.bz/454w). Chapter 9 lists both the
Visual Studio and CLI versions of the migration commands.

An alternative to using the Update-Database command is to call the context.Data-
base.Migrate method in the startup code of your application. This approach is espe-
cially useful for an ASP.NET Core web application that’s hosted; chapter 5 covers this
option, including some of its limitations.

NOTE Chapter 9 provides a detailed look at EF Core’s migrations feature as
well as other ways to alter the structure of your database (referred to as the
database’s schema).

Understanding database queries2.3
Now you can start looking at how to query a database by using EF Core. Figure 2.8
shows an example EF Core database query, with the three main parts of the query
highlighted.

Application’s DbContext
property access

A series of LINQ and/or
EF Core commands

An execute
command

co text.Books.Where(p =>n p.Title.StartsWith("Quantum").ToList();

Figure 2.8 The three parts of an EF Core database query, with example code. You will become
familiar with this type of LINQ statement, which is the basic building block of all queries.

TIME-SAVER If you’re familiar with EF and/or LINQ, you can skip this section.

The command shown in figure 2.8 consists of several methods, one after the other.
This structure is known as a fluent interface. Fluent interfaces like this one flow logically
and intuitively, which makes them easy to read. The three parts of this command are
described in the following sections.

http://mng.bz/454w

39Understanding database queries
NOTE The LINQ command in figure 2.8 is known as the LINQ method, or
lambda syntax. You can use another format for writing LINQ commands with
EF Core: the query syntax. I describe the two LINQ syntaxes in appendix A.

2.3.1 Application’s DbContext property access

The first part of the command is connected to the database via EF Corea. The most
common way to refer to a database table is via a DbSet<T> property in the application’s
DbContext, as shown in figure 2.7.

 You’ll use this DbContext property access throughout this chapter, but later chap-
ters introduce other ways to get to a class or property. The basic idea is the same: you
need to start with something that’s connected to the database via EF Core.

2.3.2 A series of LINQ/EF Core commands

The major part of a command is a set of LINQ and/or EF Core methods that create
the type of query you need. The LINQ query can range from being super-simple to
quite complicated. This chapter starts with simple examples of queries, but by the end
of this chapter, you’ll learn how to build complex queries.

NOTE Learning LINQ will be essential to you, as EF Core uses LINQ commands for
database accesses. The appendix gives you a brief overview of LINQ. Plenty of
online resources are available too; see http://mng.bz/j4Qx.

2.3.3 The execute command

The last part of the command reveals something about LINQ. Until a final execute
command is applied at the end of the sequence of LINQ commands, the LINQ is held
as a series of commands in what is called an expression tree (see section A.2.2), which
means that it hasn’t been executed on the data yet. EF Core can translate an expres-
sion tree into the correct commands for the database you’re using. In EF Core, a
query is executed against the database when

 It’s enumerated by a foreach statement.
 It’s enumerated by a collection operation such as ToArray, ToDictionary,

ToList, ToListAsync, and so forth.
 LINQ operators such as First or Any are specified in the outermost part of the

query.

You’ll use certain EF Core commands, such as Load, in the explicit loading of a rela-
tionship later in this chapter.

 At this point, your LINQ query will be converted to database commands and sent
to the database. If you want to build high-performance database queries, you want all
your LINQ commands for filtering, sorting, paging, and so on to come before you call
an execute command. Therefore, your filter, sort, and other LINQ commands will be
run inside the database, which improves the performance of your query. You will see

https://shortener.manning.com/j4Qx

40 CHAPTER 2 Querying the database
this approach in action in section 2.8, when you build a query to filter, sort, and page
the books in the database to display to your user.

The two types of database queries2.3.4

The database query in figure 2.8 is what I call a normal query, also known as a read-write
query. This query reads in data from the database in such a way that you can update
that data (see chapter 3) or use it as an existing relationship for a new entry, such as
creating a new book with an existing Author (see section 6.2.2).

 The other type of query is an AsNoTracking query, also known as a read-only
query. This query has the EF Core’s AsNoTracking method added to the LINQ query
(see the following code snippet). As well as making the query read-only, the AsNo-
Tracking method improves the performance of the query by turning off certain EF
Core features; see section 6.12 for more information:

context.Books.AsNoTracking()
 .Where(p => p.Title.StartsWith("Quantum")).ToList();

NOTE Section 6.1.2 provides a detailed list of the differences between the
normal, read-write query and the AsNoTracking, read-only query.

Loading related data2.4
I’ve shown you the Book entity class, which has links to three other entity classes:
PriceOffer, Review, and BookAuthor. Now I want to explain how you, as a developer,
can access the data behind these relationships. You can load data in four ways: eager
loading, explicit loading, select loading, and lazy loading. Before I cover these
approaches, however, you need to be aware that EF Core won’t load any relationships
in an entity class unless you ask it to. If you load a Book class, each of the relationship
properties in the Book entity class (Promotion, Reviews, and AuthorsLink) will be
null by default.

 This default behavior of not loading relationships is correct, because it means that
EF Core minimizes the database accesses. If you want to load a relationship, you need
to add code to tell EF Core to do that. The following sections describe the four
approaches that get EF Core to load a relationship.

Eager loading: Load2.4.1 ing relationships with
the primary entity class

The first approach to loading related data is eager loading, which entails telling EF
Core to load the relationship in the same query that loads the primary entity class.
Eager loading is specified via two fluent methods, Include and ThenInclude. The
next listing shows the loading of the first row of the Books table as an instance of the
Book entity class and the eager loading of the single relationship, Reviews.

41Loading related data
var firstBook = context.Books
 .Include(book => book.Reviews)
 .FirstOrDefault();

If you look at the SQL command that this EF Core query creates, shown in the follow-
ing snippet, you’ll see two SQL commands. The first command loads the first row in
the Books table. The second loads the reviews, where the foreign key, BookId, has the
same value as the first Books row primary key:

SELECT "t"."BookId", "t"."Description", "t"."ImageUrl",
 "t"."Price", "t"."PublishedOn", "t"."Publisher",
 "t"."Title", "r"."ReviewId", "r"."BookId",

 "r"."Comment", "r"."NumStars", "r"."VoterName"
FROM (
 SELECT "b"."BookId", "b"."Description", "b"."ImageUrl",
 "b"."Price", "b"."PublishedOn", "b"."Publisher", "b"."Title"
 FROM "Books" AS "b"
 LIMIT 1
) AS "t"
LEFT JOIN "Review" AS "r" ON "t"."BookId" = "r"."BookId"
ORDER BY "t"."BookId", "r"."ReviewId"

Now let’s look at a more complex example. The following listing shows a query to get
the first Book, with eager loading of all its relationships—in this case, AuthorsLink
and the second-level Author table, the Reviews, and the optional Promotion class.

var firstBook = context.Books
 .Include(book => book.AuthorsLink)
 .ThenInclude(bookAuthor => bookAuthor.Author)
 .Include(book => book.Reviews)
 .Include(book => book.Tags)
 .Include(book => book.Promotion)
 .FirstOrDefault();

The listing shows the use of the eager-loading method Include to get the Authors-
Link relationship. This relationship is a first-level relationship, referred to directly
from the entity class you’re loading. That Include is followed by ThenInclude to load
the second-level relationship—in this case, the Author table at the other end of the
linking table, BookAuthor. This pattern, Include followed by ThenInclude, is the

Eager loading of first book with the correspondingListing 2.3 Reviews relationship

Eager loading of theListing 2.4 Book class and all the related data

Gets a collection of Review class
instances, which may be an
empty collection

Takes the first book or null if there
are no books in the database

The first Include gets a
collection of BookAuthor.

Gets the next link—in
this case, the link to

the author
Gets a collection
of Review class
instances, which
may be an empty
collection

Loads and directly
accesses the Tags

Loads any optional PriceOffer
class, if one is assigned

Takes the first book, or null if there
are no books in the database

42 CHAPTER 2 Querying the database
standard way of accessing relationships that go deeper than a first-level relationship.
You can go to any depth with multiple ThenIncludes, one after the other.

 If you use the direct linking of many-to-many relationships introduced in EF Core 5,
you don’t need ThenInclude to load the second-level relationship because the prop-
erty directly accesses the other end of the many-to-many relationship via the Tags
property, which is of type ICollection<Tag>. This approach can simplify the use of a
many-to-many relationship as long you don’t need some data in the linking table, such
as the Order property in the BookAuthor linking entity class used to order the Book’s
Authors correctly.

EF6 Eager loading in EF Core is similar to that in EF6.x, but EF6.x doesn’t
have a ThenInclude method. As a result, the Include/ThenInclude code
used in listing 2.4 would be written in EF6.x as context.Books.Include(book
=> book.AuthorLink.Select(bookAuthor => bookAuthor.Author).

If the relationship doesn’t exist (such as the optional PriceOffer class pointed to by
the Promotion property in the Book class), Include doesn’t fail; it simply doesn’t load
anything, or in the case of collections, it returns an empty collection (a valid collec-
tion with zero entries). The same rule applies to ThenInclude: if the previous Include
or ThenInclude was empty, subsequent ThenIncludes are ignored. If you don’t
Include a collection, it is null by default.

 The advantage of eager loading is that EF Core will load all the data referred to by
the Include and ThenInclude in an efficient manner, using a minimum of database
accesses, or database round-trips. I find this type of loading to be useful in relational
updates in which I need to update an existing relationship; chapter 3 covers this topic.
I also find eager loading to be useful in business logic; chapter 4 covers this topic in
much more detail.

 The downside is that eager loading loads all the data, even when you don’t need
part of it. The book list display, for example, doesn’t need the book description, which
could be quite large.

SORTING AND FILTERING WHEN USING INCLUDE AND/OR THENINCLUDE

EF Core 5 added the ability to sort or filter the related entities when you use the
Include or ThenInclude methods. This capability is helpful if you want to load only a
subset of the related data (such as only Reviews with five stars) and/or to order the
included entities (such as ordering the AuthorsLink collection against the Order prop-
erty). The only LINQ commands you can use in the Include or ThenInclude methods
are Where, OrderBy, OrderByDescending, ThenBy, ThenByDescending, Skip, and Take,
but those commands are all you need for sorting and filtering.

 The next listing shows the same code as listing 2.4, but with the AuthorsLink col-
lection being sorted on the Order property and with the Reviews collection being fil-
tered to load only Reviews in which NumStars is 5.

43Loading related data

…
ea

Aut
var firstBook = context.Books
 .Include(book => book.AuthorsLink
 .OrderBy(bookAuthor => bookAuthor.Order))
 .ThenInclude(bookAuthor => bookAuthor.Author)
 .Include(book => book.Reviews
 .Where(review => review.NumStars == 5))
 .Include(book => book.Promotion)
 .First();

Explicit loading: Loading relationships after2.4.2
the primary entity class

The second approach to loading data is explicit loading. After you’ve loaded the pri-
mary entity class, you can explicitly load any other relationships you want. Listing 2.6
does the same job as listing 2.4 with explicit loading. First, it loads the Book; then it
uses explicit-loading commands to read all the relationships.

var firstBook = context.Books.First();
context.Entry(firstBook)
 .Collection(book => book.AuthorsLink).Load();
foreach (var authorLink in firstBook.AuthorsLink)
{
 context.Entry(authorLink)
 .Reference(bookAuthor =>
 bookAuthor.Author).Load();
}

context.Entry(firstBook)
 .Collection(book => book.Tags).Load();
context.Entry(firstBook)
 .Reference(book => book.Promotion).Load();

Alternatively, explicit loading can be used to apply a query to the relationship instead
of loading the relationship. Listing 2.7 shows the use of the explicit-loading method
Query to obtain the count of reviews and to load the star ratings of each review. You
can use any standard LINQ command after the Query method, such as Where or
OrderBy.

var firstBook = context.Books.First();
var numReviews = context.Entry(firstBook)
 .Collection(book => book.Reviews)
 .Query().Count();

Sorting and filtering when usingListing 2.5 Include or ThenInclude

Explicit loading of theListing 2.6 Book class and related data

Explicit loading of theListing 2.7 Book class with a refined set of related data

Sort example: On the eager
loading of the AuthorsLink
collection, you sort the
BookAuthors so that the
Authors will be in the
correct order to display.

Filter example. Here, you load only
the Reviews with a star rating of 5.

Reads in the first
book on its own Explicity loads

the linking table,
BookAuthor

To load all the possible
authors, the code has to
loop through all the
BookAuthor entries...

and load
ch linked
hor class.

Loads all the reviews

Loads the Tags

Loads the optional
PriceOffer class

Reads in the first
book on its own

Executes a query to
count reviews for
this book

44 CHAPTER 2 Querying the database
var starRatings = context.Entry(firstBook)
 .Collection(book => book.Reviews)
 .Query().Select(review => review.NumStars)
 .ToList();

The advantage of explicit loading is that you can load a relationship of an entity class
later. I’ve found this technique useful when I’m using a library that loads only the pri-
mary entity class, and need one of its relationships. Explicit loading can also be useful
when you need that related data in only some circumstances. You might also find
explicit loading to be useful in complex business logic because you can leave the job
of loading the specific relationships to the parts of the business logic that need it.

 The downside of explicit loading is more database round trips, which can be ineffi-
cient. If you know up front the data you need, eager loading the data is usually more
efficient because it takes fewer database round trips to load the relationships.

2.4.3 Select loading: Loading specific parts of primary entity class
and any relationships

The third approach to loading data is using the LINQ Select method to pick out the
data you want, which I call select loading. The next listing shows the use of the Select
method to select a few standard properties from the Book class and execute specific
code inside the query to get the count of customer reviews for this book.

var books = context.Books
 .Select(book => new
 {

 book.Title,
 book.Price,
 NumReviews
 = book.Reviews.Count,
 }
).ToList();

The advantage of this approach is that only the data you need is loaded, which can be
more efficient if you don’t need all the data. For listing 2.8, only one SQL SELECT
command is required to get all that data, which is also efficient in terms of database
round trips. EF Core turns the p.Reviews.Count part of the query into an SQL com-
mand, so that count is done inside the database, as you can see in the following snip-
pet of the SQL created by EF Core:

SELECT "b"."Title", "b"."Price", (
 SELECT COUNT(*)
 FROM "Review" AS "r"
 WHERE "b"."BookId" = "r"."BookId") AS "NumReviews"
FROM "Books" AS "b"

Listing 2.8 Select of the Book class picking specific properties and one calculation

Executes a query to
get all the star ratings
for the book

Uses the LINQ Select keyword
and creates an anonymous
type to hold the results

Simple copies of a
couple of properties

Runs a query that counts
the number of reviews

45Loading related data

The downside to the select-loading approach is that you need to write code for each
property/calculation you want. In section 7.15.4, I show a way to automate this process.

NOTE Section 2.6 contains a much more complex select-loading example,
which you’ll use to build the high-performance book list query for the
Book App.

2.4.4 Lazy loading: Loading relationships as required

Lazy loading makes writing queries easy, but it has a bad effect on database perfor-
mance. Lazy loading does require some changes to your DbContext or your entity
classes, but after you make those changes, reading is easy; if you access a navigational
property that isn’t loaded, EF Core will execute a database query to load that naviga-
tional property.

You can set up lazy loading in either of two ways:

 Adding the Microsoft.EntityFrameworkCore.Proxies library when configuring
your DbContext

 Injecting a lazy loading method into the entity class via its constructor

The first option is simple but locks you into setting up lazy loading for all the relation-
ships. The second option requires you to write more code but allows you to pick which
relationships use lazy loading. I’m going to explain only the first option in this chap-
ter because it is simple, and leave the second option for chapter 6 (section 6.1.10)
because it uses concepts that I haven’t covered yet, such as dependency injection.

NOTE If you want to see all the lazy-loading options now, access Microsoft’s EF
Core documentation at https://docs.microsoft.com/en-us/ef/core/querying/
related-data/lazy.

To configure the simple lazy loading approach, you must do two things:

 Add the keyword virtual before every property that is a relationship.
 Add the method UseLazyLoadingProxies when setting up your DbContext.

So the converted Book entity type to the simple lazy loading approach would look
like the following code snippet, with the virtual keyword added to the navigational
properties:

public class BookLazy
{

public int BookLazyId { get; set; }
//… Other properties left out for clarity

public virtual PriceOffer Promotion { get; set; }
public virtual ICollection<Review> Reviews { get; set; }
public virtual ICollection<BookAuthor> AuthorsLink { get; set; }

}

Using the EF Core’s Proxy library has a limitation: you must make every relational prop-
erty virtual; otherwise, EF Core will throw an exception when you use the DbContext.

https://docs.microsoft.com/en-us/ef/core/querying/related-data/lazy
https://docs.microsoft.com/en-us/ef/core/querying/related-data/lazy
https://docs.microsoft.com/en-us/ef/core/querying/related-data/lazy

46 CHAPTER 2 Querying the database
 The second part is adding the EF Core’s Proxy library to the application that sets
up the DbContext and then adding the UseLazyLoadingProxies to the configuring of
the DbContext. The following code snippet shows the added method to the DbCon-
text shown in listing 2.2 (UseLazyLoadingProxies):

var optionsBuilder =
 new DbContextOptionsBuilder<EfCoreContext>();
optionsBuilder
 .UseLazyLoadingProxies()
 .UseSqlServer(connection);
var options = optionsBuilder.Options;

using (var context = new EfCoreContext(options))

When you have configured lazy loading in your entity classes and in the way you create
the DbContext, reading relationships is simple; you don’t need extra Include meth-
ods in your query because the data is loaded from the database when your code
accesses that relationship property. Listing 2.9 shows the lazy loading of the Book’s
Reviews property.

var book = context.BookLazy.Single();
var reviews = book.Reviews.ToList();

Listing 2.9 creates two database accesses. The first access loads the BookLazy data with-
out any properties, and the second happens when you access BookLazy’s Reviews
property.

 Many developers find lazy loading to be useful, but I avoid it because of its perfor-
mance issues. There is time overhead for every access to the database server, so the
best approach is to minimize the number of calls to the database server. But lazy load-
ing (and explicit loading) can create lots of database accesses, making the query slow
and causing the database server to work harder. See section 14.5.1 for a side-by-side
comparison of the four types of loading of related data.

TIP Even if you have set up a relational property for lazy loading, you can get
better performance by adding an Include on a virtual relational property.
The lazy loading will see that the property has been loaded and not load it
again. Changing the first line of listing 2.9 to context.BookLazy.Include
(book => book.Reviews).Single(), for example, would reduce the two data-
base accesses to one access.

Listing 2.9 Lazy loading of BookLazy’s Reviews navigational property

Gets an instance of the BookLazy entity class that has
configured its Reviews property to use lazy loading When the Reviews property is

accessed, EF Core will read in the
reviews from the database.

47Using client vs. server evaluation: Adapting data at the last stage of a query

Using client vs. server2.5 evaluation: Adapting data
at the last stage of a query
All the queries you’ve seen so far are ones that EF Core can convert to commands that
can be run on the database server. But EF Core has a feature called client vs. server eval-
uation, which allows you to run code at the last stage of the query (that is, the final
Select part in your query) that can’t be converted to database commands. EF Core
runs these non-server-runnable commands after the data has come back from the
database.

EF6 Client vs. server evaluation is a new feature in EF Core, and a useful
one too.

The client vs. server evaluation feature gives you the opportunity to adapt/change the
data within the last part of the query, which can save you from having to apply an extra
step after the query. In section 2.6, you use client vs. server evaluation to create a
comma-delimited list of the authors of a book. If you didn’t use client vs. server evalu-
ation for that task, you would need to (a) send back a list of all the Author names and
(b) add an extra step after the query, using a foreach section to apply a string.Join
to each book’s authors.

Warning: EF Core will throw an exception if it cannot convert your LINQ
Before EF Core 3, any LINQ that couldn’t be translated to a database command would
be run in software using the client vs. server evaluation. In some cases, this
approach would produce extremely poor-performing queries. (I wrote about this sub-
ject in the first edition of this book.) EF Core 3 changed this situation so that the cli-
ent vs. server evaluation is used in only the final stage of your LINQ queries, stopping
client vs. server evaluation from producing poor-performing queries.

But that change creates a different problem: if your LINQ queries can’t be converted
to database commands, EF Core will throw an InvalidOperationException, with
a message containing the words could not be translated. The trouble is that you
get that error only when you try that query—and you don’t want that error to happen
in production!

Throughout this book, I will guide you to write queries that will work, but with complex
queries, it’s easy to get something not quite right in your LINQ, causing the Invalid-
OperationException to be thrown. This still happens to me, even though I know EF
Core well, which is why I recommend in chapter 17 that you unit-test your database
accesses with a real database and/or have a set of integration tests.

For the list display of the books in the Book App, you need to (a) extract all the
authors’ names, in order, from the Authors table and (b) turn them into one string
with commas between names. Here’s an example that loads two properties, BookId
and Title, in the normal manner, and a third property, AuthorsString, that uses cli-
ent vs. server evaluation.

48 CHAPTER 2 Querying the database

var firstBook = context.Books
 .Select(book => new
 {
 book.BookId,
 book.Title,
 AuthorsString = string.Join(", ",
 book.AuthorsLink
 .OrderBy(ba => ba.Order)
 .Select(ba => ba.Author.Name))
 }
).First();

Running this code on a book that has two authors, Jack and Jill, would cause
AuthorsString to contain Jack, Jill, and the BookId, and Title would be set to the value
of the corresponding columns in the Books table. Figure 2.9 shows how listing 2.10
would be processed through four stages. I want to focus on stage 3, where EF Core
runs the client-side code that it couldn’t convert to SQL.

Listing 2.10 Select query that includes a non-SQL command, string.Join

These parts of the
select can be converted
to SQL and run on the
server.

string.Join is
executed on
the client in

software.

Database

context.Books
.Select(p => new

{
...etc.

BookId: 1
Title: "Went up the hill"
AuthorsString: "Jack, Jill"

string.Join(", ",
new []{"Jack, Jill"))

"Jack"
"Jill"

1
"Went up the hill"

"Jack, Jill"

2. Runs SQL commands
and returns the data

1. E intoF Core translates query
• da verCommands that can be run on the tabase ser
• cl ent-s de in softwareCode that has to be run i i

4. ss and setsEF Core creates the cla
the properties to the returned data.

3. Runs nondatabase commands
in software

Can run on database server

Can’t run on database server

SQL server

My application code

Client vs. Server evaluation

EF Core

Translate

query

Figure 2.9 Some parts of the query are converted to SQL and run in SQL Server; another part,
string.Join, has to be done client-side by EF Core before the combined result is handed back
to the application code.

49Building complex queries
The example in listing 2.10 is fairly simple, but you need to be careful how you use a
property created by client vs. server evaluation. Using client vs. server evaluation on
a property means that you cannot use that property in any LINQ command that
would produce database commands, such as any commands that sort or filter that
property. If you do, you will get an InvalidOperationException, with a message
that contains the words could not be translated. In figure 2.9, for example, if you
tried to sort or filter on the AuthorsString, you would get the could not be trans-
lated exception.

2.6 Building complex queries
Having covered the basics of querying the database, let’s look at examples that are
more common in real applications. You’re going to build a query to list all the books
in the Book App, with a range of features including sorting, filtering, and paging.

 You could build the book display by using eager loading. First, you’d load all the
data; then, in the code, you’d combine the authors, calculate the price, calculate
the average votes, and so on. The problem with that approach is that (a) you are load-
ing data you don’t need and (b) sorting and filtering have to be done in software. For
this chapter’s Book App, which has approximately 50 books, you could eager-load all
the books and relationships into memory and then sort or filter them in software, but
that approach wouldn’t work for Amazon!

 The better solution is to calculate the values inside SQL Server so that sorting and
filtering can be done before the data is returned to the application. In the rest of this
chapter, you’ll use a select-loading approach that combines the select, sort, filter, and
paging parts into one big query. You start in this section with the select part. Before I
show you the select query that loads the book data, however, let’s go back to the book
list display of Quantum Networking from the beginning of this chapter. This time, fig-
ure 2.10 shows each individual LINQ query needed to get each piece of data.

 This figure is complicated because the queries needed to get all the data are com-
plicated. With this diagram in mind, let’s look at how to build the book select query.
You start with the class you’re going to put the data in. This type of class, which exists
only to bring together the exact data you want, is referred to in various ways. In
ASP.NET, it is referred to as a ViewModel, but that term also has other connotations
and uses; therefore, I refer to this type of class as a Data Transfer Object (DTO). List-
ing 2.11 shows you the DTO class BookListDto.

DEFINITION There are lots of definitions of a Data Transfer Object (DTO),
but the one that fits my use of DTOs is “object that is used to encapsulate
data, and send it from one subsystem of an application to another” (Stack
Overflow, https://stackoverflow.com/a/1058186/1434764).

https://stackoverflow.com/a/1058186/1434764

50 CHAPTER 2 Querying the database

The
selling

t

public class BookListDto
{
 public int BookId { get; set; }
 public string Title { get; set; }
 public DateTime PublishedOn { get; set; }
 public decimal Price { get; set; }
 public decimal
 ActualPrice { get; set; }
 public string
 PromotionPromotionalText { get; set; }
 public string AuthorsOrdered { get; set; }

 public int ReviewsCount { get; set; }
 public double?
 ReviewsAverageVotes { get; set; }
 public string[] TagStrings { get; set; }
}

The DTOListing 2.11 BookListDto

context.Books.Select(p =>
string.Join(", ",

p.AuthorsLink
.OrderBy(q => q.Order)
.Select(q => q.Author.Name)))

context.Books.Select(p =>
p.Reviews.Select(q =>

(double?)q.NumStars)
.Average())

context.Books.Select(p =>
p.Promotion == null
? p.Price : p.Promotion.NewPrice)

context.Books.Select(
p => p.Title)

context.Books.Select(
p => p.reviews.Count)

context.Books.Select(
p => p.Price)

context.Books.Select(p =>
p.Promotion == null
? null : p.Promotion.PromotionalText)

context.Books.PublishedOn

context.Books.Tags
.Select(p =>

p.TagId).ToArray()

Figure 2.10 Each individual query needed to build the book list display, with each part of the query
that’s used to provide the value needed for that part of the book display. Some queries are easy,
such as getting the title of the book, but others aren’t so obvious, such as working out the average
votes from the reviews.

You need the primary key if the customer
clicks the entry to buy the book.

Although the publication date
isn’t shown, you’ll want to sort
by it, so you have to include it. normal

 price of
he book Selling price—either the normal price or

the promotional.NewPrice if present

Promotional text to show
whether there’s a new price

String to hold the
comma-delimited list
of authors’ names

Number of people who
reviewed the book

Average of all the votes,
null if no votes

The Tag names (that is the
categories) for this book

51Building complex queries

d

G
To work with EF Core’s select loading, the class that’s going to receive the data must have
a default constructor (which you can create without providing any properties to the con-
structor), the class must not be static, and the properties must have public setters.

 Next, you’ll build a select query that fills in every property in BookListDto.
Because you want to use this query with other query parts, such as sort, filter, and pag-
ing, you’ll use the IQueryable<T> type to create a method called MapBookToDto that
takes in IQueryable<Book> and returns IQueryable<BookListDto>. The following
listing shows this method. As you can see, the LINQ Select pulls together all the indi-
vidual queries you saw in figure 2.10.

public static IQueryable<BookListDto>
 MapBookToDto(this IQueryable<Book> books)
{
 return books.Select(book => new BookListDto
 {
 BookId = book.BookId,
 Title = book.Title,
 Price = book.Price,
 PublishedOn = book.PublishedOn,
 ActualPrice = book.Promotion == null
 ? book.Price
 : book.Promotion.NewPrice,
 PromotionPromotionalText =
 book.Promotion == null
 ? null
 : book.Promotion.PromotionalText,
 AuthorsOrdered = string.Join(", ",
 book.AuthorsLink
 .OrderBy(ba => ba.Order)
 .Select(ba => ba.Author.Name)),
 ReviewsCount = book.Reviews.Count,
 ReviewsAverageVotes =
 book.Reviews.Select(review =>
 (double?) review.NumStars).Average(),
 TagStrings = book.Tags
 .Select(x => x.TagId).ToArray(),
 });
}

NOTE The individual parts of the Select query in listing 2.12 are the repeti-
tive code I mention in my lightbulb moment in chapter 1. Chapter 6 intro-
duces mappers that automate much of this coding, but in part 1 of this book,
I list all the code in full so that you see the whole picture. Be assured that
there’s a way to automate the select-loading approach of querying that will
improve your productivity.

The MapBookToDto method uses the Query Object pattern; the method takes in
IQueryable<T> and outputs IQueryable<T>, which allows you to encapsulate a query,

TheListing 2.12 Select query to fill BookListDto

Takes in IQueryable<Book> and
returns IQueryable<BookListDto>

Simple copies of
existing columns in
the Books table

Calculates the selling price, which is
the normal price, or the promotion
price if that relationship exists

PromotionalText
epends on whether
a PriceOffer exists

for this book

Obtains an array of authors’
names, in the right order. You’re
using client vs. server evaluation
because you want the author
names combined into one string.

You need to
calculate the

number of
reviews.

To get EF Core to turn the
LINQ average into the SQL AV
command, you need to cast
the NumStars to (double?).

Array of Tag names
(categories) for this book

52 CHAPTER 2 Querying the database
or part of a query, in a method. That way, the query is isolated in one place, which
makes it easier to find, debug, and performance-tune. You’ll use the Query Object
pattern for the sort, filter, and paging parts of the query too.

NOTE Query Objects are useful for building queries such as the book list in
this example, but alternative approaches exist, such as the Repository pattern.

The MapBookToDto method is also what .NET calls an extension method. Extension
methods allow you to chain Query Objects together. You’ll see this chaining used in
section 2.9, when you combine each part of the book list query to create the final,
composite query.

NOTE A method can become an extension method if (a) it’s declared in a
static class, (b) the method is static, and (c) the first parameter has the key-
word this in front of it.

Query Objects take in a IQueryable<T1> input and return IQueryable<T2>, so you’re
adding LINQ commands to the original IQueryable<T1> input. You can add another
Query Object to the end, or if you want to execute the query, add an execute command
(see figure 2.8) such as ToList to execute the query. You’ll see this approach in action
in section 2.9, when you combine the Book’s Select, Sort, Filter, and Paging Query
Objects, which EF Core turns into a fairly efficient database query. In chapter 15, you’ll
work through a series of performance tunes to make the book list query even faster.

NOTE You can see the results of this query by cloning the code from the Git
repo and then running the Book App web application locally. A Logs menu
feature will show you the SQL used to load the book list with the specific sort-
ing, filtering, and paging setting you’ve selected.

Introducing the architecture of the Book App2.7
I’ve waited until this point to talk about the design of the Book App, because it should
make more sense now that you’ve created the BookListDto class. At this stage, you
have the entity classes (Book, Author, and so on) that map to the database via EF Core.
You also have a BookListDto class, which holds the data in the form that the presenta-
tion side needs—in this case, an ASP.NET Core web server.

 In a simple example application, you might put the entity classes in one folder, the
DTOs in another, and so on. But even in a small application, such as the Book App,
this practice can be confusing, because the approach you use with the database is dif-
ferent from the approach you use when displaying data to the customer. The Separa-
tion of Concerns (SoC) principle (see http://mng.bz/7Vom) says that your software
should be broken down into separate parts. The book display database query, for
example, shouldn’t contain the code that creates the HTML to show to the books to
the user.

https://shortener.manning.com/7Vom

53Introducing the architecture of the Book App

 You could split the parts of the Book App in numerous ways, but we’ll use a common
design called layered architecture. This approach works well for small to medium-size .NET
applications. Figure 2.11 shows the architecture of the Book App for this chapter.

SQL

server

Data store

Data

access

1. EF Core

classes

2. EF Core

DbContext

Adapters,

such as

BookListDto

and query

objects

ASP.NET

Core

web

application

ServiceLayerDataLayer

Names of the projects in the Book App application

BookApp

HTML

pages

JavaScript

/Ajax

Browser

Figure 2.11 The layered architectural approach for the Book App. Placing the parts of the code in
discrete projects separates what the code in each project does. The DataLayer, for example, has to
worry only about the database and doesn’t need to know how the data is going to be used; this is the
SoC principle in action. The arrows always point to the left because the lower (left) projects can’t
access the higher (right) projects.

The three large rectangles are .NET projects, with their names at the bottom of the
figure. The classes and code of these three projects are split in the following way:

 DataLayer—This layer’s focus is the database access. The entity classes and the
application’s DbContext are in this project. This layer doesn’t know anything
about the layers above it.

 ServiceLayer—This layer acts as an adapter between the DataLayer and the
ASP.NET Core web application by using DTOs, Query Objects, and various
classes to run the commands. The idea is that the frontend ASP.NET Core layer
has so much to do that the ServiceLayer hands its premade data for display.

 BookApp—The focus of this layer, called the presentation layer, is on presenting
data in a way that’s convenient and applicable to the user. The presentation
layer should focus only on the interaction with the user, which is why we move
as much as possible of the database and data adapting out of the presentation
layer. In the Book App, you’ll use an ASP.NET Core web application serving
mainly HTML pages, with a small amount of JavaScript running in the browser.

Using a layered architecture makes the Book App a little more complex to under-
stand, but it’s one way to build real applications. Using layers also enables you to know
more easily what each bit of the code is supposed to be doing in the associated Git
repo, because the code isn’t all tangled up.

54 CHAPTER 2 Querying the database

Adding sorting, filtering, and paging2.8
With the project structure out of the way, you can push on more quickly and build the
remaining Query Objects to create the final book list display. I’ll start by showing you
a screenshot (figure 2.12) of the Book App’s sort, filter, and page controls to give you an
idea of what you’re implementing.

2.8.1 Sorting books by price, publication date, and customer ratings

Sorting in LINQ is done by the methods OrderBy and OrderByDescending. You create
a Query Object called OrderBooksBy as an extension method, as shown in the next
listing. You’ll see that in addition to the IQueryable<BookListDto> parameter, this
method takes in an enum parameter that defines the type of sort the user wants.

public static IQueryable<BookListDto> OrderBooksBy
 (this IQueryable<BookListDto> books,
 OrderByOptions orderByOptions)
{
 switch (orderByOptions)
 {
 case OrderByOptions.SimpleOrder:
 return books.OrderByDescending(
 x => x.BookId);
 case OrderByOptions.ByVotes:
 return books.OrderByDescending(x =>
 x.ReviewsAverageVotes);
 case OrderByOptions.ByPublicationDate:
 return books.OrderByDescending(
 x => x.PublishedOn);
 case OrderByOptions.ByPriceLowestFirst:
 return books.OrderBy(x => x.ActualPrice);
 case OrderByOptions.ByPriceHighestFirst:
 return books.OrderByDescending(
 x => x.ActualPrice);

TheListing 2.13 OrderBooksBy Query Object method

Sorting by votes, publication
date, and price up/down

Filtering by publication
date and votes

Paging: page number
and page size

Figure 2.12 The three commands—sorting, filtering, and paging—as shown on the Book App’s
home page. You can see this page in action if you run the Book App in the accompanying Git repo.

Because of paging, you
always need to sort. You
default-sort on the primary
key, which is fast.

Orders the book by votes.
Books without any votes (null
return) go at the bottom.

Orders by publication date,
with the latest books at the top

Orders by actual price,
which takes into account
any promotional price—both
lowest first and highest first

55Adding sorting, filtering, and paging

O
y

ne
 default:
 throw new ArgumentOutOfRangeException(
 nameof(orderByOptions), orderByOptions, null);
 }
}

Calling the OrderBooksBy method returns the original query with the appropriate
LINQ sort command added to the end. You pass this query on to the next Query
Object, or if you’ve finished, you call a command to execute the code, such as ToList.

NOTE Even if the user doesn’t select a sort, you’ll still sort (see the Simple-
Order switch statement) because you’ll be using paging, providing only a
page at a time rather than all the data, and SQL requires the data to be sorted
to handle paging. The most efficient sort is on the primary key, so you sort on
that key.

2.8.2 Filtering books by publication year, categories,
and customer ratings

The filtering created for the Book App is a bit more complex than the sorting covered
in section 2.8.1 because you get the customer to first select the type of filter they want
and then select the actual filter value. The filter value for Votes is easy: it’s a set of
fixed values (4 or higher, 3 or higher, and so on), and the categories are the Tag’s
TagId. But to filter by Date, you need to find the dates of the publications to put in the
drop-down list.

 It’s instructive to look at the code for working out the years that have books,
because that code is a nice example of combining LINQ commands to create the final
drop-down list. Here’s a snippet of code taken from the GetFilterDropDownValues
method.

var result = _db.Books
 .Where(x => x.PublishedOn <= DateTime.UtcNow.Date)
 .Select(x => x.PublishedOn.Year)
 .Distinct()
 .OrderByDescending(x => x.PublishedOn)
 .Select(x => new DropdownTuple
 {
 Value = x.ToString(),
 Text = x.ToString()
 }).ToList();
var comingSoon = _db.Books.
 Any(x => x.PublishedOn > DateTime.Today);
if (comingSoon)
 result.Insert(0, new DropdownTuple
 {

Listing 2.14 The code to produce a list of the years when books are published

Loads books while filtering out the future books; then selects
the years when the books were published The Distinct

method returns
a list of each
year a book was
published.rders the

ears, with
west year
at the top

I finally use two client/server
evaluations to turn the
values into strings.

Returns true if a book in the
list is not yet published

Adds a "coming soon" filter
for all the future books

Value = BookListDtoFilter.AllBooksNotPublishedString,

56 CHAPTER 2 Querying the database

ue.

tes
e

w

d

 Text = BookListDtoFilter.AllBooksNotPublishedString
 });

return result;

The result of this code is a list of Value/Text pairs holding each year that books are
published, plus a Coming Soon section for books yet to be published. This data is
turned into an HTML drop-down list by ASP.NET Core and sent to the browser.

 The following listing shows the filter Query Object called FilterBooksBy, which
takes as an input the Value part of the drop-down list created in listing 2.14, plus what-
ever type of filtering the customer has asked for.

public static IQueryable<BookListDto> FilterBooksBy(
 this IQueryable<BookListDto> books,
 BooksFilterBy filterBy, string filterValue)
{
 if (string.IsNullOrEmpty(filterValue))
 return books;

 switch (filterBy)
 {
 case BooksFilterBy.NoFilter:
 return books;
 case BooksFilterBy.ByVotes:
 var filterVote = int.Parse(filterValue);
 return books.Where(x =>
 x.ReviewsAverageVotes > filterVote);
 case BooksFilterBy.ByTags:
 return books.Where(x => x.TagStrings
 .Any(y => y == filterValue));
 case BooksFilterBy.ByPublicationYear:
 if (filterValue == AllBooksNotPublishedString)
 return books.Where(
 x => x.PublishedOn > DateTime.UtcNow);

 var filterYear = int.Parse(filterValue);
 return books.Where(
 x => x.PublishedOn.Year == filterYear
 && x.PublishedOn <= DateTime.UtcNow);
 default:
 throw new ArgumentOutOfRangeException
 (nameof(filterBy), filterBy, null);
 }
}

2.8.3 Other filtering options: Searching text for a specific string

We could’ve created loads of other types of filters/searches of books, and searching by
title is an obvious one. But you want to make sure that the LINQ commands you use to
search a string are executed in the database, because they’ll perform much better than

TheListing 2.15 FilterBooksBy Query Object method

The method is given both
the type of filter and the
user-selected filter value.

If the filter value isn’t set, returns
IQueryable with no change

For no filter selected, returns
IQueryable with no change

The filter by votes returns
only books with an average
vote above the filterVote val
If there are no reviews for a
book, the ReviewsAverageVo
property will be null, and th
test always returns false.

Selects any books
ith a Tag category
that matches the

filterValue If Coming Soon was
picked, returns only
books not yet publishe

If we have a specific
year, we filter on that.
Note that we also
remove future books
(in case the user chose
this year’s date).

57Adding sorting, filtering, and paging
loading all the data and filtering in software. EF Core converts the following C# code
in a LINQ query to a database command: ==, Equal, StartsWith, EndsWith, Contains,
and IndexOf. Table 2.1 shows some of these commands in action.

The other important thing to know is that the case sensitivity of a string search exe-
cuted by SQL commands depends on the type of database, and in some databases,
the rule is called collation. A default SQL Server database default collation uses case-
insensitive searches, so searching for Cat would find cat and Cat. Many SQL databases
are case-insensitive by default, but Sqlite has a mix of case-sensitive/case-insensitive (see
unit test Ch02_StringSearch class in the repo for more details), and Cosmos DB is by
default case-sensitive.

 EF Core 5 provides various ways to set the collation in a database. Typically, you
configure the collation for the database or a specific column (covered in section 7.7),
but you can also define the collation in a query by using the EF.Functions.Collate
method. The following code snippet sets an SQL Server collation, which means that
this query will compare the string using the Latin1_General_CS_AS (case-sensitive)
collation for this query:

context.Books.Where(x =>
 EF.Functions.Collate(x.Title, "Latin1_General_CS_AS")
 == “HELP” //This does not match “help”

NOTE Defining what is uppercase and what is lowercase over many languages
with many scripts is a complex issue! Fortunately, relational databases have
been performing this task for many years, and SQL Server has more than 200
collations.

Another string command is the SQL command LIKE, which you can access through
the EF.Function.Like method. This command provides a simple pattern-matching
approach using _ (underscore) to match any letter and % to match zero-to-many char-
acters. The following code snippet would match "The Cat sat on the mat." and "The

Example .NET string commands in an SQL Server databaseTable 2.1

String command Example (finds a title with the string "The Cat sat on the mat.")

var books = context.BooksStartsWith
 .Where(p => p.Title.StartsWith("The"))
 .ToList();

EndsWith var books = context.Books
 .Where(p => p.Title.EndsWith("MAT."))
 .ToList();

Contains var books = context.Books
 .Where(p => p.Title.Contains("cat"))

58 CHAPTER 2 Querying the database

dog sat on the step." but not "The rabbit sat on the hutch." because rabbit isn’t
three letters long:

var books = context.Books
 .Where(p => EF.Functions.Like(p.Title, "The ___ sat on the %."))
 .ToList();

OTHER QUERY OPTIONS: COMPLEX QUERIES (GROUPBY, SUM, MAX, AND SO ON)
This chapter has covered a wide range of query commands, but EF Core can translate
many more commands to most databases. Section 6.1.8 covers the commands that
need a bit more explanation or special coding.

Paging the books in the list2.8.4

If you’ve used Google search, you’ve used paging. Google presents the first dozen or
so results, and you can page through the rest. Our Book App uses paging, which is sim-
ple to implement by using the LINQ commands’ Skip and Take methods.

 Although the other Query Objects were tied to the BookListDto class because the
LINQ paging commands are so simple, you can create a generic paging Query Object
that will work with any IQueryable<T> query. This Query Object is shown in the fol-
lowing listing. The object does rely on getting a page number in the right range, but
another part of the application has to do that anyway to show the correct paging infor-
mation onscreen.

public static IQueryable<T> Page<T>(
 this IQueryable<T> query,
 int pageNumZeroStart, int pageSize)
{
 if (pageSize == 0)
 throw new ArgumentOutOfRangeException
 (nameof(pageSize), "pageSize cannot be zero.");

 if (pageNumZeroStart != 0)
 query = query
 .Skip(pageNumZeroStart * pageSize);

 return query.Take(pageSize);
}

2.9

A genericListing 2.16 Page Query Object method

Skips the correct
number of pages

Takes the number
for this page size

As I said earlier, paging works only if the data is ordered. Otherwise, SQL Server will
throw an exception because relational databases don’t guarantee the order in which
data is handed back; there’s no default row order in a relational database.

Putting it all together: Combining Query Objects
We’ve covered each Query Object you need to build a book list for the Book App.
Now it’s time to see how to combine these Query Objects to create a composite query
to work with the website. The benefit of building a complex query in separate parts is

59Putting it all together: Combining Query Objects

App
that this approach makes writing and testing the overall query simpler, because you
can test each part on its own.

 Listing 2.17 shows a class called ListBooksService, which has one method, Sort-
FilterPage, which uses all the Query Objects (select, sort, filter, and page) to build
the composite query. It also needs the application’s DbContext to access the Books
property, which you provide via the constructor.

TIP Listing 2.17 highlights in bold the AsNoTracking method. This method
stops EF Core from taking a tracking snapshot (see figure 1.6) on read-only
queries, which makes the query slightly quicker. You should use the AsNo-
Tracking method in any read-only queries (queries in which you read the
data, but don’t ever update it). In this case, we are not loading any entity classes,
so it’s redundant, but I put it there to remind us that the query is read-only.

public class ListBooksService
{
 private readonly EfCoreContext _context;

 public ListBooksService(EfCoreContext context)
 {
 _context = context;
 }

 public IQueryable<BookListDto> SortFilterPage
 (SortFilterPageOptions options)
 {
 var booksQuery = _context.Books
 .AsNoTracking()
 .MapBookToDto()
 .OrderBooksBy(options.OrderByOptions)
 .FilterBooksBy(options.FilterBy,
 options.FilterValue);

 options.SetupRestOfDto(booksQuery);

 return booksQuery.Page(options.PageNum-1,
 options.PageSize);
 }
}

As you can see, the four Query Objects—select, sort, filter, and page—are added in turn
(called chaining) to form the final composite query. Note that the options.Setup-
RestOfDto(booksQuery) code before the Page Query Object sorts out things such as
how many pages there are, ensures that the PageNum is in the right range, and per-
forms a few other housekeeping items. Chapter 5 shows how the ListBooksService is
called in our ASP.NET Core web application.

TheListing 2.17 ListBookService class providing a sorted, filtered, and paged list

Starts by selecting the
Books property in the
Application’s DbContext

Because this query is read-
only, you add .AsNoTracking.

Uses the Select Query Object,
which picks out/calculates
the data it needs

Adds the commands to
order the data by using
the given options

Adds the commands
to filter the data

This stage sets up the
number of pages and
makes sure that PageNum
is in the right range.

lies the paging
commands

60 CHAPTER 2 Querying the database
Summary
 To access a database in any way via EF Core, you need to define an application

DbContext.
 An EF Core query consists of three parts: the application’s DbContext property,

a series of LINQ/EF Core commands, and a command to execute the query.
 Using EF Core, you can model three primary database relationships: one-to-one,

one-to-many, and many-to-many. Other relationships are covered in chapter 8.
 The classes that EF Core maps to the database are referred to as entity classes. I

use this term to highlight the fact that the class I’m referring to is mapped by
EF Core to the database.

 If you load an entity class, it won’t load any of its relationships by default. Query-
ing the Book entity class, for example, won’t load its relationship properties
(Reviews, AuthorsLink, and Promotion); it leaves them as null.

 You can load related data that’s attached to an entity class in four ways: eager
loading, explicit loading, select loading, and lazy loading.

 EF Core’s client vs. server evaluation feature allows the last stage of a query to
contain commands, such as string.Join, that can’t be converted to SQL
commands.

 I use the term Query Object to refer to an encapsulated query or a section of a
query. These Query Objects are often built as .NET extension methods, which
means that they can easily be chained together, similar to the way LINQ is written.

 Selecting, sorting, filtering, and paging are common query uses that can be
encapsulated in a Query Object.

 If you write your LINQ queries carefully, you can move the aggregate calcula-
tions, such as Count, Sum, and Average, into the relational database, improving
performance.

For readers who are familiar with EF6.x:

 Many of the concepts in this chapter are the same as in EF6.x. In some cases
(such as eager loading), the EF Core commands and/or configuration have
changed slightly, but often for the better.

Changing
the database content
Chapter 2 covered querying a database. This chapter moves on to changing the
content of a database. Changing data has three distinct parts—creating new rows in
a database table, updating existing rows in a database table, and deleting rows in a
database table—and I cover them in that order. Create, update, and delete, along with
read (which is query in EF Core terms) are database terms for what’s happening, and
the foursome is often shortened to CRUD.

 You’ll use the same database as in chapter 2, which has the Book, PriceOffer,
Review, BookAuthor, and Author entity classes. These classes provide a good selec-
tion of property types and relationships that you can use to learn the various issues
and approaches to changing data in a database via EF Core.

This chapter covers
 Creating a new row in a database table

 Updating existing rows in a database table for
two types of applications

 Updating entities with one-to-one, one-to-many,
and many-to-many relationships

 Deleting single entities, and entities with
relationships, from a database
61

62 CHAPTER 3 Changing the database content
Introducing EF Core’s entity State3.1
Before I start describing the methods to add, update, or delete entities, I want to
introduce you to EF Core’s entity property, called State. This property provides
another look under the hood at the way EF Core does things, which helps you under-
stand what’s going on when you add, update, or delete entities.

 Any entity class instance has a State, which can be accessed via the following EF
Core command: context.Entry(someEntityInstance).State. The State tells EF
Core what to do with this instance when SaveChanges is called. Here’s a list of the pos-
sible states and what happens if SaveChanges is called:

 Added—The entity needs to be created in the database. SaveChanges inserts it.
 Unchanged—The entity exists in the database and hasn’t been modified on the

client. SaveChanges ignores it.
 Modified—The entity exists in the database and has been modified on the cli-

ent. SaveChanges updates it.
 Deleted—The entity exists in the database but should be deleted. SaveChanges

deletes it.
 Detached—The entity you provided isn’t tracked. SaveChanges doesn’t see it.

Normally, you don’t look at or alter the State directly. You use the various commands
listed in this chapter to add, update, or delete entities. These commands make sure
the State is set in a tracked entity (see definition below). When SaveChanges is
called, it looks at all the tracked entities and their State to decide what type of data-
base changes it needs to apply to the database. I refer to the entity’s State in the
rest of the chapter to show you how EF Core decides what type of change to apply to
the database.

DEFINITION Tracked entities are entity instances that have been read in from
the database by using a query that didn’t include the AsNoTracking method.
Alternatively, after an entity instance has been used as a parameter to EF Core
methods (such as Add, Update, or Delete), it becomes tracked.

Creating new rows in a table3.2
Creating new data in a database is about adding (via the SQL command INSERT in a
relational database) a new row to a table. If you want to add a new author to our
Book App, for example, that addition would be referred to as a create operation on
the database.

 In EF Core terms, creating new data in a database is the simplest of the update
operations because EF Core can take a set of linked entity classes, save them to the
database, and sort out the foreign keys needed to link things. In this section, you’ll
start with a simple example and then build up to more complex creates.

63Creating new rows in a table
Creating a single entity on its own3.2.1

Let’s start with an entity class that has no navigational properties—that is, relation-
ships to other tables in your database. This example is rare but shows the two steps in
a create operation:

1 Add the entity to the application’s DbContext.
2 Call the application’s DbContext’s SaveChanges method.

This listing creates an ExampleEntity entity class and adds a new row to the table that
the entity is mapped to—in this case, the ExampleEntities table.

var itemToAdd = new ExampleEntity
{
 MyMessage = "Hello World"
};
context.Add(itemToAdd);
context.SaveChanges();

Because you add the entity instance itemToAdd that wasn’t originally tracked, EF Core
starts to track it and sets its State to Added. After SaveChanges is called, EF Core finds
a tracked entity of type ExampleEntity with a State of Added, so it’s added as a new
row in the database table associated with the ExampleEntity class.

EF6 In EF6.x, you’d need to add the itemToAdd to a DbSet<ExampleEntity>
property in the application’s DbContext—for example, context.Example-
Entities.Add(itemToAdd). That approach is still valid, but EF Core has intro-
duced the shorthand shown in listing 3.1, which applies to the Add, Remove,
Update, and Attach methods. (See chapter 11 for more on the last two com-
mands.) EF Core works out which entity you're altering by looking at the type
of the instance you provide.

EF Core creates the SQL command to update an SQL Server–based database.

SET NOCOUNT ON;
INSERT INTO ExampleEntities]
 ([MyMessage]) VALUES (@p0);

SELECT [ExampleEntityId]
FROM [ExampleEntities]
WHERE @@ROWCOUNT = 1 AND
 [ExampleEntityId] = scope_identity();

The second SQL command produced by EF Core reads back the primary key of the
row that was created by the database server. This command ensures that the origi-
nal ExampleEntity instance is updated with the primary key so that the in-memory

An example of creating a single entityListing 3.1

SQL commands created to insert a new row into theListing 3.2 SingleEntities table

Uses the Add method to add SingleEntity to the
application’s DbContext. The DbContext determines
the table to add it to, based on its parameter type.

Calls the SaveChanges method from the
application’s DbContext to update the database

Inserts (creates) a new row into
the ExampleEntities table

Reads back the
primary key in the
newly created row

64 CHAPTER 3 Changing the database content
version of the entity is the same as the version in the database. Reading back the pri-
mary key is important, as you might update the entity later, and the update will need
the primary key.

EF6 In EF6.x, when you call SaveChanges, EF6.x by default validates the data
by using the standard .NET validation approach; it looks for data validation
attributes and, if they are present, runs IValidatableObject.Validate on
entity classes. EF Core doesn’t include this feature because a lot of validation
is done in the frontend, but it’s not hard to add a validation feature if you
need it. Chapter 4 shows you how.

Creating a book with a review3.2.2

Next, you’ll look at a create that includes relationships—in this case, adding a new
book with a review. Although the setup of the entity classes is a bit more complex, the
process has the same steps as our earlier, nonrelational create:

 It adds the entity class(es) in some way to EF Core’s tracked entities with the
State of Add.

 It calls SaveChanges, which looks at the State of all the tracked entities and
runs the SQL INSERT command for all entities with the State set to Added.

This example uses the Book App’s database with its Books and Review tables. Fig-
ure 3.1 shows a partial database diagram of these tables.

In the next listing, you create a new Book entity and fill the Reviews collection prop-
erty with a single Review entity. Then you call the context.Add method, followed by
the SaveChanges method, which writes both entities to the database.

Books

One-to-many relationship

A Book entity with one Review

When EF Core writes this new Book entity and
its related Review entity to the database, it copies
the Book’s database-generated primary key into
the foreign key in the Review entity.

BookId

Title

Description

... etc.

PK

Review

ReviewId

VoterName

NumStars

Comment

BookId

PK

Figure 3.1 The Books and Review tables. The Review row has a foreign key that
EF Core fills with the primary key value from the new Books row that’s created.

65Creating new rows in a table

co
of
var book = new Book
{
 Title = "Test Book",
 PublishedOn = DateTime.Today,
 Reviews = new List<Review>()
 {
 new Review
 {
 NumStars = 5,
 Comment = "Great test book!",
 VoterName = "Mr U Test"
 }
 }
};

context.Add(book);
context.SaveChanges();

The thing to note from this listing is that you add only the Book entity class, but the
related Review entity class is also written to the database. This happens because EF
Core follows all the relational links and finds the new Review instance, and because
that Review isn’t tracked, EF Core knows that the Review needs to be added to the
database.

 As you saw in the simple example in listing 3.1, EF Core works out what to do with
the linked entity classes by accessing their EF Core State values. If the linked
instances are new (not already known to EF Core), EF Core will start tracking them
and set their State to Added. In all other cases, EF Core will obey the State linked to
the entity instance. In listing 3.3, the Review entity instance isn’t already known to EF
Core, which means that its State is Detached, but when the Add call is made, its State
is set to Added. That instance will be INSERTed into the database as a new row.

WHAT HAPPENS AFTER THE SAVECHANGES RETURNS SUCCESSFULLY?
When the Add and SaveChanges have finished successfully, a few things happen: the
entity instances that have been inserted into the database are now tracked by EF Core,
and their State is set to Unchanged. Because we are using a relational database, and
because the two entity classes, Book and Review, have primary keys that are of type int,
EF Core by default will expect the database to create the primary keys by using the
SQL IDENTITY keyword. Therefore, the SQL commands created by EF Core read back
the primary keys into the appropriate primary keys in the entity class instances to
make sure that the entity classes match the database.

NOTE The Cosmos DB database doesn’t have an equivalent to SQL’s IDENTITY,
so you need to provide a unique key, such as GUIDs (globally unique identifiers).

Adding aListing 3.3 Book entity class also adds any linked entity classes

Creates the book
with the title
“Test Book”Creates

a new
llection
reviews

Adds one review
with its content

Uses the Add method to add
the book to the application’s
DbContext property, Books

Calls the SaveChanges method from the application’s
DbContext to update the database. It finds a new Book,
which has a collection containing one new Review, and
then adds both to the database.

66 CHAPTER 3 Changing the database content
Unique GUIDs are generated by what EF Core calls a ValueGenerator (see
chapter 10). GUIDs are also useful for primary keys in relational databases
when you need a unique key that won’t change when you copy/duplicate the
data to another database.

Also, EF Core knows about the relationships by the navigational properties in the
entity classes. In listing 3.3, the Book entity’s Reviews collection property has a new
Review entity instance in it. As part of the SaveChanges process, any foreign key will
be set by copying the primary keys into the foreign keys in each of the new relation-
ships. Then the entity instance matches the database. That’s useful in case you want to
read the primary or foreign keys, and EF Core can detect any subsequent changes you
make to the primary or foreign keys if you call SaveChanges again.

EXAMPLE THAT HAS ONE INSTANCE ALREADY IN THE DATABASE

The other situation you may need to deal with is creating a new entity containing a
navigational property that uses another entity already in the database. If you want to
create a new Book entity that has an Author that already exists in the database, you
need to obtain a tracked instance of the Author entity that you want to add to your
new Book entity. The following listing gives you one example. Note that the database
already contains an author called “Mr. A.”

Why you should call SaveChanges only once at the end of your changes
In listing 3.3. you see that the SaveChanges method is called at the end of create,
and you see the same pattern—the SaveChanges method is called at the end—in
the update and delete examples too. In fact, even for complex database change con-
taining a mixture of creates, updates, and deletes, you should still call the Save-
Changes method only once at the end. You do that because EF Core will save all your
changes (creates, updates and deletes) and apply them to the database together,
and if the database rejects any of your changes, all your changes are rejected (by
means of a database feature called a transaction; see section 4.7.2).

This pattern is called a Unit Of Work and means that your database changes can’t be
half-applied to the database. If you created a new Book with a BookAuthor reference
to an Author that wasn’t in the database, for example, you wouldn’t want the Book
instance to be saved. Saving it might break the book display, which expects every
Book to have at least one Author.

Sometimes, you may think that you need to call SaveChanges twice—say, when you
need the primary key of a new entity class to fill in the foreign key of entity class, but
there is always a way around that situation with EF Core. In fact, listing 3.3 gets
around it by creating a new Book and a new Review at the same time. Have a read
through section 6.2.1 and 6.2.2 to get an “under the hood” look at how EF Core
achieves this task.

67Updating database rows
var foundAuthor = context.Authors
 .SingleOrDefault(author => author.Name == "Mr. A");
if (foundAuthor == null)
 throw new Exception("Author not found");

var book = new Book
{
 Title = "Test Book",
 PublishedOn = DateTime.Today
};
book.AuthorsLink = new List<BookAuthor>
{
 new BookAuthor
 {
 Book = book,
 Author = foundAuthor
 }
};

context.Add(book);
context.SaveChanges();

The first four lines load an Author entity with some checks to make sure that it was
found; this Author class instance is tracked, so EF Core knows that it is already in the
database. You create a new Book entity and add a new BookAuthor linking entity, but
instead of creating a new Author entity instance, you use the Author entity that you
read in from the database. Because EF Core is tracking the Author instance and knows
that it’s in the database, EF Core won’t try to add it again to the database when
SaveChanges is called at the end of listing 3.4.

3.3 Updating database rows
Updating a database row is achieved in three stages:

1 Read the data (database row), possibly with some relationships.
2 Change one or more properties (database columns).
3 Write the changes back to the database (update the row).

In this section, you’ll ignore any relationships and focus on the three stages. In the
next section, you’ll learn how to update relationships by adding more commands to
each stage.

 Listing 3.5 changes the publication date of an existing book. Through this code,
you can see the standard flow of an update:

1 You load the entity class(es) you want to change as a tracked entity.
2 You change the property/properties in your entity class(es).
3 You call SaveChanges to update the database.

Adding a Book with an existing AuthorListing 3.4

Reads in the Author
with a check that the
Author was found

Creates a Book in
the same way as the
previous example

Adds an AuthorBook
linking entry, but
uses the Author that
is already in the
database

Adds the new Book to the DbContext
Books property and calls SaveChanges

68 CHAPTER 3 Changing the database content

T
load

col
th
var book = context.Books
 .SingleOrDefault(p =>
 p.Title == "Quantum Networking");
if (book == null)
 throw new Exception("Book not found");

book.PublishedOn = new DateTime(2058, 1, 1);
context.SaveChanges();

When the SaveChanges method is called, it runs a method called DetectChanges,
which compares the tracking snapshot against the entity class instance that it handed
to the application when the query was originally executed. From this example, EF
Core decides that only the PublishedOn property has been changed, and EF Core
builds the SQL to update that property.

NOTE Using the tracking snapshot is the normal way that DetectChanges
finds the changed properties. But chapter 11 describes an alternative to the
tracking snapshot, such as INotifyPropertyChanging. This topic is advanced,
so I use the tracked-entities approach throughout part 1 of this book.

The following listing shows the two SQL commands that EF Core produces for the
code in listing 3.5. One SQL command finds and loads the Book entity class, and a sec-
ond command updates the PublishedOn column.

SELECT TOP(2)
 [p].[BookId],
 [p].[Description],
 [p].[ImageUrl],
 [p].[Price],
 [p].[PublishedOn],
 [p].[Publisher],
 [p].[Title]
FROM [Books] AS [p]
WHERE [p].[Title] = N'Quantum Networking'

SET NOCOUNT ON;
UPDATE [Books]
 SET [PublishedOn] = @p0

WHERE [BookId] = @p1;
SELECT @@ROWCOUNT;

UpdatingListing 3.5 Quantum Networking’s publication date

SQL generated by EF Core for the query and update in listing 3.5Listing 3.6

Finds the specific book you want to
update—in this case, our special
book Quantum Networking

Throws an exception if
the book isn’t found

Changes the expected
publication date to year
2058 (it was 2057)Calls SaveChanges, which includes running a method

called DetectChanges. This method spots that the
PublishedOn property has been changed.

Reads up to two rows
from the Books table. You
asked for a single item,
but this code makes sure
that it fails if more than
one row fits.

he read
s all the
umns in
e table.

Your LINQ Where method,
which picks out the correct
row by its title

SQL UPDATE command—in this
case, on the Books table

Because EF Core’s DetectChanges method finds
that only the PublishedOn property has changed,
it can target that column in the table.

EF Core uses the primary key from the
original book to uniquely select the row
it wants to update.

Sends back the number of rows that were inserted
into this transaction. SaveChanges returns this

integer, but normally, you can ignore it.

69Updating database rows
Handling disconnected updates in a web application3.3.1

As you learned in section 3.3, an update is a three-stage process, needing a read, an
update, and a SaveChanges call to be executed by the same instance of the applica-
tion’s DbContext. The problem is that for certain applications, such as websites and
RESTful APIs, using the same instance of the application’s DbContext isn’t possible
because in web applications, each HTTP request typically is a new request, with no
data held over from the last HTTP request. In these types of applications, an update
consists of two stages:

 The first stage is an initial read, done in one instance of the application’s
DbContext.

 The second stage applies the update by using a new instance of the applica-
tion’s DbContext.

In EF Core, this type of update is called a disconnected update because the first stage
and the second stage use two different instances of the application’s DbContext (see
the preceding list). You can handle a disconnected update in several ways. The
method you should use depends a lot on your application. Here are the two main ways
of handling disconnected updates:

 You send only the data you need to update back from the first stage. If you were updat-
ing the published date for a book, you would send back only the BookId and the
PublishedOn properties. In the second stage, you use the primary key to reload
the original entity with tracking and update the specific properties you want to
change. In this example, the primary key is the BookId, and the property to
update is the PublishedOn property of the Book entity (see figure 3.2). When
you call SaveChanges, EF Core can work out which properties you’ve changed
and update only those columns in the database.

 You send all the data needed to re-create the entity class back from the first stage. In the
second stage, you rebuild the entity class, and maybe relationships, by using the
data from the first stage and tell EF Core to update the whole entity (see figure
3.3). When you call SaveChanges, EF Core will know, because you told it, that it
must update all the columns in the table row(s) affected with the substitute data
that the first stage provided.

NOTE Another way of handling the partial update of an entity described in
option 1 is to create a new entity instance and manipulate the State of each
property. Chapter 11 covers this option, when we look at how to alter the
entity’s State in more detail.

That’s a lot of words! Now I’ll give you an example of each approach for handling dis-
connected updates.

70 CHAPTER 3 Changing the database content
DISCONNECTED UPDATE, WITH RELOAD

Figure 3.2 shows an example of a disconnected update in a web application. In this
case, you’re providing a feature to allow an admin user to update the publication date
of a book. The figure shows that you send only the BookId and the PublicationDate
data back from the first stage.

For web applications, the approach of returning only a limited amount of data to the
web server is a common way of handling EF Core updates. This approach makes
the request faster, but a big reason for it is security. You wouldn’t want the Price of a
Book to be returned, for example, as that information would allow hackers to alter the
price of the book they want to buy.

 There are several ways of controlling what data is returned/accepted by the web
server. In ASP.NET Core, for example, you have the attribute BindNever, which allows
you to define named properties that won’t be returned to the second stage. But a
more general approach, and one I prefer, is to use a special class that contains only
properties that should be sent/received. This class is referred to as a DTO or View-
Model. It’s similar in nature to the DTO used in the select-loading query in chapter 2,
but in this case it’s used not only in the query, but also to receive the specific data you
need back from the user, via a browser. For our example that updates the publication
date, you need three parts. The first part, a DTO to send/receive the data to/from the
user, is shown here.

context.Books.Find(BookId);

var book = Context.Books.Find(BookId);
book.PublishedOn = PublishDate;
context.SaveChanges();

Update

Update stage DbContext1 Update stage 2 DbContext

Disconnect

BookId
PublishDate

Figure 3.2 The two stages in a disconnected update on a website using EF Core. The thick,
dashed line in the middle represents the point where the data held in the application in the first
stage is lost, and the second stage starts with no knowledge of what stage 1 did. Only the
BookId and PublishDate information is returned when the user clicks the Update button that
bridges the gap.

71Updating database rows
public class ChangePubDateDto
{
 public int BookId { get; set; }

 public string Title { get; set; }

 [DataType(DataType.Date)]
 public DateTime PublishedOn { get; set; }
}

Second, you need a method to get the initial data for stage 1. Third, you need a
method to receive the data back from the browser and then reload/update the book.
This listing shows the ChangePubDateService class that contains two methods to han-
dle these two stages.

public class ChangePubDateService : IChangePubDateService
{
 private readonly EfCoreContext _context;

 public ChangePubDateService(EfCoreContext context)
 {
 _context = context;
 }

Listing 3.7 ChangePubDateDto sends data to and receives it from the user

The quickest way to read an entity class using its primary key(s)
When you want to update a specific entity and need to read it in using its primary key,
you have a few options. I used to use the Find command, but after some digging, I
now recommend SingleOrDefault because it’s quicker than the Find command.
But I should point out two useful things about the Find method:

 The Find method checks the current application’s DbContext to see whether
the required entity instance has already been loaded, which can save an
access to the database. But if the entity isn’t in the application’s DbContext,
the load will be slower because of this extra check.

 The Find method is simpler and quicker to type because it’s shorter than
the SingleOrDefault version, such as context.Find<Book>(key) versus
context.SingleOrDefault(p => p.Bookid == key).

The upside of using the SingleOrDefault method is that you can add it to the end
of a query with methods such as Include, which you can’t do with Find.

TheListing 3.8 ChangePubDateService class to handle the disconnected update

Holds the primary key of the row you
want to update, which makes finding
the right row quick and accurate

You send over the title
to show the user so that
they can be sure they are
altering the right book.

The property you want to alter. You send out the
current publication date and get back the

changed publication date.

This interface is needed when registering this class in DI. You use
DI in chapter 5 when building the ASP.NET Core BookApp.

The application’s
DbContext is provided via
a class constructor—the
normal way of building
classes that you will use as
a service in ASP.NET Core.

72 CHAPTER 3 Changing the database content

I cat
boo

t

 public ChangePubDateDto GetOriginal(int id)
 {
 return _context.Books
 .Select(p => new ChangePubDateDto
 {
 BookId = p.BookId,
 Title = p.Title,
 PublishedOn = p.PublishedOn
 })
 .Single(k => k.BookId == id);
 }

 public Book UpdateBook(ChangePubDateDto dto)
 {
 var book = _context.Books.SingleOrDefault(
 x => x.BookId == dto.BookId);
 if (book == null)
 throw new ArgumentException(
 "Book not found");
 book.PublishedOn = dto.PublishedOn;
 _context.SaveChanges();
 return book;
 }
}

The advantages of this reload-then-update approach is that it’s more secure (in our
example, sending/returning the price of the book over HTTP would allow someone
to alter it) and faster because of less data. The downside is that you have to write code
to copy over the specific properties you want to update. Chapter 6 covers a few tricks
to automate this process.

NOTE You can see this code and try updating the publication date on the
example Book App. If you download the code from the Git repo and run it
locally, you’ll see an Admin button for each book. This button contains a link
called Change Pub Date, which will step you through this process. You can
also see the SQL commands that EF Core uses to carry out this update via the
Logs menu item.

DISCONNECTED UPDATE, SENDING ALL THE DATA

In some cases, all the data may be sent back, so there’s no reason to reload the origi-
nal data. This can happen for simple entity classes, in some RESTful APIs, or process-
to-process communication. A lot depends on how closely the given API format
matches the database format and how much you trust the other system.

 Figure 3.3 shows an example of a RESTful API in which an external system first
queries the system for books with a given title. In the update stage, the external system
sends back an update on the author of the book it received.

 Listing 3.9 simulates the RESTful API by having a first stage that reads in the
Author entity class you want to update and then serializes it into a JSON string.

This method handles
the first part of the
update, such as by
getting the data from
the chosen book to
show to the user.

A select load query
that returns only
three properties

Uses the
primary key
to select the

exact row
we want to

update

This method handles the
second part of the update,
such as performing a selective
update of the chosen book.

Loads the book. I use
SingleOrDefault because
it’s slightly quicker than
the Find method.

ch the case where a
k wasn’t found and
hrow an exception.

Selective update of the
PublishedOn property
of the loaded book

SaveChanges uses its DetectChanges
method to find out what has changed
and then updates the database.

Returns the
updated book

73Updating database rows

Pr
lin
m

many
ta

link
au
th
(Figure 3.3, step 2 shows what that JSON looks like.) Then you decode that JSON and
use the EF Core Update command, which replaces all the information in the row
defined by the primary key—in this case, the AuthorId.

string json;
using (var context = new EfCoreContext(options))
{
 var author = context.Books
 .Where(p => p.Title == "Quantum Networking")
 .Select(p => p.AuthorsLink.First().Author)
 .Single();
 author.Name = "Future Person 2";
 json = JsonConvert.SerializeObject(author);
}
using (var context = new EfCoreContext(options))
{
 var author = JsonConvert
 .DeserializeObject<Author>(json);

 context.Authors.Update(author);
 context.SaveChanges();
}

Simulating an update/replace request from an external systemListing 3.9

1. T externa k by title,he l system asks for a boo
with its authors, reviews, and so on.

3. Your application replaces the existing Author
data with the data from the external system.

GET: myAPI/book/search?title=...

JSON: [{BookId: 4, Title: ...

Read stage

2. The external system sends
back an author update.

con
Where.

p.T
Ne working")t

Include(....

con
Update(author);.

con

[
AuthorId":"
Name":"
"Future
BooksLink":null"

}

External systemMy RESTful API application

PUT: myAPI/authors+JSON

OK

Update stage

Figure 3.3 An example of a disconnected update, in which you replace all the database information
with the new data. Unlike the one in the previous example, this process doesn’t need to reload the
original data before performing the update.

Simulates an
external system
returning a modified
Author entity class
as a JSON string

Simulates receiving a JSON string
from an external system and
decoding it into an Author class

Update command, which replaces all
the row data for the given primary
key—in this case, AuthorId

ovides a
k to the
any-to-
 linking
ble that
s to the
thors of
is book

74 CHAPTER 3 Changing the database content
You call the EF Core Update command with the Author entity instance as a parameter,
which marks as modified all the properties of the Author entity. When the Save-
Changes command is called, it’ll update all the columns in the row that have the same
primary key as the entity class.

EF6 The Update command is new in EF Core. In EF6.x, you need to manipu-
late the entity object state directly, such as by using the command DbContext
.Entry(object).State = EntityState.Modified. Subtle changes in the way
that EF Core sets the entity state are covered in chapter 11.

The plus side of this approach is that the database update is quicker, because you
don’t have the extra read of the original data. You also don’t have to write code to
copy over the specific properties you want to update, which you did need to do in the
previous approach.

 The downsides are that more data can be transferred and that unless the API is
carefully designed, it can be difficult to reconcile the data you receive with the data
already in the database. Also, you’re trusting the external system to remember all the
data correctly, especially the primary keys of your system.

NOTE Listing 3.9 covers only a single class with no relationship, but in many
RESTful APIs and process-to-process communications, a lot of linked data
might be sent over. In the example, the API might expect the whole book
with all its relationships to be sent back only for an update of the author’s
name. This process gets complicated, so I cover it in chapter 11, which
shows how to manage the state of each property and introduces EF Core’s
TrackGraph method, which helps handle partial updates of classes with
relationships.

Handling relation3.4 ships in updates
Now that we’ve established the three basic steps for updating the database, it’s time
to look at updating relationships between entity classes—adding a new review to a
book, for example. Updating relationships adds another level of complexity to the
code, especially in the disconnected state, which is why I put this content in a sepa-
rate section.

 This section covers updates for the three types of relational linking that EF Core
uses and gives examples of both connected and disconnected updates. In all cases,
you’ll use the Book entity class, which has three relationship links. The following list-
ing shows the Book entity class, but with the focus on the relationships at the end. (I’ve
removed some nonrelational properties to keep the focus on the relationships.)

public class Book
{
 public int BookId { get; set; }

Listing 3.10 The Book entity class, showing the relationships to update

Book class contains the
main book information.

//… other nonrelational properties removed for clarity

75Handling relationships in updates
 //---
 //relationships

 public PriceOffer Promotion { get; set; }
 public ICollection<Review> Reviews { get; set; }
 public ICollection<Tag> Tags { get; set; }
 public ICollection<BookAuthor>
 AuthorsLink { get; set; }
}

Principal and dependent relationships3.4.1

The terms principal and dependent are used in EF to define parts of a relationship:

 Principal entity—Contains a primary key that the dependent relationship refer
to via a foreign key

 Dependent entity—Contains the foreign key that refers to the principal entity’s
primary key

In the Book App example, the Book entity class is the principal entity. The Price-
Offer, Review, and BookAuthor entity classes are the dependent entities. I find the
terms principal and dependent to be helpful, because they define what’s in charge: the
principal entity. I use these terms throughout this book where applicable.

NOTE An entity class can be both a principal and a dependent entity at the
same time. In a hierarchical relationship of, say, libraries with books that have
reviews, the book would be a dependent relationship of the library entity class.

CAN THE DEPENDENT PART OF A RELATIONSHIP EXIST WITHOUT THE PRINCIPAL?
The other aspect of a dependent relationship is whether it can exist on its own. If the
principal relationship is deleted, is there a business case for the dependent relation-
ship to still exist? In many cases, the dependent part of a relationship doesn’t make
sense without the principal relationship. A book review has no meaning if the book it
links to is deleted from the database, for example.

 In a few cases, a dependent relationship should exist even if the principal part is
deleted. Suppose that you want to have a log of all the changes that happen to a
book in its lifetime. If you delete a book, you wouldn’t want that set of logs to be
deleted too.

 This task is handled in databases by handling the nullability of the foreign key. If
the foreign key in the dependent relationship is non-nullable, the dependent relation-
ship can’t exist without the principal. In the example Book App database, the Price-
Offer, Review, and BookAuthor entities are all dependent on the principal, Book entity,
so their foreign keys are of type int. If the book is deleted or the link to the book is
removed, the dependent entities will be deleted.

 But if you define a class for logging—let’s call it BookLog—you want this class to
exist even if the book is deleted. To make this happen, you’d make its BookId foreign

Links to the
optional PriceOffer

Can be zero to many
reviews of the book

EF Core 5’s automatic
many-to-many relationship
to the Tag entity class

Provides a link to the many-to-many linking
table that links to the authors of this book

76 CHAPTER 3 Changing the database content
key of type Nullable<int>. Then, if you delete the book that the BookLog entity is linked
to, you could configure that the BookLog’s BookId foreign key would be set to null.

NOTE In the preceding BookLog example, if you delete a Book entity that a
BookLog is linked to, the default action is to set the BookLog’s foreign key to
null because EF Core defaults to a ClientSetNull setting for the OnDelete
property of optional relationships. Section 8.8.1 covers this topic in more
detail.

I mention this situation now because as we go through updating the relationships, in
some cases, a dependent relationship is removed from its principal. I’ll give an exam-
ple of replacing all the dependent relationships with new ones. What happens to the
old relationships we remove depends on the nullability of the foreign key: if the for-
eign key is non-nullable, the dependent relationships are deleted, and if the foreign
key is nullable, it’s set to null. I talk more about this topic and how EF Core handles
deletion in section 3.5.

Updating one-to-one relationships: Adding a PriceOffer to a book3.4.2

In our example Book App database, we have an optional, dependent relationship
property called Promotion from the Book entity class to the PriceOffer entity class.
This subsection covers how to add a PriceOffer class to an existing book. This listing
shows you the content of the PriceOffer entity class, which links to the Books table
via the foreign key called BookId.

public class PriceOffer
{
 public int PriceOfferId { get; set; }
 public decimal NewPrice { get; set; }
 public string PromotionalText { get; set; }

 //---
 //Relationships

 public int BookId { get; set; }
}

CONNECTED STATE UPDATE

The connected state update assumes that you’re using the same context for both the
read and the update. Listing 3.12 shows an example of the code, which has three
stages:

1 Load the Book entity with any existing PriceOffer relationship.
2 Set the relationship to the new PriceOffer entity you want to apply to this book.
3 Call SaveChanges to update the database.

Listing 3.11 PriceOffer entity class, showing the foreign key back to the Book entity

PriceOffer, if present, is
designed to override
the normal price.

Foreign key back to the book
it should be applied to

77Handling relationships in updates
var book = context.Books
 .Include(p => p.Promotion)
 .First(p => p.Promotion == null);

book.Promotion = new PriceOffer
{
 NewPrice = book.Price / 2,
 PromotionalText = "Half price today!"
};
context.SaveChanges();

As you can see, the update of the relationship is like the basic update you made to
change the book’s published date. In this case, EF Core has to do extra work because of
the relationship. EF Core creates a new row in the PriceOffers table, which you can see
in the SQL snippet that EF Core produces for the code in listing 3.12:

INSERT INTO [PriceOffers]
 ([BookId], [NewPrice], [PromotionalText])
 VALUES (@p0, @p1, @p2);

Now, what happens if there’s an existing promotion on the book (that is, the Promo-
tion property in the Book entity class isn’t null)? That case is why the Include(p =>
p.Promotion) command in the query that loaded the Book entity class is so important.
Because of that Include method, EF Core will know that an existing PriceOffer is
assigned to this book and will delete it before adding the new version.

 To be clear, in this case you must use some form of loading of the relationship—
eager, explicit, select, or lazy loading of the relationship—so that EF Core knows about it
before the update. If you don’t, and if there’s an existing relationship, EF Core will
throw an exception on a duplicate foreign key BookId, which EF Core has placed a
unique index on, and another row in the PriceOffers table will have the same value.

DISCONNECTED STATE UPDATE

In the disconnected state, the information to define which book to update and what
to put in the PriceOffer entity class would be passed back from stage 1 to stage 2.
That situation happened in the update of the book’s publication date (figure 3.2),
where the BookId and the PublishedOn values were fed back.

 In the case of adding a promotion to a book, you need to pass in the BookId, which
uniquely defines the book you want, plus the NewPrice and the PromotionalText
values that make up the PriceOffer entity class. The next listing shows you the
ChangePriceOfferService class, which contains the two methods to show the data to

Listing 3.12 Adding a new promotional price to an existing book that doesn’t have one

Finds a book. In this example, the book doesn’t
have an existing promotion, but it would also

work if there were an existing promotion.
Although the include isn’t needed because you’re
loading something without a Promotion, using
the include is good practice, as you should load
any relationships if you’re going to change a
relationship.

Adds a new
PriceOffer to
this book

The SaveChanges method calls DetectChanges, which
finds that the Promotion property has changed, so it
adds that entity to the PriceOffers table.

78 CHAPTER 3 Changing the database content

Ha
secon

th
per

add/
the P

prope
sele

C
t

r

e

the user and update the promotion on the Book entity class when the user submits
a request.

public class ChangePriceOfferService : IChangePriceOfferService
{
 private readonly EfCoreContext _context;

 public Book OrgBook { get; private set; }

 public ChangePriceOfferService(EfCoreContext context)
 {
 _context = context;
 }

 public PriceOffer GetOriginal(int id)
 {
 OrgBook = _context.Books
 .Include(r => r.Promotion)
 .Single(k => k.BookId == id);

 return OrgBook?.Promotion
 ?? new PriceOffer
 {
 BookId = id,
 NewPrice = OrgBook.Price
 };
 }

 public Book AddUpdatePriceOffer(PriceOffer promotion)
 {
 var book = _context.Books
 .Include(r => r.Promotion)
 .Single(k => k.BookId
 == promotion.BookId);
 if (book.Promotion == null)
 {
 book.Promotion = promotion;
 }
 else
 {
 book.Promotion.NewPrice
 = promotion.NewPrice;
 book.Promotion.PromotionalText
 = promotion.PromotionalText;
 }
 _context.SaveChanges();
 return book;
 }
}

Listing 3.13 ChangePriceOfferService class with a method to handle each stage

Gets a PriceOffer
class to send to the
user to update

Loads the book with
any existing Promotion

You return either the existing
Promotion for editing or create a
new one. The important point is to
set the BookId, as you need to pass
it through to the second stage.

ndles the
d part of
e update,
forming a
selective

update of
romotion
rty of the
cted book

Loads the book with any existing
promotion, which is important because
otherwise, your new PriceOffer will
clash and throw an error

hecks whether
he code should

create a new
PriceOffer or

update the
existing

PriceOffer

You need to add a new PriceOffer,
so you assign the promotion to the
relational link. EF Core will see it and
add a new row in the PriceOffer table.

You need to do an update, so you copy ove
only the parts that you want to change. EF
Core will see this update and produce cod
to update only these two columns.

SaveChanges uses its DetectChanges method,
which sees what changes—either adding a
new PriceOffer or updating an existing one.Returns the

updated book

This code either updates an existing PriceOffer or adds a new PriceOffer if none
exists. When SaveChanges is called, it can work out, via EF Core’s DetectChanges

79Handling relationships in updates

A
the

PriceO
to

PriceO
t

method, what type of update is needed and create the correct SQL to update the data-
base. This is different from the connected version shown in listing 3.12, where you
replaced any PriceOffer with a new version. Both versions work, but if you are log-
ging who last created/updated an entity (see section 11.4.3), updating an existing
entity gives you a bit more information about what changed.

ALTERNATIVE WAY OF UPDATING THE RELATIONSHIP: CREATING A NEW ROW DIRECTLY

We’ve approached this update as changing a relationship in the Book entity class, but
you can also approach it as creating/deleting a row in the PriceOffers table. This list-
ing finds the first Book in the database that doesn’t have a Promotion linked to it and
then adds a new PriceOffer entity to that book.

var book = context.Books
 .First(p => p.Promotion == null);

context.Add(new PriceOffer
{
 BookId = book.BookId,
 NewPrice = book.Price / 2,
 PromotionalText = "Half price today!"
});
context.SaveChanges();

Listing 3.14 Creating a PriceOffer row to go with an existing book

You find the book that you want
to add the new PriceOffer to, which
must not be an existing PriceOffer.

dds
new
ffer
 the
ffers
able

Defines the PriceOffer.
You must include the
BookId (which EF Core
filled in previously).

SaveChanges adds the PriceOffer
to the PriceOffers table.

You should note that previously, you didn’t have to set the BookId property in the
PriceOffer entity class, because EF Core did that for you. But when you’re creating a
relationship this way, you do need to set the foreign key. Having done so, if you load
the Book entity class with its Promotion relationship after the previous create code,
you’ll find that the Book has gained a Promotion relationship.

NOTE The PriceOffer entity class doesn’t have a relational property link
back to the Book class (public Book BookLink {get; set;}). If it did, you
could set the BookLink to the Book entity class instead of setting the foreign
key. Either setting the foreign key(s) or setting a relational link back to the
principal entity will tell EF Core to set up the relationship.

The advantage of creating the dependent entity class is that it saves you from needing
to reload the principal entity class (in this case, Book) in a disconnected state. The
downside is that EF Core doesn’t help you with the relationships. In this case, if there
were an existing PriceOffer on the book and you added another, SaveChanges would
fail because you’d have two PriceOffer rows with the same foreign key.

When EF Core can’t help you with the relationships, you need to use the create/
delete approach with care. Sometimes, this approach can make handling a complex
relationship easier, so it’s worth keeping in mind, but I prefer updating the principal
entity class’s relationship in most one-to-one cases.

80 CHAPTER 3 Changing the database content
NOTE Later, in section 3.4.5, you’ll learn another way of updating relation-
ships by changing foreign keys.

Updating one-to-many relationships: Adding a review to a book3.4.3

You’ve learned the basic steps in updating a relationship by looking at a one-to-one
relationship. I’ll move a bit quicker with the remaining relationships, as you’ve
seen the basic pattern. But I’ll also point out some differences in the many side of a
relationship.

 The one-to-many relationship in the Book App database is represented by Book’s
Reviews; a user of the site can add a review to a book. There can be any number of
reviews, from none to a lot. This listing shows the Review-dependent entity class,
which links to the Books table via the foreign key called BookId.

public class Review
{
 public int ReviewId { get; set; }
 public string VoterName { get; set; }
 public int NumStars { get; set; }
 public string Comment { get; set; }

 //---
 //Relationships

 public int BookId { get; set; }
}

CONNECTED STATE UPDATE

Listing 3.16 adds a new Review to a Book. This code follows the same pattern as the one-
to-one connected update: load the Book entity class and the Reviews relationship via the
Include method. But in this case, you add the Review entity to the Book’s Reviews col-
lection. Because you used the Include method, the Reviews property will be an empty
collection if there are no reviews or a collection of the reviews linked to this book. In
this example, the database already contains some Book entities, and I take the first.

var book = context.Books
 .Include(p => p.Reviews)
 .First();

book.Reviews.Add(new Review
{
 VoterName = "Unit Test",
 NumStars = 5,
 Comment = "Great book!"
});
context.SaveChanges();

TheListing 3.15 Review class, showing the foreign key back to the Book entity class

Adding a review to a book in the connected stateListing 3.16

Holds customer reviews
with their ratings

Foreign key holds the key of the
book this review belongs to.

Finds the first book
and loads it with any
reviews it might have

Adds a new
review to
this book

SaveChanges calls DetectChanges,
which finds that the Reviews property
has changed, and from there finds the
new Review, which it adds to the
Review table.

81Handling relationships in updates

You
th
co
As with the PriceOffer example, you don’t fill in the foreign key (the BookId prop-
erty) in the Review, because EF Core knows that the Review is being added to a Book
entity class and sets up the foreign key to the right value.

ALTERING/REPLACING ALL THE ONE-TO-MANY RELATIONSHIPS

Before moving on to the disconnected state update, I want to consider the case in
which you want to alter or replace the whole collection, rather than add to the collec-
tion, as you did with the review.

 If the books had categories (say, Software Design, Software Languages, and so on),
you might allow an admin user to change the categories. One way to implement this
change would be to show the current categories in a multiselect list, allow the admin
user to change them, and then replace all the categories on the book with the new
selection.

 EF Core makes replacing the whole collection easy. If you assign a new collection
to a one-to-many relationship that has been loaded with tracking (such as by using the
Include method), EF Core will replace the existing collection with the new collection.
If the items in the collection can be linked to only the principal class (the dependent
class has a non-nullable foreign key), by default, EF Core will delete the items that
were in the collection that have been removed.

 Next is an example of replacing the whole collection of existing book reviews with
a new collection. The effect is to remove the original reviews and replace them with the
one new review.

var book = context.Books
 .Include(p => p.Reviews)
 .Single(p => p.BookId == twoReviewBookId);

book.Reviews = new List<Review>
{
 new Review
 {
 VoterName = "Unit Test",
 NumStars = 5,
 }
};
context.SaveChanges();

Because you’re using test data in the example, you know that the book with the primary
key twoReviewBookId has two reviews and that the book is the only one with reviews;
hence, there are only two reviews in the whole database. After the SaveChanges method
is called, the book has only one review, and the two old reviews have been deleted, so
now the database has only one review in it.

 Removing a single row is as simple as removing the entity from the list. EF Core will
see the change and delete the row that’s linked to that entity. Similarly, if you add a

Replacing a whole collection of reviews with another collectionListing 3.17

This include is important; it
creates a collection with any
existing reviews in it or an
empty collection if there are
no existing reviews.

This book you’re loading
has two reviews.

 replace
e whole
llection.

SaveChanges, via DetectChanges, knows that the
old collection should be deleted and that the new
collection should be written to the database.

82 CHAPTER 3 Changing the database content

up
new Review to the Book’s Reviews collection property, EF Core will see that change to
that collection and add the new Review to the database.

 The loading of the existing collection is important for these changes: if you don’t
load them, EF Core can’t remove, update, or replace them. The old versions will still
be in the database after the update because EF Core didn’t know about them at the
time of the update. You haven’t replaced the existing two Reviews with your single
Review. In fact, you now have three Reviews—the two that were originally in the data-
base and your new one—which is not what you intended to do.

DISCONNECTED-STATE UPDATE

In the disconnected state, you create an empty Review entity class but fill in its foreign
key, BookId, with the book the user wants to provide a review for. Then the user votes
on the book, and you add that review to the book that they referred to. The following
listing shows the AddReviewService class, which has methods for the setup and
update of the book, to add a new review from a user.

public class AddReviewService
{
 private readonly EfCoreContext _context;

 public string BookTitle { get; private set; }

 public AddReviewService(EfCoreContext context)
 {
 _context = context;
 }

 public Review GetBlankReview(int id)
 {
 BookTitle = _context.Books
 .Where(p => p.BookId == id)
 .Select(p => p.Title)
 .Single();
 return new Review
 {
 BookId = id
 };
 }

 public Book AddReviewToBook(Review review)
 {
 var book = _context.Books
 .Include(r => r.Reviews)
 .Single(k => k.BookId
 == review.BookId);
 book.Reviews.Add(review);
 _context.SaveChanges();
 return book;
 }
}

Adding a new review to a book in the example Book AppListing 3.18

Forms a review to be
filled in by the user

You read the book title to
show to the user when they’re
filling in their review.

Creates a review with
the BookId foreign
key filled in

Updates the book
with the new review

Loads the correct book by using the value in
the review’s foreign key, and includes any
existing reviews (or an empty collection if
there are no reviews yet)

Adds the
new review

to the
Reviews

collection

SaveChanges uses its DetectChanges method, which
sees that the Book Review property has changed,
and creates a new row in the Review table.

Returns the
dated book

83Handling relationships in updates
This code has a simpler first part than the previous disconnected-state examples
because you’re adding a new review, so you don’t have to load the existing data for the
user. But overall, the code takes the same approach that the ChangePriceOffer-
Service class used.

ALTERNATIVE WAY OF UPDATING THE RELATIONSHIP: CREATING A NEW ROW DIRECTLY

As with the PriceOffer, you can add a one-to-many relationship directly to the data-
base. But again, you take on the role of managing the relationship. If you want to
replace the entire reviews collection, for example, you’d have to delete all the rows
that the reviews linked to the book in question before adding your new collection.

 Adding a row directly to the database has some advantages, because loading all
the one-to-many relationships might turn out to be a lot of data if you have lots of
items and/or they’re big. Therefore, keep this approach in mind if you have perfor-
mance issues.

NOTE My experiments show that not loading the relationship and then
assigning a new collection to a one-to-many relationship is equivalent to creat-
ing a new row directly. But I don’t recommend doing this because it’s not the
normal update pattern; someone else (or even you) might come back later
and misread your intentions.

3.4.4 Updating a many-to-many relationship

In EF Core, we talk about many-to-many relationships, but a relational database doesn’t
directly implement many-to-many relationships. Instead, we’re dealing with two one-
to-many relationships, as shown in figure 3.4.

In EF Core, you have two ways to create many-to-many relationships between two
entity classes:

 You link to a linking table in each entity—that is, you have an ICollection
<LeftRight> property in your Left entity class. You need to create an entity
class to act as the linking table (such as LeftRight in figure 3.4), but that entity
class lets you add extra data in the linking table so that you can sort/filter the
many-to-many relationships.

Left

IdPK

SomeData
... etc.

LeftRight

PK,FK2

PK,FK1

LeftId

RightId

Right

IdPK

OtherData
... etc.

One-to-many Many-to-one

Figure 3.4 A many-to-many relationship in the database is created by a linking
table that contains the primary keys of the two tables that need a many-to-many
relationship.

84 CHAPTER 3 Changing the database content
 You link directly between the two entity classes you want to have a many-to-many
relationship—that is, you have an ICollection<Right> property in your Left
entity class. This link is much easier to code because EF Core handles the cre-
ation of the linking table, but then you can’t access the linking table in a nor-
mal Include method to sort/filter.

NOTE This chapter uses EF Core default settings for a many-to-many relation-
ship. Chapter 8 covers the configuration options for many-to-many relationships.

UPDATING A MANY-TO-MANY RELATIONSHIP VIA A LINKING ENTITY CLASS

In the Book entity class, you need a many-to-many link to the Authors of the book. But
in a book, the order of the authors’ names matters. Therefore, you create a linking
table with an Order (byte) property that allows you to display the Author's Name prop-
erties in the correct order, which means that you

 Create an entity class called BookAuthor, which contains both the primary key
of the Book entity class (BookId) and the primary key of the Author entity class
(AuthorId). You also add an Order property, which contains a number setting
the order in which the Authors should be displayed for this book. The Book-
Author linking entity class also contains two one-to-one relationships to the
Author and the Book.

 You add a navigational property called AuthorsLink of type ICollection
<BookAuthor> to your Book entity class.

 You also add a navigational property called BooksLink of type ICollection
<BookAuthor> to your Author entity class.

These three entity classes are shown in figure 3.5, with only the Book to BookAuthor
and BookAuthor to Author links shown.

BookId (int)

This sort of many-to-many relationship allows you access the BookAuthor
linking table in an Include or query. This allows you to access sort/filter
data in the linking table, in this example sorting on the Order property.

The AuthorsLink property is of type
ICollection<BookAuthor>.

The BooksLink property is of type
ICollection<BookAuthor>.

Title (string)

Description (…)

…

AuthorsLink

Book

BookId (int)

AuthorId (int)

Order (byte)

Book (class)

Author (class)

BookAuthor

AuthorId (int)

Name (string)

BooksLink

Author

Figure 3.5 The Book to its Authors many-to-many relationship, which uses
a BookAuthor linking table. Because you create a one-to-many link to the
BookAuthor entity class, you can access the Order property to sort the
order in which the Author names should be shown to the customer.

85Handling relationships in updates

e

The BookAuthor entity class, shown in figure 3.5, has two properties: BookId and
AuthorId. These properties are foreign keys to the Books table and the Authors table,
respectively. Together, they also form the primary key (known as a composite key,
because it has more than one part) for the BookAuthor row. The composite key has
the effect of ensuring that there’s only one link between the Book and the Author.
Chapter 7 covers composite keys in more detail. In addition, the BookAuthor entity
class also has an Order property, which allows you to define the order of the Author
entity classes so that the Author's Name property will be shown in the Book App
book list.

 As an example, you will add the author Martin Fowler as an extra author to the
Quantum Networking book via the BookAuthor linking entity class. (I’m sure that Martin
Fowler would love to collaborate on this book if he’s around when quantum network-
ing is perfected.) You set the Order property to 1 to make Martin Fowler the second
author. (The existing BookAuthor entity for the current Author has the Order prop-
erty set to 0.) The next listing shows the resulting code.

var book = context.Books
 .Include(p => p.AuthorsLink)
 .Single(p => p.Title == "Quantum Networking");

var existingAuthor = context.Authors
 .Single(p => p.Name == "Martin Fowler");

book.AuthorsLink.Add(new BookAuthor
{
 Book = book,
 Author = existingAuthor,
 Order = (byte) book.AuthorsLink.Count
});
context.SaveChanges();

Adding a newListing 3.19 Author to the book Quantum Networking

This code finds the book with the
title “Quantum Networking,” whos
current author is “Future Person.”

You find an existing author—in
this case, “Martin Fowler.”

You add a new BookAuthor
linking entity to the Book’s
AuthorsLink collection.

You fill in the two
navigational properties
that are in the many-to-
many relationship.

You set the Order
to the old count of

AuthorsLink—in this
case, 1 (because the first
author has a value of 0).

The SaveChanges will
create a new row in
the BookAuthor table.

The thing to understand is that the BookAuthor entity class is the many side of the
relationship. This listing, which adds another author to one of the books, should
look familiar because it’s similar to the one-to-many update methods I’ve already
explained.

One thing to note is that when you load the Book’s AuthorsLink, you don’t need
to load the corresponding BooksLink in the Author entity class. The reason is that
when you update the AuthorsLink collection, EF Core knows that there is a link to the
Book, and during the update, EF Core will fill in that link automatically. The next time
someone loads the Author entity class and its BooksLink relationship, they’ll see a link
to the Quantum Networking book in that collection. (See section 6.2.2 for a detailed
review of what links are filled in when.)

86 CHAPTER 3 Changing the database content

 Also be aware that deleting an AuthorsLink entry won’t delete the Book or Author
entities they link to because that entry is the one end of a one-to-many relationship,
which isn’t dependent on the Book or Author. In fact, the Book and Author entity
classes are principal entities, with the BookAuthor classes being dependent on both of
the principal entity classes.

UPDATING A MANY-TO-MANY RELATIONSHIP WITH DIRECT ACCESS TO THE OTHER ENTITY

EF Core 5 added the ability to access another entity class directly in a many-to-many
relationship. This ability makes it much easier to set up and use the many-to-many
relationship, but you won’t be able to access the linking table in an Include method.

EF6 In EF6.x, you can define a many-to-many relationship, and EF6.x will
create a hidden linking table for you and handle all the creation/deletion of
the rows in that table. EF Core 5 adds that ability, but now you have much bet-
ter control of configuration of the linking table.

In the Book App, a book can have zero to many categories, such as Linux, Databases,
and Microsoft .NET, to help a customer find the right book. These categories are held
in a Tag entity (the TagId holds the category name) with a direct many-to-many rela-
tionship to a Book. This allows the Book to show its categories in the Book App’s book
list display and also allows the Book App to provide a feature to filter the book list dis-
play by a category. Figure 3.6 shows the Book and Tag entity classes with their proper-
ties that link directly to one another.

Tags property is of type
ICollection<Tag>. The collections refer directly

to the other entity in the
many-to-many relationships.

EF Core
creates this
hidden entity.

This sort of many-to-many relationship is much easier to use because
you can access the other side of the relationship (Tags, in this example)
directly, and EF Core handles creating the linking entity class and its table.

Books property is of type
ICollection<Book>.

BookId (int)

Title (string)

Description (…)

…

Tags

Book

BooksBookId

AuthorAuthorId

BookTag TagId (string)

Books

Tag

Figure 3.6 A direct many-to-many relationship between the Book entity class and
the Tag entity class. You can access each end of the many-to-many relationship. EF
Core builds a hidden entity class when it sees this sort of many-to-many relationship
and creates the correct database code to use the associated linking table.

This direct-access many-to-many feature makes adding/deleting links between the
Book entity and the Tag entities simple. The following listing shows how you would
add another Tag to the Quantum Networking Book.

87Handling relationships in updates

add
Tag to

Books
collec
var book = context.Books
 .Include(p => p.Tags)
 .Single(p => p.Title == "Quantum Networking");

var existingTag = context.Tags
 .Single(p => p.TagId == "Editor's Choice");

book.Tags.Add(existingTag);
context.SaveChanges();

If you compare the previous listing (listing 3.20) with adding another Author to a
Book in listing 3.19, you’ll see that it’s much easier to add a new entry to a direct many-
to-many relationship. EF Core takes on the work of creating the necessary row in the
BooksTag table. And if you removed an entry in the Tags collection, you would delete
the corresponding row in the BooksTag table.

ALTERNATIVE WAY OF UPDATING THE RELATIONSHIP: CREATING A NEW ROW DIRECTLY

Having described how to update the two types of many-to-many relationships, now I’ll
discuss another approach: creating the linking table row directly. The benefit of this
approach is better performance when you have lots of entries in the collection.

 Rather than having to read in the collection, you can create a new entry in the link-
ing table. You could create a BookAuthor entity class and fill in the Book and Author
one-to-one relationships in that class, for example. Then you Add that new BookAuthor
entity instance to the database and call SaveChanges. For the AuthorsLink collection,
which is likely to be small, this technique is most likely not worth the extra effort, but
for many-to-many relationships that contain lots of linking entries, it can significantly
improve performance.

3.4.5 Advanced feature: Updating relationships via foreign keys

Up to this point, I’ve shown you how to update relationships by using the entity classes
themselves. When you added a review to a book, for example, you loaded the Book
entity with all its Reviews. That’s fine, but in a disconnected state, you have to load the
Book and all its Reviews from the book’s primary key that came back from the
browser/RESTful API. In many situations, you can cut out the loading of the entity
classes and set the foreign keys instead.

 This technique applies to most of the disconnected updates I’ve shown so far, but
let me give you an example of moving a review from one book to another. (I know—
this scenario is unlikely in the real world. But it makes for a simple example.) The fol-
lowing listing carries out the update after the user types the request. The code
assumes that the ReviewId of the Review the user wants to change and the new BookId
that they want to attach the review to are returned in a variable called dto.

Adding aListing 3.20 Tag to a Book via a direct many-to-many relationship

Finds the book with the title
“Quantum Networking” and
loads it with its Tags

You find the Tag called “Editor’s
Choice” to add this book.

You
 the
 the
Tags
tion. When SaveChanges is called, EF Core creates

a new row in the hidden BookTags table.

88 CHAPTER 3 Changing the database content
var reviewToChange = context
 .Find<Review>(dto.ReviewId);
reviewToChange.BookId = dto.NewBookId;
context.SaveChanges();

The benefit of this technique is that you don’t have to load the Book entity class or use
an Include command to load all the Reviews associated with this book. In our exam-
ple Book App, these entities aren’t too big, but in a real application, the principal and
dependent entities could be quite large. (Some Amazon products have thousands of
reviews, for example.) In disconnected systems, in which we often send only the pri-
mary keys over the disconnect, this approach can be useful for cutting down on data-
base accesses and, hence, improving performance.

NOTE When updating relationships via foreign keys, you may need to access
entities that don’t have a DbSet<T> property in the application’s DbContext,
so how can you read in the data? Listing 3.21 uses the Find<T> method, but if
you need a more complex query, you can access any entity via the Set<T>
method, such as context.Set<Review>().Where(p => p.NumVotes > 5).

3.5 Deleting entities
The final way to change the data in the database is to delete a row from a table. Delet-
ing data is easier than making the updates we’ve already discussed, but it does have a
few points to be aware of. Before I describe how to delete entities from the database,
I want to introduce an approach called soft delete, in which an entity is hidden instead
of deleted.

NOTE I have some extra information about using soft delete in section 6.1.7,
which covers certain situations in real applications.

3.5.1 Soft-delete approach: Using a global query filter
to hide entities

One school of thought says that you shouldn’t delete anything from a database but
use a status to hide it, known as a soft delete. (See Udi Dahan’s post “Don’t Delete—
Just Don’t” at http://mng.bz/6glD.) I think this approach is a sensible one, and EF
Core provides a feature called global query filter that allows a soft delete to be imple-
mented simply.

 The thinking behind a soft delete is that in real-world applications, data doesn’t
stop being data; it transforms into another state. In the case of our books example, a
book may not still be on sale, but the fact that the book existed isn’t in doubt, so why
delete it? Instead, you set a flag to say that the entity is to be hidden in all queries and

Updating the foreign key to change a relationshipListing 3.21

Finds the review that you want to move by using
the primary key returned from the browser

Changes the foreign key in
the review to point to the
book it should be linked toCalls SaveChanges, which finds the foreign

key in the review changed, so it updates
that column in the database

https://shortener.manning.com/6glD

89Deleting entities

relationship. To see how this process works, you’ll add the soft-delete feature to the list
of Book entities. To do so, you need to do two things:

 Add a boolean property called SoftDeleted to the Book entity class. If that property
is true, the Book entity instance is soft-deleted; it shouldn’t be found in a nor-
mal query.

 Add a global query filter via EF Core’s fluent configuration commands. The effect is to
apply an extra Where filter to any access to the Books table.

Adding the SoftDeleted property to a Book entity instance is straightforward. This
code snippet shows the Book entity class with the SoftDeleted property:

public class Book
{
 //… other properties left out for clarity
 public bool SoftDeleted { get; set; }
}

Adding the global query filter to the DbSet<Book>Books property means adding an EF
Core configuration command to the application’s DbContext. Chapter 7 covers this
configuration command, but it’s shown in bold in the following listing so that you
have an idea of what’s going on.

public class EfCoreContext : DbContext
{
 //… Other parts removed for clarity

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 //… other configration parts removed for clarity

 modelBuilder.Entity<Book>()
 .HasQueryFilter(p => !p.SoftDeleted);
 }
}

Adding a global query filter to theListing 3.22 DbSet<Book>Books property

Adds a filter to all accesses to
the Book entities. You can
bypass this filter by using the
IgnoreQueryFilters operator.

To soft-delete a Book entity, you need to set the SoftDeleted property to true and call
SaveChanges. Then any query on the Book entities will exclude the Book entities that
have the SoftDeleted property set to true.

If you want to access all the entities that have a model-level filter, you add the
IgnoreQueryFilters method to the query, such as context.Books.IgnoreQuery-

Filters(). This method bypasses any query filter on that entity.

NOTE I have built a library called EfCore.SoftDeleteServices that provides
a code for both configuring and using this form of soft delete. See http://
mng.bz/op7r for more information.

https://shortener.manning.com/op7r
https://shortener.manning.com/op7r
https://shortener.manning.com/op7r

90 CHAPTER 3 Changing the database content
Now that we’ve covered the soft-delete approach, let’s cover the ways to truly delete an
entity from the database. We’ll start with a straightforward example and work up to
deleting an entity that has relationships.

Deleting a dependent-only3.5.2 entity with no relationships

I’ve chosen the PriceOffer entity class to show a basic delete because it’s a dependent
entity. Therefore, you can delete it without affecting other entities. This listing finds a
PriceOffer and then deletes it.

var promotion = context.PriceOffers
 .First();

context.Remove(promotion);
context.SaveChanges();

Calling the Remove method sets the State of the entity provided as the parameter to
Deleted. Then, when you call SaveChanges, EF Core finds the entity marked as Deleted
and creates the correct database commands to delete the appropriate row from the
table the entity referred to (in this case, a row in the PriceOffers table). The SQL com-
mand that EF Core produces for SQL Server is shown in the following snippet:

SET NOCOUNT ON;
DELETE FROM [PriceOffers]
WHERE [PriceOfferId] = @p0;
SELECT @@ROWCOUNT;

3.5.3 Deleting a principal entity that has relationships

Section 3.3.1 discussed principal and dependent relationships and the nullability of
the foreign key. Relational databases need to keep referential integrity, so if you delete a
row in a table that other rows are pointing to via a foreign key, something has to hap-
pen to stop referential integrity from being lost.

DEFINITION Referential integrity is a relational database concept indicating that
table relationships must always be consistent. Any foreign-key field must agree
with the primary key referenced by the foreign key (see http://mng.bz/XY0M).

Following are three ways that you can set a database to keep referential integrity when
you delete a principal entity with dependent entities:

 You can tell the database server to delete the dependent entities that rely on the
principal entity, known as cascade deletes.

Removing (deleting) an entity from the databaseListing 3.23

Finds the first
PriceOffer

Removes that PriceOffer from the
application’s DbContext. The DbContext
works out what to remove based on its
parameter type.

SaveChanges calls DetectChanges, which finds
a tracked PriceOffer entity marked as deleted

and then deletes it from the database.

http://mng.bz/XY0M

91Deleting entities

 You can tell the database server to set the foreign keys of the dependent entities
to null, if the column allows that.

 If neither of those rules is set up, the database server will raise an error if you try
to delete a principal entity with dependent entities.

3.5.4 Deleting a book with its dependent relationships

In this section, you’re going to delete a Book entity, which is a principal entity with
three dependent relationships: Promotion, Reviews, and AuthorsLink. These three
dependent entities can’t exist without the Book entity; a non-nullable foreign key links
these dependent entities to a specific Book row.

 By default, EF Core uses cascade deletes for dependent relationships with non-
nullable foreign keys. Cascade deletes make deleting principal entities easier from the
developer’s point of view, because the other two rules need extra code to handle delet-
ing the dependent entities. But in many business applications, this approach may not
be appropriate. This chapter uses the cascade delete approach because it’s EF Core’s
default for non-nullable foreign keys.

 With that caveat in mind, let’s see cascade delete in action by using the default
cascade-delete setting to delete a Book that has relationships. This listing loads the
Promotion (PriceOffer entity class), Reviews, AuthorsLink, and Tags relationships
with the Book entity class before deleting that Book.

var book = context.Books
 .Include(p => p.Promotion)
 .Include(p => p.Reviews)
 .Include(p => p.AuthorsLink)
 .Include(p => p.Tags)
 .Single(p => p.Title
 == "Quantum Networking");

context.Books.Remove(book);
context.SaveChanges();

Deleting a book that has three dependent entity classesListing 3.24

The four Includes make sure that
the four dependent relationships
are loaded with the Book.

Finds the Quantum Networking book, which
you know has a promotion, two reviews, one
BookAuthor link, and one BookTag

Deletes
that book

SaveChanges calls DetectChanges, which finds a
tracked Book entity marked as deleted, deletes its
dependent relationships, and then deletes the book.

My test data contains a book with the title Quantum Networking, which has one Price-

Offer, two Reviews, and a BookAuthor entity associated with it. The foreign keys of all
those dependent entities I mentioned point to the Quantum Networking book. After
the code in listing 3.24 has run, EF Core deletes the Book, the PriceOffer, the two
Reviews, the single BookAuthor link, and the single (hidden) BookTag.

That last statement, indicating that all are deleted by EF Core, is an important
point. Because you put in the four Includes, EF Core knew about the dependent enti-
ties and performed the delete. If you didn’t incorporate the Includes in your code,
EF Core wouldn’t know about the dependent entities and couldn’t delete the three
dependent entities. In that case, the problem of keeping referential integrity would

92 CHAPTER 3 Changing the database content

fall to the database server, and its response would depend on how the DELETE ON part
of the foreign-key constraint was set up. Databases created by EF Core for these entity
classes would, by default, be set to use cascade deletes.

NOTE The Author and Tag linked to the Book aren’t deleted because they are
not dependent entities of the Book; only the BookAuthor and BookTag linking
entities are deleted. This arrangement makes sense because the Author and
Tag might be used on other Books.

Section 8.8.1 shows how to configure the way that EF Core handles the deletion of a
dependent entity in a relationship. Sometimes, it’s useful to stop a principal entity
from being deleted if a certain dependent entity is linked to it. In our example Book
App, for example, if a customer orders a book, you want to keep that order informa-
tion even if the book is no longer for sale. In this case, you change the EF Core’s
on-delete action to Restrict and remove the ON DELETE CASCADE from the foreign-key
constraint in the database so that an error will be raised if an attempt to delete the
book is made.

NOTE When you’re deleting a principal entity with a dependent entity that
has a nullable foreign key (known as an optional dependent relationship), subtle
differences exist between the way that EF Core handles the delete and the way
that the database handles the delete. I explain this situation in section 8.8.1
via a useful table 8.1.

Summary
 Entity instances have a State, whose values can be Added, Unchanged, Modified,

Deleted, or Detached. This State defines what happens to the entity when
SaveChanges is called.

 If you Add an entity, its State is set to Added. When you call SaveChanges, that
entity is written out to the database as a new row.

 You can update a property, or properties, in an entity class by loading the
entity class as a tracked entity, changing the property/properties, and calling
SaveChanges.

 Real-world applications use two types of update scenarios—connected and dis-
connected state—that affect the way you perform the update.

 EF Core has an Update method, which marks the whole of the entity class as
updated. You can use this method when you want to update the entity class and
have all the data already available to you.

 When you’re updating a relationship, you have two options, with different
advantages and disadvantages:
– You can load the existing relationship with the primary entity and update

that relationship in the primary entity. EF Core will sort things out from
there. This option is easier to use but can create performance issues when
you’re dealing with large collections.

93Summary
– You can create, update, or delete the dependent entity. This approach is
harder to get right but typically is faster because you don’t need to load any
existing relationships.

 To delete an entity from the database, you use the Remove method, followed by
the SaveChanges method.

For EF6.x readers:

 The Update method is a welcome new command in EF Core. In EF6.x, you have
to use DbContext.Entry(object).State to achieve that feature.

 EF Core provides shorthand for Add, Update, and Remove. You can apply any of
these commands to the context itself, as in context.Add(book).

 In EF6.x, by default, SaveChanges validates the data before adding an entity to
or updating an entity in the database. EF Core doesn’t run any validation on
SaveChanges, but it’s easy to add back (see chapter 4).

 EF6.x allows you to define many-to-many relationships directly and looks after
creating the linking table and managing the rows to make that process work.
NET Core 5 adds this feature to EF Core; section 3.4.4 covers this topic.

Using EF Core
in business logic

This chapter covers
 Understanding business logic and its use of

EF Core

 Looking at three types of business logic, from the
easy to the complex

 Reviewing each type of business logic, with pros
and cons

 Adding a step that validates the data before it’s
written to the database

 Using transactions to daisy-chain code
sequences

Real-world applications are built to supply a set of services, ranging from holding a
simple list of things on your computer to managing a nuclear reactor. Every real-
world problem has a set of rules, often referred to as business rules, or by the more
generic name domain rules. (This book uses business rules.)

The code you write to implement a business rule is known as business logic or
domain logic. Because business rules can be complex, the business logic you write
can also be complex. Just think about all the checks and steps that should be done
when you order something online.
94

95The questions to ask and the decisions you need to make before you start coding
 Business logic can range from a simple check of status to massive artificial intelli-
gence (AI) code, but in nearly all cases, business logic needs access to a database.
Although all the approaches in chapters 2 and 3 come into play, the way you apply
those EF Core commands in business logic can be a little different, which is why I’ve
written this chapter.

 This chapter describes a pattern for handling business logic that compartmental-
izes some of the complexity to reduce the load on you, the developer. You’ll also learn
several techniques for writing different types of business logic that use EF Core to
access the database. These techniques range from using software classes for validation
to standardizing your business logic’s interface to make frontend code simpler. The
overall aim is to help you quickly write accurate, understandable, and well-performing
business logic.

4.1 The questions to ask and the decisions you need to
make before you start coding
Our CRUD code in chapters 2 and 3 adapted and transformed data as it moved into
and out of the database. Some of that code was complex, and I showed you the Query
Object pattern to make a large query more manageable. Similarly, business logic can
range from the simple to the complex.

DEFINITION In this chapter, I use the term business rule to represent a human-
readable statement of some logic that needs to be implemented, such as “The
price of a book cannot be negative.” I also use the term business logic, which is
the code that implements all the business rules needed for a particular fea-
ture in the application.

Before you start working on your business logic, you should think about the answers to
some questions:

 Do you understand the business rules for the feature you’re implementing?
 Do the business rules make sense, or are they incomplete?
 Are there any edge cases or exceptions that you need to cover?
 How can you prove that your implementation matches the business rules?
 How easy will it be to change your code if the business rules change?

4.1.1 The three levels of complexity of your business logic code

When you have some grasp of the business rules you need to implement, you should
have some idea of how complex the business logic is. Most of the rules are going to be
simple to write, but a few are going to be really complex. The trick is to implement the
simple business logic quickly but use a more structured approach for the more com-
plex business logic.

 Based on my experiences, I created a list of three levels of complexity of busi-
ness logic with different patterns for each level: validation, simple, and complex.

96 CHAPTER 4 Using EF Core in business logic
The following three sections describe these three levels of complexity and how they
will affect the code you write. But be aware that these three patterns aren’t strict rules.
Some business rules may be simple, but you may decide to use a more complex pat-
tern because it’s easier to unit-test. Nevertheless, this list is useful for discussing the
types and patterns you can use for writing business logic.

VALIDATION CODE TO CHECK THE DATA USED TO CHANGE AN ENTITY CLASS

When you work with CUD (create, update, and delete) code, as in chapter 3, you may
need to check whether the data is in a certain range. The Review’s NumStars property
must be in the range 0 to 5, for example. This sort of test is known as validation. For me,
validation is the starting point for calling the code business logic instead of CRUD code.

 This type of business logic is common; you see it everywhere (see the nearby side-
bar “Does all the business logic code live in a specific business logic layer?” before sec-
tion 4.2). The simplest validation business logic normally uses if-then statements that
test data values, but a useful set of attributes called Data Annotations can automate
some of the validation code you need to write. (You will see Data Annotations later, in
section 4.7.1.)

 But there are lots of levels of validation, from simple range checking to validating
that a person’s driving license is valid via some sort of checking service, which makes
defining this starting level of business logic more difficult. But as I said at the start,
these levels are guidelines, and the “check person’s driving license” validation exam-
ple would elevate that code to the next level of business logic.

SIMPLE BUSINESS LOGIC (THAT IS, LITTLE OR NO BRANCHING AND EASY TO UNDERSTAND)
The next type is business logic that has little or no branching—that is, few or no
if-then branching statements and no calling out to other business code. The code is
easy to understand because you can read it and see every step that has to be executed
in order. A good example would be code to create a book with its authors—that needs
code to create the Book, then find or create the Authors, and finally add the Book-
Author linking entity classes. The code is simple, with no branching, but it still takes
many lines of code to create a book with its authors.

 I am always surprised by how much “simple” business logic like this there is in a
real application; typically, I find that a lot of admin functions fall into this category.
Therefore, having a simple pattern for building and checking this type of business
logic is crucial to you for building your code quickly.

COMPLEX BUSINESS LOGIC (THAT IS, CODE THAT NEEDS SERIOUS EFFORT TO WRITE CORRECTLY)
I call the hardest business logic to write complex. There isn’t a good definition of this
term, but for this type of code, you need to think hard about the problem before you
can implement it. Here’s a quote from one of the leading books on writing business
logic, which portrays the challenge of writing complex business code:

The heart of software is its ability to solve domain (business)-related problems for its users.
All other features, vital though they may be, support this basic purpose. When the domain

97Complex business logic example: Processing an order for books

is complex, this is a difficult task, calling for the concentrated effort of talented and
skilled people.

—Eric Evans, Domain-Driven Design1

This type of business logic is complex enough that I have developed a structured
approach that isolates the business logic from the database and the frontend. That
way, I can concentrate on the pure business problem—another application of the Sep-
aration of Concerns principle (which I talk about in detail in section 5.5.2).

Complex business logic exam4.2 ple: Processing an order
for books
I start with the complex business logic because that logic will introduce you to a pow-
erful approach to handling business—an approach taken from Eric Evan’s book
Domain-Driven design, which I quote in the preceding section. First, though, take a
look at a complex business feature that you’ll want to implement in the Book App.
The example you’ll build is handling a user’s order for books. Figure 4.1 shows the
checkout page of the Book App. You’re going to implement the code that runs when
the user clicks the Purchase button.

NOTE You can try the checkout process by downloading the Book App code
from the associated Git repo and running it locally. The Book App uses an
HTTP cookie to hold your basket and your identity (which saves you from
having to log in). No money is needed; as the terms and conditions text says,
you aren’t actually going to buy a book.

Does all the business logic code live in a specific business logic layer?
No. In real-world applications, especially ones that interact with a human being, you
want the user experience to be as good as possible. For that reason, some business
logic lives in the presentation layer.

The obvious logic to go into the presentation layer is validation business logic
because the earlier you can give feedback to the user, the better. Most frontend sys-
tems have built-in features that facilitate validation and good feedback of errors to
the user.

Another area is business logic that has many steps. Often, it’s better for the user
when complex business logic flows are shown as a sequence of pages or steps in a
wizard.

Even in the backend of an application, I spread my business logic over several layers
(that is, projects) in my Book App. I explain how and why I do that in this chapter.

1 Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison-Wesley Professional, 2003)

98 CHAPTER 4 Using EF Core in business logic
4.3 Using a design pattern to implement complex
business logic
Before you start writing code to process an order, take a look at a pattern that will
help you write, test, and performance-tune your business logic. The pattern is based
on the Domain-Driven Design (DDD) concepts expounded by Eric Evans, but the
business logic code isn’t inside the entity classes. This pattern is known as a transac-
tions script or procedural pattern of business logic because the code is contained in a
standalone method.

 This procedural pattern is easy to understand and uses the basic EF Core com-
mands you have already seen. But many people see the procedural approach as being
a DDD antipattern, known as an anemic domain model (see http://mng.bz/nM7g).
Later, in part 3 of this book, you will extend this approach to a fully DDD design.

 This section and chapter 13 present my interpretation of Evans’ DDD approach
and plenty of other ways to apply DDD with EF. Although I offer my approach, which I
hope will help you, don’t be afraid to look for other approaches.

4.3.1 Five guidelines for building business logic that uses EF Core

The following list explains the five guidelines that make up the business logic pat-
tern you’ll be using in this chapter. Most of the pattern comes from DDD concepts,
but some is the result of writing lots of complex business logic and seeing areas
to improve:

 The business logic has first call on how the database structure is defined. Because the
problem you’re trying to solve (which Evans calls the domain model) is the heart
of the problem, the logic should define the way the whole application is designed.

Figure 4.1 The checkout page of the Book App. When the user clicks the Buy Book
button next to a book, the app adds the book to their basket and then displays the
Checkout page, which shows all the books in the user’s basket. Clicking the Purchase
button calls the business logic that creates the order, which is the code we are going
to write.

https://shortener.manning.com/nM7g

99Implementing the business logic for processing an order
Therefore, you try to make the database structure and the entity classes match
your business logic data needs as much as you can.

 The business logic should have no distractions. Writing the business logic is difficult
enough in itself, so you isolate it from all the other application layers other than
the entity classes. When you write the business logic, you must think only about
the business problem you’re trying to fix. You leave the task of adapting the
data for presentation to the service layer in your application.

 Business logic should think that it’s working on in-memory data. Evans taught me to
write business logic as though the data is in memory. You need to have some load
and save parts, of course, but for the core of your business logic, treat the data (as
much as is practical) as though it’s a normal, in-memory class or collection.

 Isolate the database access code into a separate project. This rule came out of writing
an e-commerce application with complex pricing and delivery rules. Before, I’d
used EF directly in my business logic, but I found that it was hard to maintain
and difficult to performance-tune. Instead, you should use another project, a
companion to the business logic, to hold all the database access code.

 The business logic shouldn’t call EF Core’s SaveChanges directly. You should have a
class in the service layer (or a custom library) whose job it is to run the business
logic. If there are no errors, this class calls SaveChanges. The main reason for
this rule is to have control of whether to write out the data, but it has other ben-
efits, which I’ll describe in section 4.4.5.

Figure 4.2 shows the application structure you’ll create to help you apply these guide-
lines when implementing business logic. In this case, you’ll add two new projects to
the original Book App structure described in chapter 2:

 The pure business logic project, which holds the business logic classes that
work on the in-memory data provided by the companion business database
access methods.

 The business database access project, which provides a companion class for
each pure business logic class that needs database access. Each companion class
makes the pure business logic class think that it’s working on an in-memory set
of data.

Figure 4.2 has five numbers, with comments, that match the five guidelines.

4.4 Implementing the business logic for
processing an order
Now that I’ve described the business need, with its business rules, and the pattern
you’re going to use, you’re ready to write code. The aim is to break the implementa-
tion into smaller steps that focus on specific parts of the problem at hand. You’ll see
how this business logic pattern helps you to focus on each part of the implementation
in turn.

100 CHAPTER 4 Using EF Core in business logic
You’re going to implement the code in sections that match the five guidelines listed in
section 4.3.1. At the end, you’ll see how this combined code is called from the
ASP.NET Core application that the Book App is using.

4.4.1 Guideline 1: Business logic has first call on defining
the database structure

This guideline says that the design of the database should follow the business needs—
in this case, represented by six business rules. Only three of these rules are relevant to
the database design:

 An order must include at least one book (implying that there can be more).
 The price of the book must be copied to the order, because the price could

change later.
 The order must remember the person who ordered the books.

These three rules dictates an Order entity class that has a collection of LineItem entity
classes—a one-to-many relationship. The Order entity class holds the information
about the person placing the order, and each LineItem entity class holds a reference
to the book order, how many, and at what price.

 Figure 4.3 shows what these two tables, LineItem and Orders, look like in the data-
base. To make the image more understandable, I show the Books table (in gray) that
each LineItem row references.

SQL

server

1.The database format
is defined by the
business logic.

2. This project contains the
pure business logic code.
It has no distractions.

3. The business logic works
on in-memory data.

4. This project isolates all the database
access that the business logic needs.

5. The service layer is in charge of running
the business logic and calling SaveChanges.

ASP.NET

Core

web

app

Service

layer

Data

access

HTML

pages

Pure

business

logic

Business

database

access

JavaScript

/Ajax

Figure 4.2 The projects inside our Book App, with two new projects for handling complex business logic. The
“Pure business logic” project contains the isolated business logic, which thinks it is working on an in-memory
set of classes. The “Business database access” project provides an interface that the pure business logic can
use to access the database. The service layer’s job is to adapt the data from the ASP.NET Core application to
send to the pure business logic in the form it wants that data to be in and call the final SaveChanges to save
if the business logic doesn’t report any errors.

101Implementing the business logic for processing an order

4.4.2

Different users can buy a book, so there can
be zero to many LineItems linked to a Book.

An Order consists of one
or more LineItems.

Books

BookId

Title

Description

PublishedOn

Publisher

Price

ImageUrl

PK

LineItem

LineItemId

LineNum

NumBooks

BookPrice

BookId

OrderId

FK1

FK2

PK

Orders

OrderId

DateOrderedUtc

CustomerName

PK
1 1

0..*

1..*

Figure 4.3 The new LineItem and Orders tables added to allow orders for books to be taken. There is
one Orders row per purchase, with a lineItem row for each Book in the order.

NOTE The Orders table name is plural because you added a DbSet<Order>
Orders property to the application’s DbContext, and by default, EF Core uses
the property name, Orders, as the table name. You haven’t added a property
for the LineItem entity class because it’s accessed via the Order’s relational
link. In that case, EF Core, by default, uses the class name, LineItem, as the
table name. You can set the table name to a specific name; see section 7.11.1.

Guideline 2: Business logic should have no distractions

Now you’re at the heart of the business logic code, and the code here will do most of
the work. This code is going to be the hardest part of the implementation that you
write, but you want to help yourself by cutting off any distractions. That way, you can
stay focused on the problem.

To do so, write the pure business code with reference to only two other parts of the
system: the entity classes shown in figure 4.3 (Order, LineItem, and Book) and your
companion class that will handle all the database accesses. Even with this minimiza-
tion of scope, you’re still going to break the job into a few parts.

CHECKING FOR ERRORS AND FEEDING THEM BACK TO THE USER: VALIDATION

The business rules contain several checks, such as “The Terms and Conditions box
must be ticked.” The rules also say that you need to give good feedback to the user so
that they can fix any problems and complete their purchase. These sorts of checks,
called validation, are common throughout an application.

You have two main approaches to handling the passing of errors back up to higher
levels. One is to throw an exception when an error occurs, and the other is to pass
back the errors to the caller via a status interface. Each option has its own advantages
and disadvantages. This example uses the second approach: passing the errors back in
some form of status class to the higher level to check.

To help, you’ll create a small abstract class called BizActionErrors, shown in list-
ing 4.1. This class provides a common error-handling interface for all your business

102 CHAPTER 4 Using EF Core in business logic
logic. The class contains a C# method called AddError that the business logic can call
to add an error and an immutable list (a list that can’t be changed) called Errors,
which holds all the validation errors found while running the business logic.

 You’ll use a class called ValidationResult to store each error because it’s the stan-
dard way of returning errors with optional, additional information on the exact prop-
erty the error was related to. Using the ValidationResult class instead of a simple
string fits with another validation method you’ll add later in this chapter.

public abstract class BizActionErrors
{
 private readonly List<ValidationResult> _errors
 = new List<ValidationResult>();

 public IImmutableList<ValidationResult>
 Errors => _errors.ToImmutableList();

 public bool HasErrors => _errors.Any();

 protected void AddError(string errorMessage,
 params string[] propertyNames)
 {
 _errors.Add(new ValidationResult
 (errorMessage, propertyNames));
 }
}

Using this abstract class means that your business logic is easier to write and all your
business logic has a consistent way of handling errors. The other advantage is that you
can change the way errors are handled internally without having to change any of
your business logic code.

 Your business logic for handling an order does a lot of validation, which is typical
for an order, because it often involves money. Other business logic may not do any val-
idation, but the base class BizActionErrors will automatically return a HasErrors of
false, which means that all business logic can be dealt with in the same way.

4.4.3 Guideline 3: Business logic should think that it’s working
on in-memory data

Now you’ll start on the main class: PlaceOrderAction, which contains the pure busi-
ness logic. This class relies on the companion class PlaceOrderDbAccess to present
the data as an in-memory set (in this case, a dictionary) and to write the created order
to the database. Although you’re not trying to hide the database from the pure busi-
ness logic, you do want it to work as though the data is normal .NET classes.

Listing 4.1 Abstract base class providing error handling for your business logic

Abstract class that provides
error handling for business logic

Holds the list of validation
errors privately

Provides a public,
immutable list of errors

Creates a bool
HasErrors to
make checking
for errors easier

Allows a simple error
message, or an error
message with properties
linked to it, to be added
to the errors list

Validation result has an error
message and a possibly empty list

of properties it’s linked to

103Implementing the business logic for processing an order

on

ass

 Listing 4.2 shows the PlaceOrderAction class, which inherits the abstract class
BizActionErrors to handle returning error messages to the user. It also uses two
methods that the companion PlaceOrderDbAccess class provides:

 FindBooksByIdsWithPriceOffers—Takes the list of BookIds and returns a dic-
tionary with the BookId as the key and the Book entity class as the value and any
associated PriceOffers

 Add—Adds the Order entity class with its LineItem collection to the database

public class PlaceOrderAction :
 BizActionErrors,
 IBizAction<PlaceOrderInDto,Order>
{
 private readonly IPlaceOrderDbAccess _dbAccess;

 public PlaceOrderAction(IPlaceOrderDbAccess dbAccess)
 {
 _dbAccess = dbAccess;
 }

 public Order Action(PlaceOrderInDto dto)
 {
 if (!dto.AcceptTAndCs)
 {
 AddError(
"You must accept the T&Cs to place an order.");
 return null;
 }
 if (!dto.LineItems.Any())
 {
 AddError("No items in your basket.");
 return null;
 }

 var booksDict =
 _dbAccess.FindBooksByIdsWithPriceOffers
 (dto.LineItems.Select(x => x.BookId));
 var order = new Order
 {
 CustomerId = dto.UserId,
 LineItems =
 FormLineItemsWithErrorChecking
 (dto.LineItems, booksDict)
 };

 if (!HasErrors)
 _dbAccess.Add(order);

 return HasErrors ? null : order;
 }

Listing 4.2 PlaceOrderAction class with build-a-new-order business logic

The BizActionErrors class provides
error handling for the business logic.

The IBizAction interface makes
the business logic conform to a
standard interface.

The PlaceOrderActi
uses PlaceOrder-
DbAccess class to
handle database
accesses.

This method is called by
the BizRunner to execute
this business logic.

Some basic
validation

The PlaceOrderDbAccess cl
finds all the bought books,
with optional PriceOffers.

Creates the Order, using
FormLineItemsWithError
Checking to create the
LineItems

Adds the order to the database
only if there are no errors

If there are errors, returns null;
otherwise, returns the order

104 CHAPTER 4 Using EF Core in business logic
 private List<LineItem> FormLineItemsWithErrorChecking
 (IEnumerable<OrderLineItem> lineItems,
 IDictionary<int,Book> booksDict)

 {
 var result = new List<LineItem>();
 var i = 1;

 foreach (var lineItem in lineItems)
 {
 if (!booksDict.
 ContainsKey(lineItem.BookId))
 throw new InvalidOperationException
("An order failed because book, " +
 $"id = {lineItem.BookId} was missing.");

 var book = booksDict[lineItem.BookId];
 var bookPrice =
 book.Promotion?.NewPrice ?? book.Price;
 if (bookPrice <= 0)
 AddError(
$"Sorry, the book '{book.Title}' is not for sale.");
 else
 {
 //Valid, so add to the order
 result.Add(new LineItem
 {
 BookPrice = bookPrice,
 ChosenBook = book,
 LineNum = (byte)(i++),
 NumBooks = lineItem.NumBooks
 });
 }
 }
 return result;
 }
}

You’ll notice that you add another validation check to ensure that the book the user
selected is still in the database. This check wasn’t in the business rules, but it could
occur, especially if malicious inputs were provided. In this case, you make a distinction
between errors that the user can correct, which are returned by the Errors property,
and system errors (in this case, a missing book), for which you throw an exception
that the system should log.

 You may have seen at the top of the class that you apply an interface in the form
of IBizAction<PlaceOrderInDto,Order>. This interface ensures that this business
logic class conforms to a standard interface that you use across all your business logic.
You’ll see this in section 4.7.1, when you create a generic class to run and check the
business logic.

This private method
handles the creation
of each LineItem for
each book ordered.

Goes through each
book type that the
person ordered

Treats a missing book
as a system error and
throws an exception

Calculates the
price at the time

of the order

More validation that
checks whether the
book can be sold

Everything is OK, so
create the LineItem
entity class with the
details.

Returns all
the LineItems
for this order

105Implementing the business logic for processing an order
Guideline 4: Isolate the database access code into4.4.4
a separate project

Our guideline says to put all the database access code that the business logic needs in
a separate, companion class. This technique ensures that all the database accesses are
in one place, making testing, refactoring, and performance tuning much easier.

 Another benefit that a reader of my blog noted is that this guideline can help if
you’re working with an existing, older database. In this case, the database entities may
not be a good match for the business logic you want to write. If so, you can use the
BizDbAccess methods as an Adapter pattern that converts the older database structure
to a form more easily processed by your business logic.

DEFINITION The Adapter pattern converts the interface of a class to another
interface that the client expects. This pattern lets classes work together that
couldn’t otherwise do so because of incompatible interfaces. See https://
sourcemaking.com/design_patterns/adapter.

You make sure that your pure business logic, class PlaceOrderAction, and business
database access class PlaceOrderDbAccess are in separate projects. That approach
allows you to exclude any EF Core libraries from the pure business logic project,
ensuring that all database access is done via the companion class, PlaceOrderDb-
Access. In my own projects, I split the entity classes into a separate project from the
EF code. Then my pure business logic project doesn’t have the Microsoft.Entity-
FrameworkCore NuGet library, so my business logic can’t execute any database com-
mands directly; it has to rely on the PlaceOrderDbAccess class for any data accesses.

 For simplicity, the example code holds the entity classes in the same project as the
application’s DbContext. Listing 4.3 shows our PlaceOrderDbAccess class, which imple-
ments two methods to provide the database accesses that the pure business logic needs:

 The FindBooksByIdsWithPriceOffers method, which finds and loads each
Book entity class, with any optional PriceOffer.

 The Add method, which adds the finished Order entity class to the application’s
DbContext property, Orders, so that it can be saved to the database after EF
Core’s SaveChanges method is called.

public class PlaceOrderDbAccess : IPlaceOrderDbAccess
{
 private readonly EfCoreContext _context;

 public PlaceOrderDbAccess(EfCoreContext context)
 {
 _context = context;
 }

 public IDictionary<int, Book>
 FindBooksByIdsWithPriceOffers

Listing 4.3 PlaceOrderDbAccess, which handles all the database accesses

All the BizDbAccess
need the application’s
DbContext to access
the database.

This method finds all
the books that the
user wants to buy.

https://sourcemaking.com/design_patterns/adapter
https://sourcemaking.com/design_patterns/adapter
https://sourcemaking.com/design_patterns/adapter

106 CHAPTER 4 Using EF Core in business logic

B

This
the new
DbCon

DbS
 (IEnumerable<int> bookIds)
 {
 return _context.Books
 .Where(x => bookIds.Contains(x.BookId))
 .Include(r => r.Promotion)
 .ToDictionary(key => key.BookId);
 }

 public void Add(Order newOrder)
 {
 _context.Add(newOrder);
 }
}

The PlaceOrderDbAccess class implements an interface called IPlaceOrderDbAccess,
which is how the PlaceOrderAction class accesses this class. In addition to helping
with dependency injection, which is covered in chapter 5, using an interface allows
you to replace the PlaceOrderDbAccess class with a test version—a process called stub-
bing or mocking—when you’re unit-testing the PlaceOrderAction class. Section 17.7
covers this topic in more detail.

4.4.5 Guideline 5: Business logic shouldn’t call EF Core’s SaveChanges

The final rule says that the business logic doesn’t call EF Core’s SaveChanges, which
would update the database directly. There are a few reasons for this rule:

 You consider the service layer to be the main orchestrator of database accesses:
it’s in command of what gets written to the database.

 The service layer calls SaveChanges only if the business logic returns no errors.

To help you run your business logic, I’ve built a series of simple classes that I use to
run any business logic; I call these classes BizRunners. They’re generic classes, able to
run business logic with different input and output types. Different variants of the Biz-
Runner can handle different input/output combinations and async methods (chapter 5
covers async/await with EF Core), as well as some with extra features, which are
PlaceOrderAction (covered in section 4.7.3).

 Each BizRunner works by defining a generic interface that the business logic must
implement. Your class in the BizLogic project runs an action that expects a single
input parameter of type PlaceOrderInDto and returns an object of type Order. There-
fore, the PlaceOrderAction class implements the interface as shown in the following
listing, but with its input and output types (IBizAction<PlaceOrderInDto,Order>).

public interface IBizAction<in TIn, out TOut>
{
 IImmutableList<ValidationResult>
 Errors { get; }
 bool HasErrors { get; }

The interface that allows theListing 4.4 BizRunner to execute business logic

The BizLogic
hands a

collection of
ookIds, which
the checkout
has provided.

Finds a book for each Id,
using the LINQ Contains
method to find all the keys

Includes any optional
promotion, which the
BizLogic needs for
working out the price

Returns the result as a
dictionary to make it easier for
the BizLogic to look them up

 method adds
 order to the
text’s Orders
et collection.

The BizAction uses the TIn and
a TOut to define the input and
output of the Action method.

Returns the error
information from
the business logic

107Implementing the business logic for processing an order
 TOut Action(TIn dto);
}

When you have the business logic class implement this interface, the BizRunner
knows how to run that code. The BizRunner itself is small, as you’ll see in the follow-
ing listing, which shows that it’s called RunnerWriteDb<TIn, TOut>. This BizRunner
variant is designed to work with business logic that has an input, provides an output,
and writes to the database.

public class RunnerWriteDb<TIn, TOut>
{
 private readonly IBizAction<TIn, TOut> _actionClass;
 private readonly EfCoreContext _context;

 public IImmutableList<ValidationResult>
 Errors => _actionClass.Errors;
 public bool HasErrors => _actionClass.HasErrors;

 public RunnerWriteDb(
 IBizAction<TIn, TOut> actionClass,
 EfCoreContext context)
 {
 _context = context;
 _actionClass = actionClass;
 }

 public TOut RunAction(TIn dataIn)
 {
 var result = _actionClass.Action(dataIn);
 if (!HasErrors)
 _context.SaveChanges();
 return result;
 }
}

The BizRunner pattern hides the business logic and presents a common inter-
face/API that other classes can use. The caller of the BizRunner doesn’t need to worry
about EF Core, because all the calls to EF Core are in the BizDbAccess code or in the
BizRunner. That fact in itself is reason enough to use the BizRunner pattern, but as
you’ll see later, this pattern allows you to create other forms of BizRunner that add
extra features.

NOTE You may want to check out an open-source library I created, called
EfCore.GenericBizRunner, which provides the same features as the Biz-
Runner but in a library. It uses generic classes that run your business logic
without requiring you to write extra code. See http://mng.bz/vz7J for more
information.

TheListing 4.5 BizRunner that runs the business logic and returns a result or errors

The action that the
BizRunner will call

Error information from the
business logic is passed back
to the user of the BizRunner.

Handles business logic that conforms
to the IBizAction<TIn, TOut>
interface

Calls RunAction in your service layer
or in your presentation layer if the
data comes back in the right form

Runs the business
logic you gave it

If there are no errors, calls
SaveChanges to execute any
add, update, or delete methodsReturns the result

that the business
logic returned

http://mng.bz/vz7J

108 CHAPTER 4 Using EF Core in business logic

ba
bu
One important point about the BizRunner is that it should be the only method
allowed to call SaveChanges during the lifetime of the application’s DbContext. Why?
The business logic isn’t thinking about the database, so it’s quite normal for the busi-
ness logic to add or update an entity class at any time, and an error may be found
later. To stop the changes made before the error was found from being written to the
database, you’re relying on SaveChanges to not be called during the lifetime of the
application’s DbContext.

 In an ASP.NET application, controlling the lifetime of the application’s DbContext
is fairly easy to manage, because a new instance of the application’s DbContext is cre-
ated for each HTTP request. In longer-running applications, this situation is a prob-
lem. In the past, I’ve avoided it by making the BizRunner create a new, hidden
instance of the application’s DbContext so that I can be sure no other code is going to
call SaveChanges on that DbContext instance.

Putting it all together: Calling4.4.6 the order-processing business logic

Now that you’ve learned all the parts of this complex business logic pattern, you’re
ready to see how to call this code. Listing 4.6 shows the PlaceOrderService class in
the service layer, which calls the BizRunner to execute the PlaceOrderAction that
does the order processing.

NOTE I use an HTTP cookie to hold the user’s selection of what books they
want to buy. I refer to this cookie as the basket cookie. This cookie works
because an HTTP cookie can store a small amount of data on the user’s com-
puter. I use ASP.NET Core’s cookie features to access the user’s basket
cookie. For more information, see http://mng.bz/4ZNa.

If the business logic is successful, the code clears the basket cookie and returns the
Order entity class key so that a confirmation page can be shown to the user. If the
order fails, it doesn’t clear the basket cookie, and the checkout page is shown again,
with the error messages, so that the user can correct any problems and retry.

public class PlaceOrderService
{
 private readonly BasketCookie _basketCookie;

 private readonly
 RunnerWriteDb<PlaceOrderInDto, Order> _runner;
 public IImmutableList<ValidationResult>
 Errors => _runner.Errors;

 public PlaceOrderService(
 IRequestCookieCollection cookiesIn,
 IResponseCookies cookiesOut,
 EfCoreContext context)
 {

Listing 4.6 The PlaceOrderService class that calls the business logic

This class handles the basket
cookie, which contains the
user-selected books.

Defines the input,
PlaceOrderInDto, and
output, Order, of this
business logic

Holds any
errors sent
ck from the
siness logic The constructor takes in

the cookie in/out data,
plus the application’s
DbContext.

http://mng.bz/4ZNa

109Implementing the business logic for processing an order

i

enc
the

lo

im
b

 _basketCookie = new BasketCookie(
 cookiesIn, cookiesOut);
 _runner =
 new RunnerWriteDb<PlaceOrderInDto, Order>(
 new PlaceOrderAction(
 new PlaceOrderDbAccess(context)),
 context);
 }

 public int PlaceOrder(bool acceptTAndCs)
 {
 var checkoutService = new CheckoutCookieService(
 _basketCookie.GetValue());

 var order = _runner.RunAction(
 new PlaceOrderInDto(acceptTAndCs,
 checkoutService.UserId,
 checkoutService.LineItems));

 if (_runner.HasErrors) return 0;

 checkoutService.ClearAllLineItems();
 _basketCookie.AddOrUpdateCookie(
 checkoutService.EncodeForCookie());

 return order.OrderId;
 }
}

In addition to running the business logic, this class acts as an Adapter pattern; it trans-
forms the data from the basket cookie into a form that the business logic accepts, and
on a successful completion, it extracts the Order entity class's primary key, OrderId, to
send back to the ASP.NET Core presentation layer.

 This Adapter-pattern role is typical of the code that calls the business logic because
a mismatch often occurs between the presentation layer format and the business logic
format. This mismatch can be small, as in this example, but you’re likely to need to do
some form of adaptation in all but the simplest calls to your business logic. That situa-
tion is why my more-sophisticated EfCore.GenericBizRunner library has a built-in
Adapter pattern feature.

4.4.7 Placing an order in the Book App

Now that we’ve covered the business logic for processing an order, the BizRunner, and
the PlaceOrderService that executes the business logic, let’s see how to use this logic
in the context of the Book App. Figure 4.4 shows the process, from the user clicking
the Purchase button through running the business logic and returning a result. I
don’t go into the presentation code in detail here, as this chapter is about using EF
Core in business logic, but I do cover some of it in chapter 5, which is about using
EF Core in ASP.NET Core applications.

Creates a
BasketCookie

using the cookie
n/out data from

ASP.NET Core Creates the BizRunner,
with the business logic,
that is to be run

This method is the one to
call when the user clicks
the Purchase button.

Checkout-
CookieService
is a class that
odes/decodes
 basket data.

Runs the business logic
with the data it needs
from the basket cookieIf the business

gic has errors,
it returns

mediately. The
asket cookie is

not cleared. The order was placed
successfully, so it clears
the basket cookie.

Returns the OrderId, which
allows ASP.NET to confirm the
order details to the user

110 CHAPTER 4 Using EF Core in business logic

public class CheckoutController
{
public IActionResult (...)PlaceOrder
{
...
var orderId = service. (...);PlaceOrder

public class PlaceOrderService
{
public int (...)PlaceOrder
{
...
var orderId = _runner. (...);RunAction

public class RunnerWriteDb<TIn, TOut>
{
public TOut RunAction
{
...
var orderId = _actionClass.Action

Presentation layer (ASP.NET Core)

1. The customer clicks the Purchase
button to start the process.

Service layer

Click

User

2. The PlaceOrder action creates
PlaceOrderService, giving it
access to the HTTP cookies.

3. The PlaceOrder service
asks the BizRunner to
execute the business
logic, handing it the data
from the checkout cookie.

5. The business logic runs
and returns either a valid
order or errors.

4. The BizRunner runs
the business logic as
requested. If successful,
it calls SaveChanges to
update the database.

Figure 4.4 The series of steps from the user’s clicking the Purchase button to the service layer, where the
BizRunner executes the business logic to process the order

From the click of the Purchase button in figure 4.4, the ASP.NET Core action, Place-
Order, in the CheckoutController is executed. This action creates a class called
PlaceOrderService in the service layer, which holds most of the Adapter pattern
logic. The caller provides that class with read/write access to the cookies, as the check-
out data is held in an HTTP cookie on the user’s device.

You saw the PlaceOrderService class in listing 4.6. Its PlaceOrder method extracts
the checkout data from the HTTP cookie and creates a DTO in the form that the busi-
ness logic needs. Then it calls the generic BizRunner to run the business logic that it
needs to execute. When the BizRunner has returned from the business logic, two
routes are possible:

 The order was successfully placed (no errors). In this case, the PlaceOrder method
cleared the basket cookie and returned the OrderId of the placed order, so
the ASP.NET Core code could show a confirmation page with a summary
of the order.

 The order was unsuccessful (errors present). In this case, the PlaceOrder method
returned immediately to the ASP.NET Core code, which detected errors,

111Simple business logic example: ChangePriceOfferService
redisplayed the checkout page, and added the error messages so that the user
could rectify the errors and try again.

NOTE You can try the checkout process by downloading the book app code
and running it locally to see the results. To try the error path, don’t check the
Terms and Conditions (T&C) box.

4.4.8 The pros and cons of the complex business logic pattern

I have used this pattern for complex business logic for years. I think that it’s an excel-
lent approach overall, but it’s code-heavy, by which I mean that you have to write extra
structural code to implement it. Therefore, I use it only for complex business logic.
The following sections cover the pros and cons in detail.

ADVANTAGES OF THIS PATTERN
This pattern follows the DDD approach, which is well respected and widely used. It
keeps the business logic “pure” in that it doesn’t know about the database, which has
been hidden via the BizDbAccess methods that provide a per-business logic reposi-
tory. Also, the BizDbAccess class allows you to test your business logic without using a
database, as your unit tests can provide a replacement class (known as a stub or mock)
that can provide test data as required.

DISADVANTAGES OF THIS PATTERN
The key disadvantage is you have to write more code to separate the business logic
from the database accesses, which takes more time and effort. If the business logic is
simple, or if most of the code works on the database, the effort of creating a separate
class to handle database accesses isn’t worthwhile.

4.5 Simple business logic example:
ChangePriceOfferService
For my example of my simple business logic, you are going to build business logic to
handle the addition or removal of a price promotion for a book. This example has
business rules, but as you will see, those rules are bound up with a lot of database
accesses. The rules are

 If the Book has a PriceOffer, the code should delete the current PriceOffer
(remove the price promotion).

 If the Book doesn’t have a PriceOffer, we add a new price promotion.
 If the code is adding a price promotion, the PromotionalText must not be null

or empty.

As you’ll see in section 4.5.2, the code is a mixture of business rules and database
accesses, which I define as a simple business logic type.

112 CHAPTER 4 Using EF Core in business logic

If
has an

Pr
rem

p

V
ch

Promot
mus

so ge,

My design approach for simple business logic4.5.1

For simple business logic, I want to have minimal extra structure because I have
deemed that the business logic is simple enough and/or so interlinked with the data-
base accesses that it doesn’t need to be isolated. As a result, the five guidelines stated
in section 4.3.1 are not used, making the code quicker to build. The downside is that
the business logic is mixed with other code, which can make the business logic diffi-
cult to understand and harder to unit-test—trade-offs that you have to manage for
faster development.

 Typically, I place simple business logic in the service layer, not the BizLogic layer,
because my simple business logic needs access to the application’s DbContext, and the
BizLogic layer does not allow that access. I generally place my simple business logic
with CRUD classes that work on the same feature. In the ChangePriceOfferService
example, I place the ChangePriceOfferService class in the AdminServices folder
alongside the other CRUD services.

Writing the ChangePriceOfferService code4.5.2

The ChangePriceOfferService class contains two methods: a GetOriginal method,
which is a simple CRUD command to load the PriceOffer, and an AddRemovePrice-
Offer method that handles the creation or removal of the PriceOffer class for a Book.
The second method contains business logic and is shown in the following listing.

public ValidationResult AddRemovePriceOffer(PriceOffer promotion)
 {
 var book = _context.Books
 .Include(r => r.Promotion)
 .Single(k => k.BookId
 == promotion.BookId);

 if (book.Promotion != null)
 {
 _context.Remove(book.promotion);
 _context.SaveChanges();
 return null;
 }

 if (string.IsNullOrEmpty(promotion.PromotionalText))
 {
 return new ValidationResult(
 "This field cannot be empty",
 new []{ nameof(PriceOffer.PromotionalText)});
 }

 book.Promotion = promotion;

Listing 4.7 AddRemovePriceOffer method in ChangePriceOfferService

This method deletes a PriceOffer if present;
otherwise, it adds a new PriceOffer.

Loads the book,
with any existing
promotion

the book
 existing
omotion,
oves that
romotion Deletes the PriceOffer entry that

was linked to the chosen book

Returns null, which means that
the method finished successfully alidation

eck. The
ionalText
t contain
me text. Returns an error messa

with the property name
that was incorrect

Assigns the new PriceOffer
to the selected book

113Validation business logic example: Adding review to a book, with checks
 _context.SaveChanges();
 return null;
}

The pros and cons of this business logic pattern4.5.3

You have written some business logic implemented in a different way from the more
complex business logic for processing an order, which I have described as simple busi-
ness logic. The major differences between the simple business logic and the complex
business logic are

 The simple business logic didn’t follow the DDD-inspired guidelines from section
4.3.1. In particular, it didn’t isolate the database access from the business logic.

 The simple business logic was placed in the service layer (instead of in the Biz-
Logic layer) alongside the CRUD services related to the basket.

This pattern has the following pros and cons.

ADVANTAGES OF THIS PATTERN
This pattern has little or no set structure, so you can write the code in the simplest way to
archive the required business goal. Normally, the code will be shorter than the complex
business pattern, which has extra classes to isolate the business logic from the database.

 The business logic is also self-contained, with all the code in one place. Unlike the
complex business logic example, this business logic handles everything. It doesn’t
need a BizRunner to execute it, for example, because the code calls SaveChanges
itself, making it easier to alter, move, and test because it doesn’t rely on anything else.

 Also, by putting the business logic classes in the service layer, I can group these
simple business logic services in the same folder as the CRUD services related to this
business feature. As a result, I can find all the basic code for a feature quickly, because
the complex business code is in another project.

DISADVANTAGES OF THIS PATTERN
You don’t have the DDD-inspired approach of the complex business logic pattern to
guide you, so the onus is on you to design the business logic in a sound way. Your
experience will aid you in picking the best pattern to use and writing the correct code.
Simplicity is the key here. If the code is easy to follow, you got it right; otherwise, the
code is too complex and needs to follow the complex business logic pattern.

Validation business logic ex4.6 ample: Adding review to a
book, with checks
The final example is an upgrade to a CRUD example in chapter 3. In that chapter,
you added a Review to a Book. But that version was missing some vital business rules:

 The NumStars property must be between 0 and 5.
 The Comment property should have some text in it.

The SaveChanges method
updates the database.

The addition of a new price promotion was
successful, so the method returns null.

114 CHAPTER 4 Using EF Core in business logic

This s
ensu

us
s

In this section, you are going to update the CRUD code to add a validation check. The
following listing shows you the improved AddReviewWithChecks method but concen-
trates on the validation part.

public IStatusGeneric AddReviewWithChecks(Review review)
{
 var status = new StatusGenericHandler();
 if (review.NumStars < 0 || review.NumStars > 5)
 status.AddError("This must be between 0 and 5.",
 nameof(Review.NumStars));
 if (string.IsNullOrWhiteSpace(review.Comment))
 status.AddError("Please provide a comment with your review.",
 nameof(Review.Comment));
 if (!status.IsValid)
 return status;

 var book = _context.Books
 .Include(r => r.Reviews)
 .Single(k => k.BookId
 == review.BookId);
 book.Reviews.Add(review);
 _context.SaveChanges();
 return status;
}

NOTE The IStatusGeneric interface and StatusGenericHandler class used
in listing 4.8 come from a NuGet package called GenericServices.Status-
Generic. This library provides a simple but comprehensive way to return a
good/bad status that matches the .NET Core validation approach. The com-
panion NuGet package, called EfCore.GenericServices.AspNetCore, provides
ways to convert the IStatusGeneric status to ASP.NET Core’s ModelState
Razor-based pages or to HTTP returns for Web API Controllers.

This method is a CRUD method with business validation added, which is typical of this
type of business logic. In this case, you used if-then code to check the property, but
you could use DataAnnotations instead. As I said earlier, this type of validation is
typically done in the frontend, but duplicating the validation of sensitive data in the
backend code can make the application more robust. Later, in section 4.7.1, I show
you how you can validate data before it’s written to the database, which gives you
another option.

4.6.1 The pros and cons of this business logic pattern

The validation business logic is the CRUD services you saw in chapter 3, enhanced by
adding validation checks. Therefore, I place validation business logic classes in the
service layer alongside the other CRUD services.

Listing 4.8 The improved CRUD code with business validation checks added

This method adds a review to a book,
with validation checks on the data. Creates a status

class to hold
any errors

Adds an error to
the status if the
star rating is in the
correct range

econd check
res that the
er provided
ome sort of

comment.
If there are any errors, the method
returns immediately with those errors.

The CRUD code
that adds a review
to a book

Returns the status, which will be
valid if no errors were found

115Adding extra features to your business logic handling
ADVANTAGES OF THIS PATTERN
You are already aware of the CRUD services from chapter 3, so you don’t need to learn
another pattern—only add validation checks and return a status. Like many other
people, however, I consider these validation business logic classes to be the same as
CRUD services with some extra checks in them.

DISADVANTAGES OF THIS PATTERN
The only disadvantage is that you need to do something with the status that the pattern
returns, such as redisplaying the input form with an error message. But that’s the down-
side of providing extra validation rather than the validation business logic design.

4.7 Adding extra features to your business logic handling
This pattern for handling business logic makes it easier to add extra features to your
business logic handling. In this section, you’ll add two features:

 Entity class validation to SaveChanges
 Transactions that daisy-chain a series of business logic code

These features use EF Core commands that aren’t limited to business logic. Both fea-
tures could be used in other areas, so you might want to keep them in mind when
you’re working on your application.

4.7.1 Validating the data that you write to the database

I have already talked about validating data before it gets to the database, but this sec-
tion shows you how to add validation when writing to the database. NET contains a
whole ecosystem to validate data, to check the value of a property against certain
rules (such as checking whether an integer is within the range of 1 to 10 or a string
isn’t longer than 20 characters). This ecosystem is used by many of Microsoft’s fron-
tend systems.

EF6 If you’re scanning for EF6.x changes, read the next paragraph. EF
Core’s SaveChanges doesn’t validate the data before writing to the database,
but this section shows how to add it back.

In the previous version of EF (EF6.x), data that was being added or updated was vali-
dated by default before being written to the database. In EF Core, which is designed
to be more lightweight and faster, no validation occurs when adding data to or updat-
ing the database. The idea is that the validation is often done at the frontend, so why
repeat the validation?

 As you’ve seen, the business logic contains lots of validation code, and it’s often
useful to move this code into the entity classes as a validation check, especially if the
error is related to a specific property in the entity class. This example is another case
of breaking a complex set of rules into several parts.

 Listing 4.9 moves the test to check that the book is for sale into the validation
code, rather than having to do it in the business logic. The listing also adds two new

116 CHAPTER 4 Using EF Core in business logic

ct
s
e

A
to

ic

validation checks to show you the various forms that validation checks can take, mak-
ing the example more comprehensive.

 Figure 4.5 shows the LineItem entity class with two types of validation added. The
first type is a [Range(min,max)] attribute, known as Data Annotations (see section 7.4),
which is added to the LineNum property. The second validation method to apply is the
IValidatableObject interface. This interface requires you to add a method called
IValidatableObject.Validate, in which you can write your own validation rules and
return errors if those rules are violated.

public class LineItem : IValidatableObject
{
 public int LineItemId { get; set; }

 [Range(1,5, ErrorMessage =
 "This order is over the limit of 5 books.")]
 public byte LineNum { get; set; }

 public short NumBooks { get; set; }

 public decimal BookPrice { get; set; }

 // relationships

 public int OrderId { get; set; }
 public int BookId { get; set; }

 public Book ChosenBook { get; set; }

 IEnumerable<ValidationResult> IValidatableObject.Validate
 (ValidationContext validationContext)
 {
 var currContext =
 validationContext.GetService(typeof(DbContext));

 if (ChosenBook.Price < 0)
 yield return new ValidationResult(
$"Sorry, the book '{ChosenBook.Title}' is not for sale.");

 if (NumBooks > 100)
 yield return new ValidationResult(
 "If you want to order a 100 or more books"+
" please phone us on 01234-5678-90",
 new[] { nameof(NumBooks) });
 }
}

Listing 4.9 Validation rules applied to the LineNum entity class

The IValidatableObject interface adds
a IValidatableObject.Validate method.

Adds an error message if
the LineNum property is
not in range

The
IValidatableObje
interface require
this method to b
created.

llows access
 the current
DbContext if
necessary to

get more
information

Moves the Price check
out of the business log
into this validation

Extra validation rule: an order
for more than 100 books
needs to phone in an order.

Returns the name of the
property with the error to
provide a better error message

I should point out that in the IValidatableObject.Validate method, you access a
property outside the LineNum class: the Title of the ChosenBook. ChosenBook is a nav-
igational property, and when the DetectChanges method is called, the relational fixup

117Adding extra features to your business logic handling

n
at
feature (see figure 1.10, stage 3) will ensure that the ChosenBook property isn’t null.
As a result, the validation code in listing 4.9 can access navigational properties that the
business logic might not have.

NOTE In addition to using the extensive list of built-in validation attributes,
you can create your own validation attributes by inheriting the Validation-
Attribute class on your own class. See http://mng.bz/9cec for more on
the standard validation attributes that are available and for how to use the
ValidationAttribute class.

After adding the validation rule code to your LineItem entity class, you need to add a
validation stage to EF Core’s SaveChanges method, called SaveChangesWith-

Validation. Although the obvious place to put this stage is inside the application’s
DbContext, you’ll create an extension method instead. This method will allow Save-
ChangesWithValidation to be used on any DbContext, which means that you can
copy this class and use it in your application.

 The following listing shows this SaveChangesWithValidation extension method,
and listing 4.11 shows the private method ExecuteValidation that SaveChangesWith-
Validation calls to handle the validation.

public static ImmutableList<ValidationResult>
 SaveChangesWithValidation(this DbContext context)
{
 var result = context.ExecuteValidation();

 if (result.Any()) return result;

 context.SaveChanges();

 return result;
}

private static ImmutableList<ValidationResult>
 ExecuteValidation(this DbContext context)
{
 var result = new List<ValidationResult>();
 foreach (var entry in
 context.ChangeTracker.Entries()
 .Where(e =>
 (e.State == EntityState.Added) ||
 (e.State == EntityState.Modified)))
 {

Listing 4.10 SaveChangesWithValidation added to the application’s DbContext

Listing 4.11 SaveChangesWithValidation calls ExecuteValidation method

SaveChangesWithValidation returns a
list of ValidationResults.

SaveChangesWithValidatio
is an extension method th
takes the DbContext as
its input.

The ExecuteValidation is used in
SaveChangesWithChecking/Save
ChangesWithCheckingAsync.

If there are errors, return
them immediately and don’t
call SaveChanges.

There aren’t any errors, so I am
going to call SaveChanges.

Returns the empty set of
errors to signify that

there are no errors

Uses EF Core’s ChangeTracker
to get access to all the entity
classes it is tracking

Filters the entities that
will be added or updated
in the database

http://mng.bz/9cec

118 CHAPTER 4 Using EF Core in business logic

ct
 var entity = entry.Entity;
 var valProvider = new
 ValidationDbContextServiceProvider(context);
 var valContext = new
 ValidationContext(entity, valProvider, null);
 var entityErrors = new List<ValidationResult>();
 if (!Validator.TryValidateObject(
 entity, valContext, entityErrors, true))
 {
 result.AddRange(entityErrors);
 }
 }
 return result.ToImmutableList();
}

The main code is in the ExecuteValidation method, because you need to use it in
sync and async versions of SaveChangesWithValidation. The call to context.Change-
Tracker.Entries calls the DbContext’s DetectChanges to ensure that all the changes
you’ve made are found before the validation is run. Then the code looks at all the
entities that have been added or modified (updated) and validates them all.

 One piece of code I want to point out in listing 4.11 is a class called ValidationDb-
ContextServiceProvider, which implements the IServiceProvider interface. This
class is used when you create ValidationContext, so it is available in any entity classes
that have the IValidatableObject interface, allowing the Validate method to
access the current application’s DbContext if necessary. Having access to the current
DbContext allows you to create better error messages by obtaining extra information
from the database.

 You design the SaveChangesWithValidation method to return the errors rather
than throw an exception. You do this to fit in with the business logic, which returns
errors as a list, not an exception. You can create a new BizRunner variant, Runner-
WriteDbWithValidation, that uses SaveChangesWithValidation instead of the nor-
mal SaveChanges and returns errors from the business logic or any validation errors
found when writing to the database. The next listing shows the BizRunner class Runner-
WriteDbWithValidation.

public class RunnerWriteDbWithValidation<TIn, TOut>
{
 private readonly IBizAction<TIn, TOut> _actionClass;
 private readonly EfCoreContext _context;

 public IImmutableList<ValidationResult>
 Errors { get; private set; }
 public bool HasErrors => Errors.Any();

 public RunnerWriteDbWithValidation(
 IBizAction<TIn, TOut> actionClass,
 EfCoreContext context)

Listing 4.12 BizRunner variant RunnerWriteDbWithValidation

Implements the
IServiceProvider
interface and passes
the DbContext to the
Validate method

The Validator.TryValidateObje
is the method that validates
each class.

Any errors
are added to

the list.

Returns the list of all the errors
found (empty if there are no errors)

This version needs its own
Errors/HasErrors properties, as
errors come from two sources.

Handles business logic that conforms
to the IBizAction<TIn, TOut>
interface

119Adding extra features to your business logic handling

b

If no

W

 {
 _context = context;
 _actionClass = actionClass;
 }

 public TOut RunAction(TIn dataIn)
 {
 var result = _actionClass.Action(dataIn);
 Errors = _actionClass.Errors;
 if (!HasErrors)
 {
 Errors =
 _context.SaveChangesWithValidation()
 .ToImmutableList();
 }
 return result;
 }
}

The nice thing about this new variant of the BizRunner pattern is that it has exactly
the same interface as the original, nonvalidating BizRunner. You can substitute Runner-
WriteDbWithValidation<TIn, TOut> for the original BizRunner without needing to
change the business logic or the way that the calling method executes the BizRunner.

 In section 4.7.2, you’ll produce yet another variant of the BizRunner that can run
multiple business logic classes in such a way that they look like a single business logic
method. This is possible because of the business logic pattern described at the start of
this chapter.

4.7.2 Using transactions to daisy-chain a sequence
of business logic code

As I said earlier, business logic can get complex. When it comes to designing and
implementing a large or complex piece of business logic, you have three options:

 Option 1—Write one big method that does everything.
 Option 2—Write a few smaller methods, with one overarching method to run

them in sequence.
 Option 3—Write a few smaller methods, each of which updates the database, but

combine them into one Unit Of Work (see sidebar in section 3.2.2).

Option 1 normally isn’t a good idea because the method will be so hard to understand
and refactor. It also has problems if parts of the business logic are used elsewhere,
because you could break the DRY (don’t repeat yourself) software principle.

 Option 2 can work but can have problems if later stages rely on database items writ-
ten by earlier stages, which could break the atomic unit rule mentioned in chapter 1:
when there are multiple changes to the database, they all succeed, or they all fail.

 This leaves option 3, which is possible because of a feature of EF Core (and most
relational databases) called transactions. In section 3.2.2, the sidebar “Why you should
call SaveChanges only once at the end of your changes” introduced the Unit Of Work

This method is called to
execute the business logic
and handle any errors.Runs the

usiness logic
I gave it Any errors from the

business logic are assigned
to the local errors list. errors, calls

SaveChanges-
ithChecking Any validation errors

are assigned to the
Errors list.

Returns the result that the
business logic returned

120 CHAPTER 4 Using EF Core in business logic

and showed how SaveChanges saves all the changes inside a transaction to make sure
that all the changes were saved or, if the database rejected any part of the change, that
no changes were saved to the database.

 In this case, you want to spread the Unit Of Work over several smaller methods;
let’s call them Biz1, Biz2, and Biz3. You don’t have to change Biz methods; they still
think that they are working on their own and will expect SaveChanges to be called
when each Biz method finishes. But when you create an overarching transaction, all
three Biz methods, with their SaveChanges call, will work as one Unit Of Work. As a
result, a database rejection/error in Biz3 will reject any database changes made by
Biz1, Biz2, and Biz3.

 This database rejection works because when you use EF Core to create an explicit
relational database transaction, it has two effects:

 Any writes to the database are hidden from other database users until you call
the transaction’s Commit method.

 If you decide that you don’t want the database writes (say, because the business
logic has an error), you can discard all database writes done in the transaction
by calling the transaction RollBack command.

Figure 4.5 shows three separate pieces of business logic, each expecting a call to Save-
Changes to update the database but being run by a class called the transactional Biz-
Runner. After each piece of business logic has run, the BizRunner calls SaveChanges,
which means that anything the business logic writes out is now available for subsequent

1. A special BizRunner runs each business logic class in turn. Each business logic stage
it.uses an application DbContext that has an EF Core BeginTransaction applied to

2. BeginTransaction is called
at the start. This marks the
starting point of an explicit
local transaction.

3. Each business logic runs as
normal, with writes to the
database. BizRunner then calls
SaveChanges to save each stage’s
changes to the local transaction.

4. Biz 3 has an error, and
RollBack is called. This
removes all the database
changes done within the
transaction.

Biz 1

BeginTransaction()

Transactional BizRunner using one EF Core transaction

Biz 2

SaveChanges()

Biz 3

SaveChanges()

Rollback()

Biz 3Biz 3

Figure 4.5 An example of executing three separate business logic stages under one transaction.
When the last business logic stage returns an error, the other database changes applied by the first
two business logic stages are rolled back.

121Adding extra features to your business logic handling

Re
business logic stages via the local transaction. In the final stage, the business logic, Biz 3,
returns errors, which causes the BizRunner to call the RollBack command, which has
the effect of removing any database writes done by Biz 1 and Biz 2.

 The next listing shows the code for the new transactional BizRunner, which starts a
transaction on the application’s DbContext before calling any of the business logic.

public class RunnerTransact2WriteDb<TIn, TPass, TOut>
 where TOut : class
{
 private readonly IBizAction<TIn, TPass>
 _actionPart1;
 private readonly IBizAction<TPass, TOut>
 _actionPart2;
 private readonly EfCoreContext _context;

 public IImmutableList<ValidationResult>
 Errors { get; private set; }
 public bool HasErrors => Errors.Any();

 public RunnerTransact2WriteDb(
 EfCoreContext context,
 IBizAction<TIn, TPass> actionPart1,
 IBizAction<TPass, TOut> actionPart2)
 {
 _context = context;
 _actionPart1 = actionPart1;
 _actionPart2 = actionPart2;
 }

 public TOut RunAction(TIn dataIn)
 {
 using (var transaction =
 _context.Database.BeginTransaction())
 {
 var passResult = RunPart(
 _actionPart1, dataIn);
 if (HasErrors) return null;
 var result = RunPart(
 _actionPart2, passResult);

 if (!HasErrors)
 {
 transaction.Commit();
 }
 return result;
 }
 }

Listing 4.13 RunnerTransact2WriteDb running two business logic stages in series

The three types are input, class passed
from Part1 to Part2, and output.

The BizRunner can
return null if there
are errors, so it has
to be a class.

Defines the generic
BizAction for the two
business logic parts

Holds any error
information returned
by the business logic

The constructor takes
both business classes and
the application DbContext.

Starts the transaction
within a using statement

The private method, RunPart,
runs the first business part.

If there are errors,
returns null. (The

rollback is handled
by the dispose.)

If the first part of the business logic was
successful, runs the second business logic

If there are no errors,
commits the transaction
to the database

turns the result
from the last

business logic

If commit is not called before the using
end, RollBack undoes all the changes.

122 CHAPTER 4 Using EF Core in business logic
 private TPartOut RunPart<TPartIn, TPartOut>(
 IBizAction<TPartIn, TPartOut> bizPart,
 TPartIn dataIn)
 where TPartOut : class
 {
 var result = bizPart.Action(dataIn);
 Errors = bizPart.Errors;
 if (!HasErrors)
 {
 _context.SaveChanges();
 }
 return result;
 }
}

In your RunnerTransact2WriteDb class, you execute each part of the business logic in
turn, and at the end of each execution, you do one of the following:

 No errors—You call SaveChanges to save to the transaction any changes that busi-
ness logic has run. That save is within a local transaction, so other methods
accessing the database won’t see those changes yet. Then you call the next part
of the business logic, if there is one.

 Has errors—You copy the errors found by the business logic that just finished to
the BizRunner error list and exit the BizRunner. At that point, the code steps
outside the using clause that holds the transaction, which causes disposal of the
transaction. Because no transaction Commit has been called, the disposal will
cause the transaction to execute its RollBack method, which discards the data-
base writes to the transaction. Those writes are never written to the database.

If you’ve run all the business logic with no errors, you call the Commit command on
the transaction. This command does an atomic update of the database to reflect all
the changes to the database that are contained in the local transaction.

4.7.3 Using the RunnerTransact2WriteDb class

To test the RunnerTransact2WriteDb class, you’ll split the order-processing code you
used earlier into two parts:

 PlaceOrderPart1—Creates the Order entity, with no LineItems
 PlaceOrderPart2—Adds the LineItems for each book bought to the Order

entity that was created by the PlaceOrderPart1 class

PlaceOrderPart1 and PlaceOrderPart2 are based on the PlaceOrderAction code
you’ve already seen, so I don’t repeat the business code here.

 Listing 4.14 shows you the code changes that are required for PlaceOrderService
(shown in listing 4.6) to change over to use the RunnerTransact2WriteDb BizRunner.
The listing focuses on the part that creates and runs the two stages, Part1 and Part2,
with the unchanged parts of the code left out so you can see the changes easily.

This private method
handles running each part
of the business logic.

Runs the business logic and copies
the business logic’s Errors

If the business logic was
successful, calls SaveChanges

Returns the result from
the business logic it ran

123Adding extra features to your business logic handling

ne
th
public class PlaceOrderServiceTransact
{
 //… code removed as the same as in listing 4.5

 public PlaceOrderServiceTransact(
 IRequestCookieCollection cookiesIn,
 IResponseCookies cookiesOut,
 EfCoreContext context)
 {
 _checkoutCookie = new CheckoutCookie(
 cookiesIn, cookiesOut);
 _runner = new RunnerTransact2WriteDb
 <PlaceOrderInDto, Part1ToPart2Dto, Order>(
 context,
 new PlaceOrderPart1(
 new PlaceOrderDbAccess(context)),
 new PlaceOrderPart2(
 new PlaceOrderDbAccess(context)));
 }

 public int PlaceOrder(bool tsAndCsAccepted)
 {
 //… code removed as the same as in listing 4.6
 }
}

The important thing to note is that the business logic has no idea whether it’s running
in a transaction. You can use a piece of business logic on its own or as part of a transac-
tion. Similarly, listing 4.14 shows that only the caller of transaction-based business
logic, which I call the BizRunner, needs to change. Using a transaction makes it easy to
combine multiple business logic classes under one transaction without needing to
change any of your business logic code.

 The advantage of using transactions like this one is that you can split and/or reuse
parts of your business logic while making these multiple business logic calls look to
your application, especially its database, like one call. I’ve used this approach when I
needed to create and then immediately update a complex, multipart entity. Because
I needed the Update business logic for other cases, I used a transaction to call the Cre-
ate business logic followed by the Update business logic, which saved me development
effort and kept my code DRY.

 The disadvantage of this approach is that it adds complexity to the database access,
which can make debugging a little more difficult, or the use of database transactions
could cause a performance issue. Also, be aware that if you use the EnableRetryOn-
Failure option (see section 11.8) to retry database accessed on errors, you need to
handle possible multiple calls to your business logic.

Listing 4.14 The PlaceOrderServiceTransact class showing the changed parts

This version of PlaceOrderService
uses transactions to execute
two business logic classes:
PlaceOrderPart1 and
PlaceOrderPart2.

This BizRunner handles
multiple business logic
inside a transaction.

The BizRunner
eds the input,
e class passed
from Part1 to
Part2, and the

output.

The BizRunner
needs the

application’s
DbContext.

Provides an instance of the
first part of the business logic

Provides an instance of
the second part of the
business logic

124 CHAPTER 4 Using EF Core in business logic
Summary
 The term business logic describes code written to implement real-world business

rules. The business logic code can range from the simple to the complex.
 Depending on the complexity of your business logic, you need to choose an

approach that balances how easy it is to solve the business problem against the
time it takes you to develop and test your solution.

 Isolating the database access part of your business logic into another class/project
can make the pure business logic simpler to write but take longer to develop.

 Putting all the business logic for a feature in one class is quick and easy but can
make the code harder to understand and test.

 Creating a standardized interface for your business logic makes calling and run-
ning the business logic much simpler for the frontend.

 Sometimes, it’s easier to move some of the validation logic into the entity classes
and run the checks when that data is being written to the database.

 For business logic that’s complex or being reused, it might be simpler to use a
database transaction to allow a sequence of business logic parts to be run in
sequence but, from the database point of view, look like one atomic unit.

For readers who are familiar with EF6.x:

 Unlike EF6.x, EF Core’s SaveChanges method doesn’t validate data before it’s
written to the database. But it’s easy to implement a method that provides this
feature in EF Core.

Using EF Core
in ASP.NET

Core web applications
This chapter covers
 Using EF Core in ASP.NET Core

 Using dependency injection in ASP.NET Core

 Accessing the database in ASP.NET Core MVC
actions

 Using EF Core migrations to update a database

 Using async/await to improve scalability

In this chapter, you’ll pull everything together by using ASP.NET Core to build a
real web application. Using ASP.NET Core brings in issues that are outside EF
Core, such as dependency injection (covered in section 5.4) and async/await (cov-
ered in section 5.10). But they’re necessary if you’re going to use EF Core in this
type of application.

This chapter assumes that you’ve read chapters 2–4 and know about querying
and updating the database and what business logic is. This chapter is about where
to place your database access code and how to call it in a real application. It also
covers the specific issues of using EF Core in an ASP.NET Core (including Blazor
Server) applications. For that reason, this chapter includes quite a bit about
ASP.NET Core, but it’s all focused on using EF Core well in this type of application.
125

126 CHAPTER 5 Using EF Core in ASP.NET Core web applications
I end with more general information on various ways to obtain an instance of the
application’s DbContext for cases such as background tasks.

5.1 Introducing ASP.NET Core
The ASP.NET Core website states that “ASP.NET Core is a cross-platform, high-
performance, open-source framework for building modern, cloud-based, Internet-
connected applications” (http://mng.bz/QmOw). This summary is a good one, but
ASP.NET Core has so many great features that it’s hard to pick which ones to com-
ment on.

NOTE I recommend Andrew Lock’s book ASP.NET Core in Action (Manning,
2020) for a detailed description of ASP.NET Core’s many features.

I’ve been using ASP.NET MVC5, the precursor of ASP.NET Core, for years. I thought
it was a good framework, if a bit slow in performance. But for me, ASP.NET Core
blows ASP.NET MVC5 out of the water, with a phenomenal improvement in perfor-
mance and new ways to show data, such as Razor Pages and Blazor.

TIP When I first tried ASP.NET Core, I was disappointed by its performance;
it turns out that the default logging slows things down in development mode.
When I replaced the normal loggers with my quicker, in-memory logging, the
Book App page that was listing the book was three times faster! So watch out
for too much logging slowing your application.

In this book, you will build the Book App, which is a web application, using ASP.NET
Core to show how EF Core works with a real application. ASP.NET Core can be used
in a number of ways, but for the Book App examples. we will use ASP.NET Core’s
Model-View-Controller (MVC) pattern.

5.2 Understanding the architecture of the Book App
Chapter 2 presented a diagram of the Book App, and chapter 4 extended it with two
more projects to handle the business logic. Figure 5.1 shows you the combined archi-
tecture after chapter 4, with all the projects in the application. As you go through this
chapter, you’ll learn how and why we split the database access code across the various
projects. One reason is to make your web application easier to write, refactor, and test.

 This layered architecture, which creates a single executable containing all the code,
works well with many cloud providers that can spin up more instances of the web appli-
cation if it’s under a heavy load; your host will run multiple copies of a web application
and place a load balancer to spread the load over all the copies. This process is known as
scaling out in Microsoft Azure and auto scaling in Amazon Web Services (AWS).

NOTE In part 3, I update the architecture of the Book App to use the modu-
lar monolith, Domain-Driven Design, and clean architecture. See the useful
Microsoft document about layered and clean architectures at http://mng
.bz/5jD1.

http://mng.bz/QmOw
http://mng.bz/5jD1
http://mng.bz/5jD1
http://mng.bz/5jD1

127Understanding dependency injection
Understanding dependency injection5.3
ASP.NET Core uses dependency injection (DI) extensively, as does .NET in general. You
need to understand DI because it’s the method used in ASP.NET Core to get an
instance of the application’s DbContext.

DEFINITION Dependency injection is a way to link together your application
dynamically. Normally, you’d write var myClass = new MyClass() to create a
new instance of MyClass. That code works, but you’ve hardcoded the creation
of that class, and you can change it only by changing your code. With DI, you
can register your MyClass with a DI provider, using, say, an interface such as
IMyClass. Then, when you need the class, you use IMyClass myClass, and the
DI provider will dynamically create an instance and inject it into the IMyClass
myClass parameter/property.

Using DI has lots of benefits, and here are the main ones:

 DI allows your application to link itself dynamically. The DI provider will work
out what classes you need and create them in the right order. If one of your
classes needs the application’s DbContext, for example, the DI can provide it.

 Using interfaces and DI together means that your application is more loosely
coupled; you can replace a class with another class that matches the same inter-
face. This technique is especially useful in unit testing: you can provide a
replacement version of the service with another, simpler class that implements
the interface (called stubbing or mocking in unit tests).

 Other, more advanced features exist, such as using DI to select which class to
return based on certain settings. If you’re building an e-commerce application,
in development mode, you might want to use a dummy credit card handler
instead of the normal credit card system.

SQL

server

Names of the projects in the EfCoreInAction application

ASP.NET

Core

web

application

Adapter and

command

patterns,

such as

DTOs,

CRUD

services,

and Simple

Biz Logic

Data

access

1. EF Core

classes

2. EF Core

DbContext

HTML

pages

Complex

business

logic

Business

database

access

JavaScript/

Ajax

Data store BookAppServiceLayerBizLogicBizDbAccessDataLayer Browser

Figure 5.1 All the projects in the Book App. The arrows show the main routes by which EF Core data moves up
and down the layers.

128 CHAPTER 5 Using EF Core in ASP.NET Core web applications

5.3.1

5.3.2

I use DI a lot and wouldn’t build any real application without it, but I admit that it can
be confusing the first time you see it.

NOTE This section gives you a quick introduction to DI so that you under-
stand how to use DI with EF Core. If you want more information on DI in
ASP.NET Core, see Microsoft’s documentation at http://mng.bz/Kv16. For
an overall view of DI, consider the book Dependency Injection Principles, Prac-
tices, and Patterns, by Steven Van Deursen and Mark Seemann (Manning,
2019), which has a whole chapter on NET Core DI (http://mng.bz/XdjG).

Why you need to learn about DI in ASP.NET Core

Chapter 2 showed you how to create an instance of the application’s DbContext by
using the following snippet of code:

const string connection =
"Data Source=(localdb)\\mssqllocaldb;" +
"Database=EfCoreInActionDb.Chapter02;" +
"Integrated Security=True;";

var optionsBuilder =
new DbContextOptionsBuilder

<EfCoreContext>();

optionsBuilder.UseSqlServer(connection);
var options = optionsBuilder.Options;

using (var context = new EfCoreContext(options))
{…

That code works but has a few problems. First, you’re going to have to repeat this code
for each database access you make. Second, this code uses a fixed database access
string, referred to as a connection string, which isn’t going to work when you want to
deploy your site to a host, because the database location for the hosted database will
be different from the database you use for development.

You can work around these two problems in several ways, such as by overriding the
OnConfiguration method in the application’s DbContext (covered in section 5.11.1).
But DI is a better way to handle this situation and is what ASP.NET Core uses. Using a
slightly different set of commands, you can tell the DI provider how to create your
application’s DbContext—a process called registering a service—and then ask the DI for
an instance of your application’s DbContext anywhere in ASP.NET Core’s system that
supports DI.

A basic example of dependency injection in ASP.NET Core

Setting up the code to configure the application’s DbContext is a little complicated
and can hide the DI part. My first example of DI in ASP.NET Core, shown in figure 5.2,
uses a simple class called Demo, which you’ll use in an ASP.NET controller. This exam-
ple will be useful in section 5.7, when I show you how to use DI to make your code sim-
pler to call.

http://mng.bz/Kv16
http://mng.bz/XdjG

129Understanding dependency injection

5.3.3

1. You create a class Demo that
you need in your application
and add an interface to it.

2. Then you register, via the ConfigureServices method
my ss Demo, wiin ASP.NET Core’s Startup class, cla th

the interface IDemo. AddControllersWithViews sets
up controllers.

3. When the HomeController is needed by ASP.NET
• The Demo class is created first.
• HomeController is created second, with the Demo

instance fed into the constructor parameter
IDemo demo.

pub D moe IDemo
{

...
}

pub H meControllero
:

{
pr vatei ID mo _demo;e
pub Hom

(IDemo demo)
{

_demo
}

}

pub St
{

...
pub vo di
{
services.AddTransient<)IDemo, Demo
services.AddControllersWithViews
...

Figure 5.2 An example of a class called Demo being inserted via DI into a controller’s constructor. The
code on the right registers your IDemo/Demo pair, and the AddControllersWithViews command
registers all the ASP.NET Core controllers. When ASP.NET Core needs the HomeController (used for
showing HTML pages), DI will create the HomeController. Because the HomeController needs
an IDemo instance, DI will create one and inject it into the HomeController‘s constructor.

Figure 5.2 shows that by registering the IDemo/Demo pair with ASP.NET Core’s DI, you
can access it in your HomeController class. Classes that are registered are referred to
as services.

The rule is that any DI service can be referenced, or injected, in any other DI service.
In figure 5.2, you register your IDemo/Demo class and call the AddControllersWithViews

configuration method to register the ASP.NET Core’s controller classes—specifically, in
this example, the HomeController class. This allows you to use the IDemo interface in
the HomeController’s constructor, and the DI provides an instance on the Demo class.
In DI terms, you use constructor injection to create an instance of the class that you’ve reg-
istered. You’ll use DI in various ways in this chapter, but the rules and terms defined
here will help you make sense of these later examples.

The lifetime of a service created by DI

One feature of DI that’s important when talking about EF Core is the lifetime of an
instance created by DI—how long the instance exists before being lost or disposed of.
In our IDemo/Demo example, you registered the instance as transient; every time you
ask for an instance of Demo, it creates a new one. If you want to use your own classes
with DI, you most likely declare a transient lifetime; that’s what I use for all my services,
as it means that each instance starts with its default setup. For simple, valuelike classes,

130 CHAPTER 5 Using EF Core in ASP.NET Core web applications
such as data setup at startup, you may declare them as singleton (you get the same
instance every time).

 The application’s DbContext is different. It has its lifetime set to scoped, which
means that however many instances of the application’s DbContext you ask for during
one HTTP request, you get the same instance. But when that HTTP request ends, that
instance is gone (technically, because DbContext implements IDisposable, it’s dis-
posed of), and you get a new, scoped instance in the next HTTP request. Figure 5.3
shows the three sorts of lifetimes, with a new letter for each new instance.

You need to use a scoped lifetime for the application’s DbContext in case you inject
the application’s DbContext into multiple classes. Sometimes, for example, it’s good
to break a complex update into multiple classes. If you do, you need the application’s
DbContext to be the same in all the classes; otherwise, changes made in one class
would not appear in another class.

 Let’s break a complex update into a Main class and a SubPart class, where the Main
class obtains an instance of the SubPart via an ISubPart interface in its constructor.
Now the Main part calls a method in the ISubPart interface, and the SubPart code
loads an entity class and changes a property. At the end of the whole update, the Main
code calls SaveChanges. If the two applications’ DbContext injected into Main and
SubPart classes are different, the change that the SubPart class made is lost.

 This situation may sound obscure or unusual, but in even medium-size applica-
tions, it can happen a lot. I often break complex code into separate classes, either
because the whole code is so big or because I want to unit-test different parts of the
code separately.

 Conversely, each HTTP request must have its own instance of the application’s
DbContext, because EF Core’s DbContext isn’t thread-safe (see section 5.11.1). This

Singleton: Same instance every time

Transient: New instance every time

Scoped: New instance per HTTP request

DI

request

DI

request

DI

request

DI

request

A

M

X

A

N

X

HTTP request n

A

O

Y

A

P

Y

HTTP request n + 1

Figure 5.3 Instances produced by DI have three types of lifetimes: singleton,
transient, and scoped. This figure shows those three types with four injections for
each, two per HTTP request. The letters represent each instance. If a letter is used
multiple times, all those injections are the same instance of the class.

131Making the application’s DbContext available via DI
fact is why the application’s DbContext has a scoped lifetime for each HTTP request
and is one of the reasons why DI is so useful.

5.3.4 Special considerations for Blazor Server applications

If you are using a Blazor frontend talking to a ASP.NET Core backend, known as a
Blazor Server hosting model, you need to change your approach to registering and/or
obtaining an instance of your application’s DbContext. The problem is that with a
Blazor frontend, you can send calls for a database access in parallel, which means that
multiple threads will try to use one instance of your application’s DbContext, which
isn’t allowed.

 You have a few ways to get around this problem, but the simplest is to create a new
instance of your application’s DbContext for every database access. EF Core 5 has pro-
vided a DbContext factory method that creates a new instance every time you call it
(see section 5.4.3). The DbContext factory method prevents multiple threads from
trying to use the same instance of your application’s DbContext.

 The downside of using the DbContext factory method is that different classes reg-
istered to DI won’t use the same DbContext instance. The scoped lifetime DbContext
instance example in section 5.3.3, for example, would cause problems because the
Main class and a SubPart class would have different instances of your application’s
DbContext. One solution to this problem is to have the Main class obtain an instance
of the application’s DbContext and pass that instance to the SubPart class, either by
creating the SubPart itself or via a method parameter.

 Even the DbContext factory approach can have problems with services that are
long-lived. The EF Core team has written guidance on using EF Core with a Blazor
Server application with an example application that shows some of the techniques; see
http://mng.bz/yY7G.

5.4 Making the application’s DbContext available via DI
Now that you understand DI, you’re ready to set up your application’s DbContext as a
service so that you can access it later via DI. You do this at the startup of the ASP.NET
Core web application by registering the application’s DbContext with the DI provider,
using information that tells EF Core what sort of database you’re accessing and where
it’s located.

5.4.1 Providing information on the database’s location

When developing your application, you’ll want to run it on your development machine
and access a local database for testing. The type of the database will be defined by the
business need, but the location of the database on your development machine is up to
you and whatever database server you’re using.

 For web applications, the location of the database normally isn’t hardcoded into
the application because it’ll change when the web application is moved to its host, where
real users can access it. Therefore, the location and various database configuration

http://mng.bz/yY7G

132 CHAPTER 5 Using EF Core in ASP.NET Core web applications
settings are typically stored as a connection string. This string is stored in an application
setting file that ASP.NET reads when it starts. ASP.NET Core has a range of applica-
tion setting files, but for now, you’ll concentrate on the three standard ones:

 appsetting.json—Holds the settings that are common to development and
production

 appsettings.Development.json—Holds the settings for the development build
 appsettings.Production.json—Holds the settings for the production build (when

the web application is deployed to a host for users to access it)

NOTE There’s a lot more to application setting files in ASP.NET Core that we
haven’t covered. Please look at the APS.NET Core documentation for a more
complete description.

Typically, the development connection string is stored in the appsettings.Development
.json file. Listing 5.1 shows a connection string suitable for running an SQL database
locally on a Windows PC.

NOTE The Visual Studio installation includes a feature called SQL Server Express,
which allows you to use SQL Server for development.

{
 "ConnectionStrings": {
 "DefaultConnection":
"Server=(localdb)\\mssqllocaldb;Database=EfCoreInActionDb
 ;Trusted_Connection=True"
 },
 … other parts removed as not relevant to database access
}

You need to edit your appsettings.Development.json file to add the connection string
for your local, development database. This file may or may not have a Connection-
Strings section, depending on whether you set Authentication to Individual User
Accounts. (The Individual User Accounts option needs its own database, so Visual Stu-
dio adds a connection string for the authorization database to the appsetting.json
file.) You can call your connection string anything you like; this example uses the
name DefaultConnection in our application.

5.4.2 Registering your application’s DbContext with the DI provider

The next step is registering your application’s DbContext with the DI provider at
startup. Any configuration to be done when ASP.NET Core starts up is done in the
aptly named Startup class. This class is executed when the ASP.NET Core application
starts and contains several methods to set up/configure the web application.

Listing 5.1 appsettings.Development.json file with database connection string

133Making the application’s DbContext available via DI

 The application’s DbContext for ASP.NET Core has a constructor that takes a
DbContextOptions<T> parameter defining the database options. That way, the database
connection string can change when you deploy your web application (see section 5.8).
As a reminder, here’s what the Book App’s DbContext constructor looks like, shown in
bold in this code snippet:

public class EfCoreContext : DbContext
{
 //… properties removed for clarity

 public EfCoreContext(
 DbContextOptions<EfCoreContext> options)
 : base(options) {}

 //… other code removed for clarity
}

The following listing shows how the application’s DbContext is registered as a service
in an ASP.NET Core application. This registration is done in the ConfigureServices
method in the Startup class of your ASP.NET Core application, along with all the DI
services you need to register.

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllersWithViews();

 var connection = Configuration
 .GetConnectionString("DefaultConnection");

 services.AddDbContext<EfCoreContext>(
 options => options.UseSqlServer(connection));

 //… other service registrations removed
}

Listing 5.2 Registering your DbContext in ASP.NET Core’s Startup class

This method in the Startup
class sets up services.

Sets up a series of services to use
with controllers and Views

You get the connection string
from the appsettings.json file,
which can be changed when
you deploy.

Configures the application’s
DbContext to use SQL
Server and provide the
connection

Your first step is getting the connection string from the application’s Configuration
class. In ASP.NET Core, the Configuration class is set up during the Startup class
constructor, which reads the appsetting files. Getting the connection string that way
allows you to change the database connection string when you deploy the code to a
host. Section 5.8.1, which is about deploying an ASP.NET Core application that uses
a database, covers how this process works.

The second step—making the application’s DbContext available via DI—is done
by the AddDbContext method, which registers the application’s DbContext, EfCore-
Context, and the DbContextOptions<EfCoreContext> instances as services. When you
use the type EfCoreContext in places where DI intercepts, the DI provider will create

134 CHAPTER 5 Using EF Core in ASP.NET Core web applications

an instance of the application’s DbContext, using the DbContextOptions<EfCore-
Context> options. Or if you ask for multiple instances in the same HTTP request,
the DI provider will return the same instances. You’ll see this process in action when
you start using the application’s DbContext to do database queries and updates in
section 5.6.

Registering a DbContext Factory with the DI provider5.4.3

As stated in section 5.3.4, Blazor Server applications need careful managing of the
instances of your application’s DbContext, as do some other application types. In EF
Core 5, the IDbContextFactory<TContext> interface was added along with a method
to register the DbContext factory, as shown in the following listing.

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllersWithViews();

 var connection = Configuration
 .GetConnectionString("DefaultConnection");

 services.AddDbContextFactory<EfCoreContext>(
 options => options.UseSqlServer(connection));

 //… other service registrations removed
}

5.5

Listing 5.3 Registering a DbContext factory in ASP.NET Core’s Startup class

This method in the Startup
class sets up services.

Sets up a series of services to use
with controllers and Views

You get the connection string
from the appsettings.json file,
which can be changed when
you deploy.

Configures the
DbContext factory to
use SQL Server and
provide the connection

Typically, you use the AddDbContextFactory method only with Blazor in the frontend
or in applications where you cannot control the parallel access to the same applica-
tion’s DbContext, which breaks the thread-safe rule (see section 5.11.1). Many other
applications, such as ASP.NET Core, manage parallel accesses for you, so you can
obtain an instance of the application’s DbContext via DI.

Calling your database access code from ASP.NET Core
Having configured the application DbContext and registered it as a DI service, you’re
ready to access the database. In these examples, you’re going to run a query to display
the books and run commands that update the database. You’ll focus on how to exe-
cute these methods from ASP.NET Core; I assume that you’ve already grasped how to
query and update the database from previous chapters.

NOTE The example code is mainly about using ASP.NET Core MVC, but all
the examples of using DI also apply to all forms of ASP.NET Core: Razor
Pages, MVC, and Web API. A few sections also cover the Blazor Server applica-
tions, because the handling of obtaining an instance of the application’s
DbContext by DI is different.

135Calling your database access code from ASP.NET Core
A summary of how AS5.5.1 P.NET Core MVC works and
the terms it uses

First, here’s a quick summary of how to use ASP.NET Core to implement our Book
App. To display the various HTML pages, you’ll use an ASP.NET Core controller, which
is the class that handles delivering HTML pages via Razor Views. To do this, you’ll cre-
ate a class called HomeController, which inherits from ASP.NET Core’s Controller
class. This controller has several Razor Views linked to its methods, which in ASP.NET
Core are known as action methods.

 Our Book App’s HomeController has an action method called Index, which shows
the book list, and one called About, which provides a summary page for the site. You
have other controllers to handle checkout, existing orders, admin actions, and so on.
Although you could put all your database access code inside each action method of
each controller, I rarely do because I use a software design principle called Separation
of Concerns (SoC), which the next subsection explains.

Where does the EF Core code live in the Book App?5.5.2

As you learned in section 5.2, our Book App is built using a layered architecture,
which is meant to represent an architecture that could be used in a real-world applica-
tion. In this section, you’ll see where to place the various pieces of EF Core’s database
access code and why.

DEFINITION Separation of Concerns is the idea that a software system must be
decomposed into parts that overlap in functionality as little as possible. It’s
linked to two other principles: coupling and cohesion. With coupling, you
want each project in your application to be as self-contained as possible, and
with cohesion, each project in your application should have code that pro-
vides similar or strongly related functions. See http://mng.bz/wHJS for more
information.

Figure 5.4 maps where the database access code is located in your application, using
the earlier architecture diagram (figure 5.1). The bubbles show what type of database
code you’ll find in each layer. Notice that the ASP.NET Core project and the pure
business logic (BizLogic) project have no EF Core query/update code in them.

 Applying SoC principles has benefits throughout the application. You learned
about the reason for splitting out the complex business logic in chapter 4. But in this
chapter, you’ll see the benefits for the ASP.NET Core project:

 The ASP.NET Core frontend is all about displaying data, and doing that well is a
big task that needs lots of concentration. Therefore, you’ll use the service layer
to handle both the EF Core commands and the transformation of the database
data into a form that the ASP.NET Core frontend can easily use—often via
DTOs, also known as ViewModels in ASP.NET Core. Then you can concentrate
on making the best user experience rather than think about whether you have
the database query right.

http://mng.bz/wHJS

136 CHAPTER 5 Using EF Core in ASP.NET Core web applications
 ASP.NET controllers often have multiple pages/actions (say, one to list items,
one to add a new item, one to edit an item, and so on), each of which would
need its own database code. By moving the database code out to the service
layer, you can create individual classes for each database access rather than have
the code spread throughout a controller.

 It’s much easier to unit-test your database code if it’s in the service layer rather
than when it’s in an ASP.NET Core controller. You can test ASP.NET Core con-
trollers, but testing can get complicated if your code accesses properties such as
HtppRequest (which it does), because it’s hard to replicate some of these fea-
tures to get your unit test to work.

NOTE You can run tests against your full ASP.NET Core application by using
the Microsoft.AspNetCore.Mvc.Testing NuGet package. This testing is known
as integration testing when you are testing the whole application, whereas
unit testing focuses on testing small parts of the application. You can find
more about integration testing at http://mng.bz/MXa7.

5.6 Implementing the book list query page
Now that I’ve set the scene, you’re going to implement the ASP.NET Core part of
the list of books in our Book App. To remind you what the site looks like, figure 5.5
shows a screenshot of the Book App, with the list of books and the local admin
update features.

 In chapter 2, you wrote a class called ListBooksService that handled the com-
plexities of transforming, sorting, filtering, and paging the books to display. You’ll
want to use this class in an ASP.NET Core action called Index in the controller

SQL

server

My EF Core code for complex business
logic is in this project (see chapter 4).

No EF Core code in ASP.NET, other than
.ToList to execute a Query Object

ASP.NET

Core

Service

layer

Data

access HTML

pages

Pure

business

logic

Business

database

access

JavaScript

/Ajax

My CRUD + simple business
logic database accesses are all
done from the service layer.

Any generic or helper code, such as
paging or validation, goes here.

Generic

database

code

Execute

Complex

business

logic:

db access

CRUD and

simple

business

logic

Figure 5.4 Locations of the database access code (the EF Core code) in the Book App. Separating the EF
Core code in this way makes it easier to find, understand, refactor, and test.

http://mng.bz/MXa7

137Implementing the book list query page

ASP.NE
called w

hom
call
HomeController. The main issue is that to create an instance of the ListBooksService
class, you need an instance of the application’s DbContext.

5.6.1 Injecting an instance of the application’s DbContext via DI

The standard way of providing an instance of the application’s DbContext to an
ASP.NET Core application (and other types of hosted applications) is via DI injection
via a class’s constructor (see section 5.3.2). For an ASP.NET Core application, you
might add a constructor in the controller that has the application’s DbContext class as
a parameter (dependency injection by constructor).

 Listing 5.4 shows the start of the ASP.NET Core HomeController, where you’ve
added a constructor and copied the injected EfCoreContext class to a local field that
can be used to create an instance of the BookListService class that you need to list
the books. This code uses the DI approach from section 5.3.2 and figure 5.2 but
replaces the Demo class with the application’s DbContext class, EfCoreContext.

public class HomeController : Controller
{
 private readonly EfCoreContext _context;

 public HomeController(EfCoreContext context)
 {
 _context = context;
 }

 public IActionResult Index
 (SortFilterPageOptions options)

TheListing 5.4 Index action in the HomeController displays the list of books

Figure 5.5 The home page of the Book App, showing the list of books and the admin features, including the
Change Pub(lication) Date of a book

The application’s
DbContext is provided
by ASP.NET Core via DI.

T action,
hen the

e page is
ed up by
the user The options parameter is filled with sort,

filter, and page options via the URL.

138 CHAPTER 5 Using EF Core in ASP.NET Core web applications
 {
 var listService =
 new ListBooksService(_context);

 var bookList = listService
 .SortFilterPage(options)
 .ToList();

 return View(new BookListCombinedDto
 (options, bookList));
 }

After you’ve used the local copy of the application’s DbContext to create your List-
BooksService, you can call its SortFilterPage method. This method takes the
parameters returned from the various controls on the list page and returns an
IQueryable<BookListDto> result. Then you add the ToList method to the end of the
result, which causes EF Core to execute that IQueryable result against the database
and return the list of book information the user has asked for. This result is given to
an ASP.NET Core view to display.

 You could’ve had the SortFilterPage method return a List<BookListDto> result,
but that approach would’ve limited you to using a synchronous database access. As
you’ll see in section 5.10 on async/await, by returning an IQueryable<BookListDto>
result, you can choose to use a normal (synchronous) or an async version of the final
command that executes the query.

5.6.2 Using the DbContext Factory to create an instance
of a DbContext

In some applications, such as a Blazor Server app (see section 5.3.4), the normal scop-
ing of your application’s DbContext doesn’t work. In this case, you can inject EF
Core’s IDbContextFactory<TContext> by using DI. This decoupling is useful for Blazor
applications, in which EF Core recommends using the IDbContextFactory, and may
be useful in other scenarios.

 Here is an example taken from the BlazorServerEFCoreSample provided by the EF
Core team. In this example, the DbContext Factory is injected into a Blazor Razor
page, as shown in the following listing. Only the use of the DbContext Factory and
the creation of the DbContext have comments.

@page "/add"

@inject IDbContextFactory<ContactContext> DbFactory
@inject NavigationManager Nav
@inject IPageHelper PageHelper

Example of injecting theListing 5.5 DbContext Factory into a Razor page

ListBooksService is created by
using the application’s DbContext
from the private field _context.

The SortFilterPage method is called with
the sort, filter, and page options provided.

The ToList() method executes the LINQ commands,
causing EF Core to translate the LINQ into the appropriate
SQL to access the database and return the result as a list.

Sends the options (to fill in the
controls at the top of the page)
and the list of BookListDtos to
display as an HTML table

The DbContext
Factory is injected
into the Razor
page.

139Implementing the book list query page
@if (Contact != null)
{
 <ContactForm Busy="@Busy"
 Contact="@Contact"
 IsAdd="true"
 CancelRequest="Cancel"
 ValidationResult=
"@(async (success) => await ValidationResultAsync(success))" />
}
@if (Success)
{

 <div class="alert alert-success">The contact was successfully

added.</div>
}
@if (Error)
{

 <div class="alert alert-danger">Failed to update the contact

(@ErrorMessage).</div>
}

@code {
 //… various fields left out
 private async Task ValidationResultAsync(bool success)
 {
 if (Busy)
 return;

 if (!success)
 {
 Success = false;
 Error = false;
 return;
 }

 Busy = true;

 using var context = DbFactory.CreateDbContext();
 context.Contacts.Add(Contact);

 try
 {
 await context.SaveChangesAsync();
 Success = true;
 Error = false;
 // ready for the next
 Contact = new Contact();
 Busy = false;
 }
 catch (Exception ex)
 {
 Success = false;
 Error = true;
 ErrorMessage = ex.Message;

Another technique to handle
Blazor Server apps. It won’t
handle extra requests until the
first request has finished.

Creates a new
instance of the
application’s
DbContext. Note
the use of var
for disposing.

The new Contact
information is added
to the DbContext.

Saves the Contact
to the database

140 CHAPTER 5 Using EF Core in ASP.NET Core web applications
 Busy = false;
 }
 }

 private void Cancel()
 {
 Nav.NavigateTo($"/{PageHelper.Page}");
 }
}

Note that the DbContext instances that created the DbContext Factory are not man-
aged by the application's service provider and therefore must be disposed by the applica-
tion. In the Blazor Razor page shown in listing 5.5, the using var context = … will
dispose the DbContext instance when the scope of the local context variable is exited.

NOTE You can find the Razor page shown in listing 5.5 at http://mng.bz/aorz.

Implementing your database5.7 methods as a DI service
Although the constructor injection approach you used in the preceding section
works, there’s another way to use DI that provides better isolation of the database
access code: parameter injection. In ASP.NET Core, you can arrange for a service to be
injected into an action method via a parameter marked with the attribute [From-
Services]. You can provide a specific service that each action method in your control-
ler needs; this approach is both more efficient and simpler to unit-test. To see how it
works, you’re going to use a class called ChangePubDateService that’s in your service
layer to update the publication date of a book. This class allows the admin user to
change the publication date of a book, as shown in figure 5.6.

service.GetOriginal(id); service.UpdateBook(dto);

Update

POST: ChangePubDateGET: ChangePubDate

BookId
PublishDate

Figure 5.6 The two stages in changing the publication date of a book. The GET stage
calls the GetOriginal method to show the user the book and its current publication
date. Then the POST stage calls the UpdateBook method with the user set date.

http://mng.bz/aorz

141Implementing your database methods as a DI service
You can see that the process has two stages:

 You show the admin user the current publication date and allow them to
change it.

 The update is applied to the database, and you tell the user that it was successful.

To use parameter injection of your ChangePubDateService class, you need to do two
things:

 Register your class, ChangePubDateService, with the DI so that it becomes a ser-
vice you can inject by using DI.

 Use parameter injection to inject the class instance, ChangePubDate, into the
two ASP.NET action methods that need it (GET and POST).

This approach works well for building ASP.NET Core applications, and I’ve used it in
all my ASP.NET MVC projects for many years. In addition to providing good isolation
and making testing easier, this approach makes the ASP.NET Core controller action
methods much easier to write. You’ll see in section 5.7.2 that the code inside the
ChangePubDate action method is simple and short.

5.7.1 Registering your class as a DI service

You can register a class with DI in ASP.NET in numerous ways. The standard way is to
add an IChangePubDateService interface to the class. Technically, you don’t need an
interface, but using one is good practice and can be helpful in unit-testing. You also
use the interface in section 5.7.3 to make registering your classes simpler.

 The following listing shows the IChangePubDateService interface. Don’t forget
that the ASP.NET Core controller will be dealing with something of type IChangePub-
DateService, so you need to make sure that all the public methods and properties are
available in the interface.

public interface IChangePubDateService
{
 ChangePubDateDto GetOriginal(int id);
 Book UpdateBook(ChangePubDateDto dto);
}

Then you register this interface/class with the DI service. The default way to do this in
ASP.NET Core is to add a line to the ConfigureServices method in the Startup class.
This listing shows the updated method, with the new code in bold. You add the
ChangePubDateService as a transient, because you want a new version created every
time you ask for it.

TheListing 5.6 IChangePubDateService interface needed to register the class in DI

The ASP.NET CoreListing 5.7 ConfigureService method in the Startup class

public void ConfigureServices (IServiceCollection services)
{

142 CHAPTER 5 Using EF Core in ASP.NET Core web applications

e

 // Add framework services.
 services.AddControllersWithViews();
 var connection = Configuration
 .GetConnectionString("DefaultConnection");
 services.AddDbContext<EfCoreContext>(
 options => options.UseSqlServer(connection))

 services.AddTransient
 <IChangePubDateService, ChangePubDateService>();
}

5.7.2 Injecting ChangePubDateService into the ASP.NET action method

Having set up the ChangePubDateService class as a service that can be injected via DI,
now you need to create an instance in your ASP.NET Core AdminController. The two
ASP.NET Core action methods are both called ChangePubDate; one is a GET to fill in
the edit page, and one is a POST to do the update.

 Figure 5.7 shows how DI creates the ChangePubDateService service, which has an
instance of EfCoreDbContext injected via its constructor. Then the ChangePubDate-
Service is injected into the AdminController’s GET action via parameter injection. As

Registers the Change-
PubDateService class
as a service, with the
IChangePubDateServic
interface as the way to
access it

1. CRUD n as ceactio DI servi
You create a class with all the methods
for the ChangePubDate action. Then you
add an interface so you can register it
with DI.

2. Inject the Application DbContext
You add a constructor with a parameter
of type EfCoreContext. This means when
the service is created, an instance of the
EFCoreContext is injected.

3. Use parameter DI injection
Adding a [FromService] to a parameter
in the action allows you to get an instance
of the service called IChangePubDateService.

4. xecute hE t e service’s method
The action shown is a GET, which fills in
an edit display. For this, you call the
GetOriginal method in the service.

CRUD service:

class ChangePubDateService :
IChangePubDateService

{
public ChangePubDateService

()EfCoreContext context
{ _context = context; }

method GetOriginal(int id)
method UpdateBook(…)

}

Admin controller

Service layer

Presentation

(ASP.NET Core)

Action ChangePubDate (int id,
[FromServices]
IChangePubDateService
service)

{
var dto = service.

.GetOriginal(id);
return View(dto);

}

Figure 5.7 Using DI to provide a service often requires the DI provider to create other classes
first. In this fairly simple case, there are at least four levels of DI. The AdminController’s
ChangePubDate is called (bottom rectangle); then the [FromServices] attribute on one of the
method’s parameters tells the DI provider to create an instance of the ChangePubDateService
class. The ChangePubDateService (top rectangle) class requires an instance of the
EfCoreDbContext class, so the DI provider must create that instance too, which in turn requires
the DbContextOptions<EfCoreContext> to be created so that the EfCoreDbContext
class can be created.

143Implementing your database methods as a DI service

you will see, the DI provider is called numerous times to create all the classes needed
to handle the HTTP request.

 You could have provided an instance of the ChangePubDateService class via con-
structor injection, as you did with the application’s DbContext, but that approach has
a downside. AdminController contains several other database update commands,
such as adding a review to a book, adding a promotion to a book, and so on. Using DI
constructor injection would mean you were needlessly creating an instance of Change-
PubDateService class when one of these other commands is being called. By using DI
parameter injection into each action, you take only the time and memory cost of cre-
ating the single service you need. The following listing shows the ChangePubDate
ASP.NET GET action that’s called when someone clicks the Admin > Change Pub Date
link, wanting to change the publication date.

public IActionResult ChangePubDate
 (int id,
 [FromServices]IChangePubDateService service)
{
 var dto = service.GetOriginal(id);
 return View(dto);
}

5.7.3

Listing 5.8 The ChangePubDate action method in AdminController

The action called if the user clicks
the Admin > Change Pub Date link

Receives the primary key
of the book that the user
wants to change

ASP.NET DI injects the
ChangePubDateService
instance.

Uses the service
to set up a DTO
to show the userShows the page that allows the

user to edit the publication date

Line 3 (in bold) in this listing is the important one. You’ve used parameter injection
to inject, via DI, an instance of the ChangePubDateService class. The same line is also
in the POST version of the ChangePubDate action.

Note that the ChangePubDateService class needs the EfCoreContext class that’s
the application’s DbContext, in its constructor. That’s fine because DI is recursive; it’ll
keep filling in parameters, or other DI injections, as long as each class that’s needed
has been registered.

Improving registering your database access classes as services

Before leaving the topic of DI, I want to introduce a better way of registering your
classes as services via DI. The previous example, in which you made your ChangePub-
DateService class into a service, required you to add code to register that class as a
service in ASP.NET Core’s ConfigureServices. This process works, but it’s time-
consuming and error-prone, as you need to add a line of code to register each class
that you want to use as a service.

In the first edition of this book, I suggested using a DI library called Autofac
(https://autofaccn.readthedocs.io/en/latest) because it has a command that registers
all the classes with interfaces in an assembly (also known as a project). Since then, I’ve

https://autofaccn.readthedocs.io/en/latest

144 CHAPTER 5 Using EF Core in ASP.NET Core web applications
come across a tweet by David Fowler that links to a set of dependency injection con-
tainer benchmarks; see http://mng.bz/go2l. From that page, I found out that the
ASP.NET Core DI container is a lot faster than AutoFac! At that point, I built a library
called NetCore.AutoRegisterDi (see http://mng.bz/5jDz), which has only one job: to
register all classes with interfaces in an assembly by using the .NET Core DI Provider.

NOTE After I created my NetCore.AutoRegisterDi library, Andrew Lock
pointed me to an existing library called Scrutor; see his article at http://mng
.bz/6gly. Scrutor has more features for selecting classes to register than my
NetCore.AutoRegisterDi does, so do have a look at Scrutor.

HOW I ORGANIZE THE REGISTERING OF SERVICES WITH THE NET CORE DI CONTAINER
The NetCore.AutoRegisterDi library is simple: it scans one or more assembles; looks
for standard public, nongeneric classes that have public interfaces; and registers them
with NET Core’s DI provider. It has some simple filtering and some lifetime-setting
capabilities, but not much more (it’s only ~80 lines of code). But this simple piece of
code gives you two benefits over manually registering your classes/interfaces with the
DI provider:

 It saves you time because you don’t have to register every interface/class manually.
 More important, it automatically registers your interfaces/classes so that you

don’t forget.

The second reason is why I find this library to be so useful: I can’t forget to register a
service. The following listing shows you a typical call to the NetCore.AutoRegisterDi
library.

var assembly1ToScan = Assembly.GetAssembly(typeof(ass1Class));
var assembly2ToScan = Assembly.GetAssembly(typeof(ass2Class));

service.RegisterAssemblyPublicNonGenericClasses(
 assembly1ToScan, assembly2ToScan)
 .Where(c => c.Name.EndsWith("Service"))
 .AsPublicImplementedInterfaces();

I could put a call like the one shown in listing 5.9 in the Configure method in
ASP.NET Core’s Startup class that registers all the assemblies, but I don’t. I prefer to
add an extension method in every project that has classes that need to register as a DI
service. That way, I have isolated the setup of each project into one class in each proj-
ect that needs it.

Listing 5.9 Using NetCore.AutoRegisterDi to register classes as DI services

You can get references to the
assemblies by providing a class

that is in that assembly.

This method takes zero to many assem-
blies to scan. If no assembly is provided,
it will scan the calling assembly.

This optional filter system
allows you to filter the classes
that you want to register.

Registers all the classes that have public interfaces. By default,
the services are registered as transient, but you can change that
registration by adding a ServiceLifetime parameter or attributes.

http://mng.bz/go2l
http://mng.bz/5jDz
http://mng.bz/6gly
http://mng.bz/6gly
http://mng.bz/6gly

145Implementing your database methods as a DI service

r-
n-
thod
er
s
ly.

 Each extension method uses the NetCore.AutoRegisterDi library to register the
standard classes/services in the project. The extension method also has space for
additional code, such as handcoded registration of classes/services that can’t be regis-
tered automatically, such as generic classes/services.

 The following listing shows an example of the extension method in the service
layer. This code needs the NetCore.AutoRegisterDi NuGet package to be added to
that project.

public static class NetCoreDiSetupExtensions
{
 public static void RegisterServiceLayerDi
 (this IServiceCollection services)
 {
 services.RegisterAssemblyPublicNonGenericClasses()
 .AsPublicImplementedInterfaces();

 }
}

The Book App in part 1 of the book has classes/services that need registering in the
ServiceLayer, BizDbAccess, and BizLogic projects. To do so, you copy the code in list-
ing 5.10 into the other projects and change the name of the method so that each one
can be identified. A call to each method automatically registers the standard services
because by default, the RegisterAssemblyPublicNonGenericClasses scans the assem-
bly that it’s called from.

 Now that you have individual versions of listing 5.8 in each of the three projects
that need them, you need to call each one to set up each project. You do so by adding
the following code to the Configure method in ASP.NET Core’s Startup class.

public void ConfigureServices(IServiceCollection services)
{
 //… other registrations left out

 services.RegisterBizDbAccessDi();
 services.RegisterBizLogicDi();
 services.RegisterServiceLayerDi();
}

Extension method in ServiceLayer that handles all the DI service registeringListing 5.10

Calling all your registration methods in the projects that need themListing 5.11

Creates a static
class to hold my

extension This class is in the
ServiceLayer, so I give the
method a name with that
Assembly name in it.

The NetCore.AutoRegisterDi library
understands NET Core DI, so you can
access the IServiceCollection interface.

Calling the Registe
AssemblyPublicNo
GenericClasses me
without a paramet
means that it scan
the calling assemb

This method will
register all the

public classes with
interfaces with a

Transient lifetime.

For handcoded
registrations that
NetCore.AutoRegisterDi
can’t do, such as
generic classes

This method in
the Startup class
sets up services
for ASP.NET Core.

You add your
registration extension
methods here.

The result is that all the classes you have written with public interfaces in the Service-
Layer, BizDbAccess, and BizLogic projects will automatically be registered as DI services.

146 CHAPTER 5 Using EF Core in ASP.NET Core web applications

Deploying an ASP.NET Core application5.8
with a database
After developing your ASP.NET Core application with a database, at some point you’ll
want to copy it to a web server so that others can use it. This process is called deploying
your application to a host. This section shows how.

NOTE For more information on ASP.NET Core deployment, Andrew Lock’s
book ASP.NET Core in Action, 2nd ed. (Manning, 2020; see https://www
.manning.com/books/asp-net-core-in-action-second-edition) has a chapter on
deployment; or see Microsoft’s online documentation at http://mng.bz/op7M.

5.8.1 Knowing where the database is on the web server

When you run your ASP.NET Core application locally during development, it accesses
a database server on your development computer. This example uses Visual Studio,
which comes with a local SQL server for development that’s available via the reference
(localdb)\mssqllocaldb. As explained in section 5.4.1, the connection string for
that database is held in the appsettings.Development.json file.

When you deploy your application to a web server, Visual Studio by default rebuilds
your application with the ASPNETCORE_ENVIRONMENT variable set to Production. This set-
ting causes your application to try to load the appsetting.json file, followed by the
appsettings.Production.json file. The appsettings.Production.json file is the place where
you (or the publishing system) put the connection string for your host database.

TIP At startup, appsettings.Production.json is read last and overrides any set-
ting with the same name in the appsetting.json file. Therefore, you can put
your development connection string setting in the appsetting.json file if you
want to, but best practice is to put it in the appsettings.Development.json file.

You can set your hosted database’s connection string manually with Visual Studio’s
Publish feature; right-click the ASP.NET Core project in Solution Explorer view and
select Publish. When you publish your application, Visual Studio creates/updates the
appsettings.Production.json file with the connection string you provided and deploys
that file with the application. On startup, the constructor of the ASP.NET Core’s
Startup class reads both files, and the appsettings.Production.json connection string
is used.

Most Windows hosting systems provide a Visual Studio publish profile that you can
import to the Publish feature. That profile makes setting up deployment much easier,
as it not only details where the ASP.NET Core application should be written to, but
also provides the connection string for the hosted database.

Cloud systems such as Azure Web App service have a feature that can override
properties in your appsettings.json file on deployment. This means you can set your
database connection, which contains the database username and password, within
Azure; your username and password never exist on your development system and,
hence, are more secure.

https://www.manning.com/books/asp-net-core-in-action-second-edition
https://www.manning.com/books/asp-net-core-in-action-second-edition
https://www.manning.com/books/asp-net-core-in-action-second-edition
http://mng.bz/op7M

147Using EF Core’s migration feature to change the database’s structure

5.8.2

5.9

5.9.1

Creating and migrating the database

When your application and its database are running on a web server, control of the
database changes. On your development machine, you can do pretty much anything
to the database, but after you deploy to a web server, the rules can change. Depend-
ing on the host or your company’s business rules, what you can do to the database
will vary.

A version of the Book App from the first edition of this book, for example, was
hosted on a cost-effective (cheap!) shared hosting platform (WebWiz in the United
Kingdom), which doesn’t allow your application to create or delete the database. I’ve
also used Microsoft’s Azure cloud system, on which I can delete and create a database,
but creating a database takes a long time.

The simplest approach, which works on all the systems I’ve come across, is getting
the hosting system to create an empty database and then applying the commands to
alter the database structure. The easiest way is via EF Core migrations, which I’m
about to describe, but there are other ways.

WARNING Before I start, I need to warn you that changing the database struc-
ture of a website needs to be approached carefully, especially for 24/7 web-
sites that need to keep working during a database change. Lots of things can
go wrong, and the effect could be lost data or a broken website.

This chapter describes EF Core migrations, which are a good system but has their lim-
itations. Chapter 9 presents ways of handling database migrations, including more-
sophisticated techniques, and discusses the pros and cons of each approach.

Using EF Core’s migration feature to change
the database’s structure
This section describes how to use EF Core’s migration feature to update a database.
You can use migrations on both your development machine and your host, but as
explained in section 5.8.2, the challenging one is the database on your web host. This
book has is a whole chapter (chapter 9) on migrations, but this section gives you an
overview of using migrations in ASP.NET Core applications.

Updating your production database

As you may remember from chapter 2, which briefly introduced EF Core migrations,
you can type two commands into Visual Studio’s Package Manager Console (PMC):

 Add-Migration—Creates migration code in your application to create/update
your database structure

 Update-Database—Applies the migration code to the database referred to by
the application’s DbContext

The first command is fine, but the second command will update only the default
database, which is likely to be on your development machine, not your production

148 CHAPTER 5 Using EF Core in ASP.NET Core web applications
database. What happens when you want to deploy your web application to some sort
of web host, and the database isn’t at the right level to match the code? You have four
ways to update your production database if you’re using EF Core’s migration feature:

 You can have your application check and migrate the database during startup.
 You can migrate the database in a continuous integration (CI) and continuous

delivery (CD) pipeline.
 You can have a standalone application migrate your database.
 You can extract the SQL commands needed to update your database and then

use a tool to apply those SQL commands to your production database.

The simplest option is the first one, which I’m going to describe here. It does have
limitations, such as not being designed to work in multiple-instance web hosting
(called scaling out in Azure). But having the application do the migration is simple and
is a good first step in using EF Core’s migrations in an ASP.NET Core application.

WARNING Microsoft recommends that you update a production database by
using SQL commands, which is the most robust approach. But it requires
quite a few steps and tools that you may not have on hand, so I cover the sim-
pler Database.Migrate approach. Chapter 9 covers every aspect of database
migrations, including the advantages and limitations of each approach.

Having your application migrate your database on startup5.9.2

The advantage of having your application apply any outstanding database migrations
at startup is that you can’t forget to do it: deploying a new application will stop the old
application and then start the new application. By adding code that’s run when the
application starts, you can call the context.Database.Migrate method, which applies
any missing migrations to the database before the main application starts—simple,
until it goes wrong, which is why chapter 9, dedicated to database migrations, dis-
cusses all these issues. But for now, let’s keep to the simple approach.

 Having decided to apply the migration on startup, you need to decide where to
call your migration code. The recommended approach to adding any startup code
to an ASP.NET Core application is to append your code to the end of the Main
method in ASP.NET Core’s Program class. The normal code in the Main method is
shown in this code snippet:

public static void Main(string[] args)
{
 CreateHostBuilder(args).Build().Run();
}

The best way to add the migration code is to build an extension method holding the
EF Core code you want to run and append it after the CreateHostBuilder(args)
.Build() call. The following listing shows the ASP.NET Core’s Program class with one
new line (in bold) added to call your extension method, called MigrateDatabaseAsync.

149Using EF Core’s migration feature to change the database’s structure

s m

c

NOTE I will be using async/await commands in this section. I cover async/
await in section 5.10.

public class Program
{
 public static async Task Main(string[] args)
 {
 var host = CreateHostBuilder(args).Build();
 await host.MigrateDatabaseAsync();
 await host.RunAsync();
 }
 //… other code not shown
}

The MigrateDatabaseAsync method should contain all the code you want to run at
startup to migrate, and possibly seed, your database. The following listing shows one
example of how you might use this method to migrate your database.

public static async Task MigrateDatabaseAsync
 (this IHost webHost)
{
 using (var scope = webHost.Services.CreateScope())
 {
 var services = scope.ServiceProvider;
 using (var context = services
 .GetRequiredService<EfCoreContext>())
 {
 try
 {
 await context.Database.MigrateAsync();
 //Put any complex database seeding here
 }
 catch (Exception ex)
 {
 var logger = services
 .GetRequiredService<ILogger<Program>>();
 logger.LogError(ex,
 "An error occurred while migrating the database.");

 throw;
 }
 }
 }
}

ASP.NET CoreListing 5.12 Program class, including a method to migrate the database

TheListing 5.13 MigrateDatabaseAsync extension method to migrate the database

You change the Main method to
being async so that you can use
async/await commands in your
SetupDatabaseAsync method.

This call runs the
Startup.Configure method,
which sets up the DI service
you need to setup/migrate
your database.

Calls your
extension

method to
igrate your

database At the end, you
start the ASP.NET
Core application.

Creates an extension
method that takes in IHost

Creates a scoped service provider. After the using block is left,
all the services will be unavailable. This approach is the rec-
ommended way to obtain services outside an HTTP request.

Creates an instance of the
application’s DbContext
that has a lifetime of only
the outer using statement

Calls EF Core’s
MigrateAsync

ommand to apply
any outstanding

migrations at
startup

You can add a
method here to
handle complex

seeding of the
database if

required.

If an exception occurs, you
log the information so that
you can diagnose it.

Rethrows the exception because
you don’t want the application
to carry on if a problem with
migrating the database occurs

150 CHAPTER 5 Using EF Core in ASP.NET Core web applications

The series of calls at the start of the listing is the recommended way to get a copy of
the application’s DbContext inside the Configure method in the ASP.NET Core
Startup class. This code creates a scoped lifetime instance (see section 5.3.3) of the
application’s DbContext that can be safely used to access the database.

 The key commands in listing 5.13, inside the try block (in bold), call EF Core’s
MigrateAsync command. This command applies any database migration that exists
but hasn’t already been applied to the database.

EF6 The EF Core approach to database setup is different from that of EF6.x.
On first use of the DbContext, EF6.x runs various checks by using database ini-
tializers, whereas EF Core does nothing at all to the database on initialization.
Therefore, you need to add your own code to handle migrations. The down-
side is that you need to write some code, but the upside is that you have total
control of what happens.

SETTING UP INITIAL DATABASE CONTENT DURING STARTUP
In addition to migrating the database, you may want to add default data to the data-
base at the same time, especially if it’s empty. This process, called seeding the database,
covers adding initial data to the database or maybe updating data in an existing data-
base. The main way to seed your database with static data is via migrations, which I
cover in chapter 9. The other option is to run some code when the migration has fin-
ished. This option is useful if you have dynamic data or complex updates that the
migration seeding can’t handle.

 An example of running code after the migration is adding example Books, with
Authors, Reviews, and so on to the Book App if no books are already present. To do
this, you create an extension method, SeedDatabaseAsync, which is shown in the fol-
lowing listing. The code is added after the call to the Database.MigrateAsync
method in listing 5.13.

public static async Task SeedDatabaseAsync
 (this EfCoreContext context)
{
 if (context.Books.Any()) return;

 context.Books.AddRange(
 EfTestData.CreateFourBooks());
 await context.SaveChangesAsync();
}

Our exampleListing 5.14 MigrateAndSeed extension method

Extension method that takes in
the application’s DbContext

If there are existing books, you
return, as you don’t need to add any.

Database has no books, so you seed it;
in this case, you add the default books.

SaveChangesAsync is called
to update the database.

In this example SeedDatabaseAsync method, you check whether any books are in the
database and then add them only if the database is empty (has just been created, for
example). This example is a simple one, and here are others:

 Loading data from a file on startup (see the SetupHelpers class in the Service-
Layer in the associated GitHub repo)

151Using async/await for better scalability

 Filling in extra data after a specific migration—if you added a FullName prop-
erty/column, for example, and wanted to fill it in from the FirstName and
LastName columns

WARNING I tried doing a database update like the previous FullName exam-
ple on a large database with tens of thousands of rows to update, and it failed.
The failure occurred because the update was done via EF Core on startup,
and it took so long for the ASP.NET Core application to start that Azure
timed out the web application. I now know that I should have done the
update by using SQL in the migration (see the example in section 9.5.2),
which would have been a lot faster.

If you want to run your seed database method only when a new migration has been
applied, you can use the DbContext method Database.GetPendingMigrations to get
the list of migrations that are about to be applied. If this method returns an empty col-
lection, there is no pending migration in the current database. You must call Get-
PendingMigrations before you execute the Database.Migrate method, because the
pending migrations collection is empty when the Migrate method has finished.

EF6 In EF6.x, the Add-Migration command adds a class called Configuration,
which contains a method called Seed that’s run every time the application
starts. EF Core uses the HasData configuration method, which allows you to
define data to be added during a migration (chapter 9).

5.10 Using async/await for better scalability
Async/await is a feature that allows a developer to easily use asynchronous programming,
running tasks in parallel. Up to this point in this book, I have not used async/await
because I hadn’t explained this feature. But you need to know that in real applications
that have multiple requests happening at the same time, such as ASP.NET Core, most
of your database commands will use async/await.

Async/await is a big topic, but in this section, you’ll look only at how using async/
await can benefit an ASP.NET Core’s application scalability. It does this by releasing
resources while waiting for the database server to carry out the command(s) that EF
Core has asked it to do.

NOTE If you want to find out more about async/await’s other features, such
as running tasks in parallel, have a look at the Microsoft documentation at
http://mng.bz/nM7K.

5.10.1 Why async/await is useful in a web application using EF Core

When EF Core accesses the database, it needs to wait for the database server to run the
commands and return the result. For large datasets and/or complex queries, this pro-
cess can take hundreds of milliseconds or even seconds. During that time, a web applica-
tion is holding on to a thread from the application’s thread pool. Each access to the web
application needs a thread from the thread pool, and there’s an upper limit.

http://mng.bz/nM7K

152 CHAPTER 5 Using EF Core in ASP.NET Core web applications

 Using an async/await version of an EF Core command means that the user’s cur-
rent thread is released until the database access finishes, so someone else can use that
thread. Figure 5.8 shows two cases. In case A, two users are simultaneously accessing
the website by using normal synchronous accesses, and they clash, so two threads are
needed from the thread pool. In case B, user 1’s access is a long-running database
access that uses an async command to release the thread while it’s waiting for the data-
base. This allows user 2 to reuse the thread that the async command released while
user 2 is waiting for the database.

User 1

Case B: Using async/awaitCase A: No async/await

Here, two simultaneous users use normal,

synchronous access. Each needs a thread,

T1 and T2, from the thread pool.

The database request is done via an async

command, whilewhich releases the thread

it’s waiting for the database to return.

T1

Request

User 2

T2

Request

User 1

T1 T1

Database request

await ...

User 2

T1

Request

Because user 1 has relinquished the thread, T1, user 2

can use T1 rather than needing an extra thread.

Figure 5.8 Differences in database access. In the normal, synchronous database access in
case A, two threads are needed to handle the two users. In case B, user 1’s database access
is accomplished with an async command, which frees the thread, T1, making it available for
user 2.

NOTE You can read a more in-depth explanation of what async/await does in
an ASP.NET web application at http://mng.bz/vz7M.

The use of async/await improves the scalability of your website: your web server will be
able to handle more concurrent users. The downside is that async/await commands
take slightly longer to execute because they run more code. A bit of analysis is needed
to get the right balance of scalability and performance.

5.10.2 Where should you use async/await with database accesses?

The general advice from Microsoft is to use async methods wherever possible in a web
application because they give you better scalability. In real applications, that’s what I
do. I haven’t done it in the part 1 (and 2) Book App, because it’s a little easier to
understand the code without await statements everywhere, but the part 3 Book App,
which is significantly enhanced, uses async throughout.

Sync commands are slightly faster than the equivalent async command (see
table 14.5 for the actual differences), but the time difference is so small that sticking

http://mng.bz/vz7M

153Using async/await for better scalability
to Microsoft’s guideline “Always use async commands in ASP.NET applications” is
the right choice.

5.10.3 Changing over to async/await versions of EF Core commands

Let me start by showing you a method that calls an async version of an EF Core com-
mand; then I’ll explain it. Figure 5.9 shows an async method that returns the total
number of books in the database.

EF Core contains an async version of all the applicable commands, all of which have a
method name that ends with Async. As you saw in the preceding async method exam-
ple, you need to carry the “async-ness” to the method in which you call the async EF
Core command.

 The rule is that after you use an async command, every caller must either be an
async method or should pass on the task directly until it gets to the top-level caller,
which must handle it asynchronously. ASP.NET Core supports async for all the main
commands, such as controller actions, so this situation isn’t a problem in such an
application.

 The next listing shows an async version of your Index action method from your
HomeController, with the parts you have to change to make this command use an
async database access, with the async parts in bold.

public async Task<IActionResult> Index
 (SortFilterPageOptions options)
{
 var listService =
 new ListBooksService(_context);

The async Index action method from theListing 5.15 HomeController

The async keyword tells the compiler
that the method is asynchronous and
contains an await.

Asynchronous methods return the type
Task, Task<T>, or other task-like type. In
this case you return a Task<int> because
the result of the method is an int.

By convention, the name of a
method that’s asynchronous
should end with Async.

EF Core has many async
versions of its normal sync
commands. CountAsync
returns the count of rows
in the query.

The await keyword indicates the
point where the method will
wait until the asynchronous
method it calls has returned.

p iublic async Task<
(GetNumBooksAsync

EfCoreContext
{

return await
context.Books

();.CountAsync
}

Figure 5.9 The anatomy of an asynchronous method, highlighting the parts of the code that are
different from a normal synchronous method

You make the Index action
method async by using the
async keyword, and the
returned type has to be
wrapped in a generic task.

154 CHAPTER 5 Using EF Core in ASP.NET Core web applications
 var bookList = await listService
 .SortFilterPage(options)
 .ToListAsync();

 return View(new BookListCombinedDto
 (options, bookList));
}

Because you design your SortFilterPage method to return IQueryable<T>, it’s sim-
ple to change database access to async by replacing the ToList method with the
ToListAsync method.

TIP Business logic code is often a good candidate for using async databases’
access methods because their database accesses often contain complex read/
write commands. I’ve created async versions of the BizRunners in case you
need them. You can find them in the service layer in the BizRunners directory
(see http://mng.bz/PPlw).

Another part of async is the CancellationToken, a mechanism that allows you to stop
an async method manually or on a timeout. All the async LINQ and EF Core com-
mands, such as SavChangesAsync, take in an optional CancellationToken. Section 5.11
demonstrates the use of a CancellationToken to stop any recurring background tasks
when ASP.NET Core is stopped.

5.11 Running parallel tasks: How to provide the DbContext
In some situations, running more than one thread of code is useful. By this, I mean
that running a separate task—a parallel set of code that runs “at the same time” as the
main application. I put “at the same time” in quotes because if there’s only one CPU,
the two tasks need to share it.

 Parallel tasks are useful in various scenarios. Say you’re accessing multiple, exter-
nal sources that you need to wait for before they return a result. By using multiple
tasks running in parallel, you gain performance improvements. In another scenario,
you might have a long-running task, such as processing order fulfillment in the
background. You use parallel tasks to avoid blocking the normal flow and making
your website look slow and unresponsive. Figure 5.10 shows an example background
task in which a long-running process is run on another thread so that the user isn’t
held up.

 Running parallel tasks isn’t specific to ASP.NET Core; it can occur in any applica-
tion. But larger web applications often use this feature, so I explain it in this chap-
ter. The solution you will build is a background service that runs every hour and logs
how many Reviews are in the database. This simple example will show you how to
do two things:

 Obtain an instance of your application’s DbContext to run in parallel
 Use the ASP.NET Core’s IHostedService feature to run your background task

You must await the result
of the ToListAsync method,
which is an async command.

You can change SortFilterPage
to async by replacing .ToList()
with .ToListAsync().

http://mng.bz/PPlw

155Running parallel tasks: How to provide the DbContext

ice
hod
iod

5.11.1 Obtaining an instance of your application’s DbContext
to run in parallel

If you want to run any code that uses EF Core in parallel, you can’t use the normal
approach of getting the application’s DbContext because EF Core’s DbContext isn’t
thread-safe; you can’t use the same instance in multiple tasks. EF Core will throw an
exception if it finds that the same DbContext instance is used in two tasks.

 In ASP.NET Core, the correct way to get a DbContext to run in the background is
by using a DI scoped service. This scoped service allows you to create, via DI, a DbContext
that’s unique to the task that you’re running. To do this, you need to do three things:

 Get an instance of the IServiceScopeFactory via constructor injection.
 Use the IServiceScopeFactory to a scoped DI service.
 Use the scoped DI service to obtain an instance of the application’s DbContext

that is unique to this scope.

The following listing shows the method in your background task that uses the IService-
ScopeFactory to obtain a unique instance of your application’s DbContext. This
method counts the number of Reviews in the database and logs that number.

private async Task DoWorkAsync(CancellationToken stoppingToken)
{
 using (var scope = _scopeFactory.CreateScope())
 {

The method inside the background service that accesses the databaseListing 5.16

User User

Do other

things

t will take a lotSome task tha

e user doesn’tof time, but th

wer right nowneed the ans

Background task runs the long-running process.

Alert user

that task has

finished

T
im

e

1. T us a orhe er sks f
something that will
take some time to do.

2. The ASP.NET Core action
queues a message to a
background task and
returns immediately.

3. The task runs on a separate thread,
which allows the user’s thread to continue.

4. The user can do
other things and
isn’t held up.

5. The background task
uses SignalR to tell the
user the task is finished.

alRSign

Figure 5.10 Moving long-running processes to a background task that runs in parallel to the main
website, which makes the website feel more responsive. In this example, I use an ASP.NET Core
backgroundService to run the long-running task. When the task is finished, it uses SignalR to
update the user’s screen with a message saying that the long-running task has finished successfully.
(SignalR is a library that allows an ASP.NET Core app to send messages to the user’s screen.)

The IHostedServ
will call this met
when the set per
has elapsed.Uses the ScopeProviderFactory to create a new DI scoped provider

156 CHAPTER 5 Using EF Core in ASP.NET Core web applications

ISer
Fact
the

that
cr
 var context = scope.ServiceProvider
 .GetRequiredService<EfCoreContext>();
 var numReviews = await context.Set<Review>()
 .CountAsync(stoppingToken);
 _logger.LogInformation(
 "Number of reviews: {numReviews}", numReviews);
 }
}

The important point of the code is that you provide ServiceScopeFactory to each
task so that it can use DI to get a unique instance of the DbContext (and any other
scoped services). In addition to solving the DbContext thread-safe issue, if you are
running the method repeatedly, it’s best to have a new instance of the application’s
DbContext so that data from the last run doesn’t affect your next run.

5.11.2 Running a background service in ASP.NET Core

Earlier, I described how to get a thread-safe version of the application’s DbContext;
now you’ll use it in a background service. The following background example isn’t as
complex as the one show in figure 5.10, but it covers how to write and run back-
ground services.

 ASP.NET Core has a feature that allows you to run tasks in the background. This
situation isn’t really a database issue, but I show you the code for completeness. (I rec-
ommend that you look at Microsoft’s ASP.NET Core documentation on background
tasks at http://mng.bz/QmOj.) This listing shows the code that runs in another thread
and calls the DoWorkAsync method shown in listing 5.16 every hour.

public class BackgroundServiceCountReviews : BackgroundService
{
 private static TimeSpan _period =
 new TimeSpan(0,1,0,0);

 private readonly IServiceScopeFactory _scopeFactory;
 private readonly ILogger<BackgroundServiceCountReviews> _logger;

 public BackgroundServiceCountReviews(
 IServiceScopeFactory scopeFactory,
 ILogger<BackgroundServiceCountReviews> logger)
 {
 _scopeFactory = scopeFactory;
 _logger = logger;
 }

An ASP.NET Core background service that callsListing 5.17 DoWorkAsync every hour

Because of the scoped DI provider,
the DbContext instance created
will be different from all the other
instances of the DbContext.

Counts the reviews, using an async
method. You pass the stoppingToken

to the async method because doing
so is good practice.

Logs the information

Inheriting the BackgroundService class means that
this class can run continuously in the background.

Holds the delay between each call to
the code to log the number of reviews

The
viceScope-
ory injects
 DI service
you use to
eate a new

DI scope.

http://mng.bz/QmOj

157Running parallel tasks: How to provide the DbContext

rep
the D

me
d

next
 protected override async Task ExecuteAsync
 (CancellationToken stoppingToken)
 {
 while (!stoppingToken.IsCancellationRequested)
 {
 await DoWorkAsync(stoppingToken);
 await Task.Delay(_period, stoppingToken);
 }
 }

 private async Task DoWorkAsync…
 //see listing 5.16
}

You need to register your background class with the NET DI provider, using the
AddHostedService method. When the Book App starts, your background task will be
run first, but when your background task gets to a place where it calls an async
method and uses the await statement, control goes back to the ASP.NET Core code,
which starts up the web application.

5.11.3 Other ways of obtaining a new instance of
the application’s DbContext

Although DI is the recommended method to get the application’s DbContext, in
some cases, such as a console application, DI may not be configured or available. In
these cases, you have two other options that allow you to obtain an instance of the
application’s DbContext:

 Move your configuration of the application’s DbContext by overriding the
OnConfiguring method in the DbContext and placing the code to set up
the DbContext there.

 Use the same constructor used for ASP.NET Core and manually inject the data-
base options and connection string, as you do in unit tests (see chapter 17).

The downside of the first option is it uses a fixed connection string, so it always
accesses the same database, which could make deployment to another system difficult
if the database name or options change. The second option—providing the database
options manually—allows you to read in a connection string from the appsettings.json
or a file inside your code.

 Another issue to be aware of is that each call will give you a new instance of the
application’s DbContext. From the discussions of lifetime scopes in section 5.3.3, at
times you might want to have the same instance of the application’s DbContext to
ensure that tracking changes works. You can work around this issue by designing your
application so that one instance of the application’s DbContext is passed between all
the code that needs to collaborate on database updates.

The BackgroundService
class has a ExecuteAsync
method that you override
to add your own code.

This loop
eatably calls
oWorkAsync
thod, with a

elay until the
 call is made.

158 CHAPTER 5 Using EF Core in ASP.NET Core web applications
Summary
 ASP.NET Core uses dependency injection (DI) to provide the application’s

DbContext. With DI, you can dynamically link parts of your application by let-
ting DI create class instances as required.

 The ConfigureServices method in ASP.NET Core’s Startup class is the place
to configure and register your version of the application’s DbContext by using a
connection string that you place in an ASP.NET Core application setting file.

 To get an instance of the application’s DbContext to use with your code via DI,
you can use constructor injection. DI will look at the type of each of the con-
structor’s parameters and attempt to find a service for which it can provide an
instance.

 Your database access code can be built as a service and registered with the DI.
Then you can inject your services into the ASP.NET Core action methods
via parameter injection: the DI will find a service that finds the type of an
ASP.NET Core action method’s parameter that’s marked with the attribute
[FromServices].

 Deploying an ASP.NET Core application that uses a database requires you to
define a database connection string that has the location and name of the data-
base on the host.

 EF Core’s migration feature provides one way to change your database if your
entity classes and/or the EF Core configuration change. The Migrate method
has some limitations when used on cloud hosting sites that run multiple
instances of your web application.

 Async/await tasking methods on database access code can make your website
handle more simultaneous users, but performance could suffer, especially on
simple database accesses.

 If you want to use parallel tasks, you need to provide a unique instance of the
application’s DbContext by creating a new scoped DI provider.

For readers who are familiar with EF6.x:

 The way you obtain an instance of the application’s DbContext in ASP.NET
Core is via DI.

 Compared with EF6.x, EF Core has a different approach to creating the first
instance of a DbContext. EF6.x has database initializers and can run a Seed
method. EF Core has none of these EF6.x features but leaves you to write the
specific code you want to run at startup.

 Seeding the database in EF Core is different from the way EF6.x works. The EF
Core approach adds seeding to migrations, so they are run only if a migration is
applied to the database; see chapter 9 for more information.

Tips and techniques
for reading and

writing with EF Core
The first four chapters cover different ways to read/write to a database, and in
chapter 5, you used that information to build the Book App—an ASP.NET Core
web application. This chapter brings together lots of different tips and techniques
for reading and writing data with EF Core.

 The chapter is split into two sections: reading from the database and writing to
the database. Each section covers certain read/write issues you may come across,
but at the same time explains how EF Core achieves the solutions. The aim is to

This chapter covers
 Selecting the right approach to read data from

the database

 Writing queries that perform well on the
database side

 Avoiding problems when you use Query Filters
and special LINQ commands

 Using AutoMapper to write Select queries
more quickly

 Writing code to quickly copy and delete entities
in the database
159

160 CHAPTER 6 Tips and techniques for reading and writing with EF Core
give you lots of practical tips by solving different problems and, at the same time,
deepen your knowledge of how EF Core works. The tips are useful, but in the long
run, becoming an expert on EF Core is going to make you a better developer.

TIP Don’t forget that the companion Git repo (http://mng.bz/XdlG) con-
tains unit tests for every chapter of the book. For this chapter, look in the
Test project in the master branch for classes starting with Ch06_. Sometimes,
seeing the code is quicker than reading the words.

Reading from the database6.1
This section covers different aspects and examples of reading data from a database.
The aim is to expose you to some of the inner working of EF Core by looking at differ-
ent problems and issues. On the way, you will pick up various tips that may be useful as
you build applications with EF Core. Here is the list of topics on reading from the
database via EF Core:

 Exploring the relational fixup stage in a query
 Understanding what AsNoTracking and its variant do
 Reading in hierarchical data efficiently
 Understanding how the Include method works
 Making loading navigational collections fail-safe
 Using Query Filters in real-world situations
 Considering LINQ commands that need special attention
 Using AutoMapper to automate building Select queries
 Evaluating how EF Core creates an entity class when reading data in

Exploring the relational fixup stage in a query6.1.1

When you query the database by using EF Core, a stage called relational fixup runs to
fill in the navigational properties of other entity classes included in the query. I
described this process in section 1.9.2, where the Book entity was linked to its Author.
Up to this point, all the queries you have seen link only the entity classes read in by the
current query. But in fact, the relational fixup on a normal, read-write query can link
outside a single query to any tracked entities, as described in this section.

 Whenever you read in entity classes as tracked entities (your query didn’t include
the command AsNoTracking), the relation fixup stage will run to link up navigational
properties. The important point is that the relation fixup stage doesn’t only look at
the data in your query; it also looks at all the existing tracked entities when it’s fill-
ing in the navigational properties. Figure 6.1 shows two ways to load a Book with its
Reviews, both of which fill in the Book’s Reviews navigational property.

 As this simple example shows, the relational fixup that is run when a query has fin-
ished will fill in any navigational links based on the database key constraints, and it’s
pretty powerful, If you loaded all the Books, Reviews, BookAuthor, and Authors in
four separate queries, for example, EF Core would correctly link up all the navigational

http://mng.bz/XdlG

161Reading from the database

6.1.2

var book = context.Books
s).Include(x => x.Review
== bookId);.Single(x => x.BookId

book.Reviews.Count.ShouldEqual(2);

var book = context.Books
.Single(x => x.BookId == bookId);

var reviews = context.Set<Review>()
.Where(x => x.BookId == bookId).ToList();

book.Reviews.Count.ShouldEqual(2);

2. Two separate queries1. One query, using Include

Same result—the book has its Reviews navigation property
filled with the Reviews whose foreign key links to the book.

Figure 6.1 This figure shows a single query that loads a Book with its Reviews, using the
Include method to load the Reviews (see code on the left). The query on the right loads the
book without its Reviews; then it does a second query that loads the Reviews separately.
Both versions of the code produce the same result: a Book entity is loaded, and its Reviews
navigational property is also loaded, with the Reviews linked to that Book.

properties. The following code snippet does just that: the books read in the first line
start with no relationships filled in, but by the end of the four lines of code, the book’s
Reviews and AuthorsLink navigational properties are filled in, and the BookAuthor’s
Book and Author navigational properties are also filled in:

var books = context.Books.ToList();
var reviews = context.Set<Review>().ToList();
var authorsLinks = context.Set<BookAuthor>().ToList();
var authors = context.Authors.ToList();

This feature of EF Core allows you to do some useful things. In section 6.1.3, you’ll
learn how to read hierarchical data efficiently by using this technique.

Understanding what AsNoTracking and its variant do

When you query the database via EF Core, you are doing so for a reason: to alter the
data read in, such as changing the Title property in the Book entity, or to perform a
read-only query, such as displaying the Books with their prices, authors, and so on. This
section covers how the AsNoTracking and AsNoTrackingWithIdentityResolution

methods improve the performance of a read-only query and affect the data read in.
The following code snippet from chapter 1 uses AsNoTracking to display a list of Books
and their Authors on the console:

var books = context.Books
.AsNoTracking()
.Include(a => a.Author)
.ToList();

A normal query without either of two AsNoTracking methods will track the entity
classes loaded by the query, allowing you to update or delete the entity classes you’ve
loaded. But if you need only a read-only version, you can include two methods in your

162 CHAPTER 6 Tips and techniques for reading and writing with EF Core

query. Both methods improve performance and ensure that changes to the data
won’t be written back to the database, but there are slight differences in the rela-
tionships returned:

 AsNoTracking produces a quicker query time but doesn’t always represent the
exact database relationships.

 AsNoTrackingWithIdentityResolution typically is quicker than a normal query
but slower than the same query with AsNoTracking. The improvement is that
the database relationships are represented correctly, with a entity class instance
for each row in the database.

Let’s start by looking at the differences in the data returned by a query that uses the two
AsNoTracking variants. To give you the best performance, the AsNoTracking method
doesn’t execute the feature called identity resolution that ensures that there is only one
instance of an entity per row in the database. Not applying the identity resolution fea-
ture to the query means that you might get an extra instances of entity classes.

 Figure 6.2 shows what happens when you use the AsNoTracking and AsNoTracking-
WithIdentityResolution methods on the super-simple database in chapter 1. That
example has four books, but the first two books have the same author. As the figure
shows, the AsNoTracking query creates four Author class instances, but the database
has only three rows in the Author table.

Author

Book Author Book Author

AsNoTracking query AsNoTrac ingWithIdentityResolutionk

query (and normal query)

Two instances, same data One unique instance

Figure 6.2 The first two books have the same author, Martin Fowler. In the AsNoTracking
query on the left, EF Core creates four instances of the Author class, two of which contain
the same data. A query containing AsNoTrackingWithIdentityResolution (or a normal
query) on the right creates only three instances of the Author class, and the first two books
point to the same instance.

In most read-only situations, such as displaying each book with the author’s name,
having four Author class instances doesn’t matter because the duplicate classes contain
the same data. In these types of read-only queries, you should use the AsNoTracking

method because it produces the fastest query.
But if you are using the relationships in some way, such as to create a report of

books which linked to other books by the same author, the AsNoTracking method
might cause a problem. In a case like that one, you should use the AsNoTrackingWith-

IdentityResolution method.

163Reading from the database
HISTORY Some history: before EF Core 3.0, the AsNoTracking method
included the identity resolution stage, but in EF Core 3.0, which had a big focus
on performance, the identity resolution was removed from the AsNoTracking
method. Removing the identity-resolution call produced some problems with
existing applications, so EF Core 5 added the AsNoTrackingWithIdentity-
Resolution method to fix the problems.

To give you an idea of the performance differences, I did a simple test of three que-
ries, loading a hundred Books with their Reviews, BookAuthor, and Author entities.
Table 6.1 shows the timings (second query).

As you can see, AsNoTracking is fastest in this (unscientific) test and something like
twice as fast as a normal query, so it’s worth using. The AsNoTrackingWithIdentity-
Resolution method is only slightly faster (in this case) than the normal read-write
query, but as in the AsNoTracking version, the entities aren’t tracked, which improves
the performance of SaveChanges when it’s looking for updated data.

 Another feature of the AsNoTracking and AsNoTrackingWithIdentityResolution
methods is that the relational fixup stage (see section 6.1.1) works only within the
query. As a result, two queries using AsNoTracking or AsNoTrackingWithIdentity-
Resolution will create new instances of each entity even if the first query loaded the
same data. With normal queries, two separate queries would return the same entity
class instances, because the relational fixup stage works across all tracked entities.

6.1.3 Reading in hierarchical data efficiently

I once worked for a client that had a lot of hierarchical data—data that has a series of
linked entity classes with an indeterminate depth. The problem was that I had to parse
the whole hierarchy before I could display it. I initially did this by eager loading for
the first two levels; then I used explicit loading for deeper levels. This technique
worked, but performance was slow, and the database was overloaded with lots of single
database accesses.

 This situation got me thinking: If the normal query relational fixup is so clever,
could it help me improve the performance of the query? It could! Let me give you an
example, using employees of a company. Figure 6.3 shows you the hierarchical struc-
ture of a company we want to load.

Table 6.1 Result of running the same query using a normal, read-write query and queries that contain
the AsNoTracking and AsNoTrackingWithIdentityResolution methods

AsNoTracking variants Time (ms) Percentage difference

- no AsNoTracking (normal query) 100%95

AsNoTracking 40 042%

AsNoTrackingWithIdentityResolution 85 090%

164 CHAPTER 6 Tips and techniques for reading and writing with EF Core
You could use .Include(x => x.WorksForMe).ThenInclude(x => x.WorksForMe) and
so on, but a single .Include(x => x.WorksForMe) is enough, as the relational fixup
can work out the rest. The next listing provides an example in which you want a list of
all the employees working in development, with their relationships. The LINQ in this
query is translated into one SQL query.

var devDept = context.Employees
 .Include(x => x.WorksForMe)
 .Where(x => x.WhatTheyDo.HasFlag(Roles.Development))
 .ToList();

Listing 6.1 provides a tracked version of the hierarchical data, but if you want a read-
only version, you can add the AsNoTrackingWithIdentityResolution method to the
query. Note that AsNoTracking won’t work, because the linking of the relationships
relies on EF Core’s relational fixup feature, which is turned off in the AsNoTracking
method.

 Before I found this approach, I was using explicit loading, which produced poor-
performing queries. Swapping to this approach improved the time the single query
took and also reduced the load on the database server.

NOTE You do need to work out which relationship to Include. In this case,
I have a Manager navigational property (single) and a WorksForMe naviga-
tional property (collection). It turns out that including the WorksForMe
property fills in both the WorksForMe collection and the Manager property.
But including the Manager navigational property means that the Works-
ForMe collection is created only if there are entities to link to; otherwise, the

Loading all the employees working in development, with their relationshipsListing 6.1

Hierarchical data can have an unknown level of depth—that is, you don’t know
how many .Include(x => x.WorksForMe) but need to load all the data.

Employee Employee

Employee

Employee Employee Employee

Employee Employee

Employee

DevelopersProject managersCTOCEO Senior developers

CFO

Figure 6.3 One example of hierarchical data. The problem with this sort of data is that you don’t know
how deep it goes. But it turns out that one .Include(x => x.WorksForMe) is all you need. Then
the relational fixup stage of the query will link the hierarchical data in the correct manner.

The database holds all
the Employees. One Include is all you need;

relational fixup will work out
what is linked to what.

Filters the employees down to
ones who work in development

165Reading from the database

WorksForMe collection is null. I don’t know why the two difference Include
usages are different; that’s why I test everything to make sure that I know
how EF Core works.

6.1.4 Understanding how the Include method works

The simplest way to load an entity class with its relationships is to use the Include
method, which is easy to use and normally produces an efficient database access. But
it is worth knowing how the Include method works and what to watch out for.

 The way that the Include method was converted to SQL changed when EF Core
3.0 came along. The EF Core 3.0 change provides performance improvements in
many situations, but for some complex queries, it has a negative effect on performance.
Take an example from the Book App database, and look at loading a Book with its
Reviews and Authors. The following code snippet shows the query:

var query = context.Books
 .Include(x => x.Reviews)
 .Include(x => x.AuthorsLink)
 .ThenInclude(x => x.Author);

Figure 6.4 shows the different SQL queries produced by EF Core 2.2 and EF Core 3.0
for a Book that has four Reviews and two Authors.

 The benefit of the EF Core 3.0 way of handling loading collections relationships is
performance, which in many situations is quicker. I did a simple experiment, loading
Books with ten Reviews and two Authors in EF Core 2.1 and EF Core 3.0, and the EF

Before EF Core 3 The LINQ query become three separate SQL queries; the total rows are 1 4 + 2 =+ 7.

After EF Core 3 The LINQ query becomes one SQL query with joined data;
the total rows are 1* 4* 2 = 8.

Query 1 Query 3Query 2

Single query

Author1

Author2

1

1

1

2

1

2

0

1

NameOrder AuthorIdBookId AuthorId

My book 10/12/2020401 Manning

ImageUrlonDescriptiTitle PublishedOnBookId Price Publisher

http://booThis is a

My book

My book

My book

My book

My book

My book

My book

My book

10/12/2020

10/12/2020

10/12/2020

10/12/2020

10/12/2020

10/12/2020

10/12/2020

10/12/2020

5Great! Person1

Person2

Person3

Person4

Person1

Person2

Person3

Person4

Author1

Author1

Author1

Author1

Author2

Author2

Author2

Author2

4Good

3

0

5

4

3

0

Average

Rubbish!

Great!

Good

Average

Rubbish!

1

1

1

1

1

1

1

1

40

40

40

40

40

40

40

40

1

2

3

4

1

2

3

4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

1

1

1

1

2

2

2

2

0

0

0

0

1

1

1

1

Manning

Manning

Manning

Manning

Manning

Manning

Manning

Manning

ImageUrlonDescripti NameTitleBookId OrdersNumStarReviewId meVoterNaBookId AuthorIdBookId AuthorIdtCommenPublishedOnPrice Publisher

This is a

This is a

This is a

This is a

This is a

This is a

This is a

This is a

http://boo

http://boo

http://boo

http://boo

http://boo

http://boo

http://boo

http://boo

5Great! Person1

Person2

Person3

Person4

4Good

3

0

Average

Rubbish!

1

2

3

4

1

1

1

1

sNumStar meVoterNaBookIdReviewId tCommen

Figure 6.4 Comparing the way that EF Core loads data before and after EF Core 3 was released. The top
version is how EF Core worked prior to EF Core 3—it used separate database queries to read in any collections.
The lower version is what EF Core 3 and above do—it combines all the data into one big query.

166 CHAPTER 6 Tips and techniques for reading and writing with EF Core
Core 3.0 version was approximately 20% faster. But in some specific situations, it can
be very slow indeed, as I cover next.

 Performance problems occur if you have multiple collection relationships that you
want to include in the query, and some of those relationships have a large number of
entries in the collection. You can see the problem by looking at the two calculations
on the far-right side of figure 6.4. This figure shows that the number of rows read in
via EF Core versions before 3.0 is calculated by adding the rows. But in EF Core 3.0 and
later, the number of rows read is calculated by multiplying the rows. Suppose that you
are loading 3 relationships, each of which has 100 rows. The pre-3.0 version of EF
Core would read in 100+100+100 = 300 rows, but EF Core 3.0 and later would use
100 * 100 * 100 = 1 million rows.

 To see the performance issues, I created a test in which an entity had three one-to-
many relationships, each of which had 100 rows in the database. The following snip-
pet shows the normal Include approach to loading relationships in a query, which
took 3500 milliseconds (a terrible result!):

var result = context.ManyTops
 .Include(x => x.Collection1)
 .Include(x => x.Collection2)
 .Include(x => x.Collection3)
 .Single(x => x.Id == id);

Fortunately, EF Core 5 provides a method called AsSplitQuery that tells EF Core to
read each Include separately, as in the following listing. This operation took only 100
milliseconds, which is about 50 times faster.

var result = context.ManyTops
 .AsSplitQuery()
 .Include(x => x.Collection1)
 .Include(x => x.Collection2)
 .Include(x => x.Collection3)
 .Single(x => x.Id == id)

If you find that a query that uses multiple Includes is slow, it could be because two
or more included collections contain a lot of entries. In this case, add the AsSplit-
Query method before your Includes to swap to the separate load of every included
collection.

6.1.5 Making loading navigational collections fail-safe

I always try to make any code fail-safe, by which I mean that if I make a mistake in my
code, I’d rather it fail with an exception than do the wrong thing silently. One area I
worry about is forgetting to add the correct set of Includes when I’m loading an entity
with relationships. It seems that I would never forget to do that, but in applications
with lots of relationships, it can easily happen. In fact, I have done it many times,

Listing 6.2 Reading relationships separately and letting relational fixup join them up

Causes each Include to be
loaded separately, thus
stopping the multiplication
problem

167Reading from the database

including in my clients’ applications, which is why I use a fail-safe approach. Let me
explain the problem and then my solution.

 For any navigational property that uses a collection, I often see developers assign
an empty collection to a collection navigational property, either in the constructor or
via an assignment to the property (see the following listing).

public class BookNotSafe
{
 public int Id { get; set; }
 public ICollection<ReviewNotSafe> Reviews { get; set; }

 public BookNotSafe()
 {
 Reviews = new List<ReviewNotSafe>();
 }
}

Developers do this to make it easier to add entries to a navigational collection on a
newly created instance of an entity class. The downside is that if you forget the Include
to load a navigational property collection, you get an empty collection when the data-
base might have data that should fill that collection.

 You have another problem if you want to replace the whole collection. If you don’t
have the Include, the old entries in the database aren’t removed, so you get a combi-
nation of new and old entities, which is the wrong answer. In the following code snip-
pet (adapted from listing 3.17), instead of replacing the two existing Reviews, the
database ends up with three Reviews:

var book = context.Books
 //missing .Include(x => x.Reviews)
 .Single(p => p.BookId == twoReviewBookId);

book.Reviews = new List<Review>{ new Review{ NumStars = 1}};
context.SaveChanges();

Another good reason not to assign an empty collection to a collection is performance.
If you need to use explicit loading of a collection, for example, and you know that it’s
already loaded because it’s not null, you can skip doing the (redundant) explicit load-
ing. Also, in chapter 13, I select the best-performing way to add a new Review entity
class to a Book entity class, depending on whether the Book’s Reviews collection prop-
erty is already loaded.

 So in my code (and throughout this book), I don’t preload any navigational proper-
ties with a collection. Instead of failing silently when I leave out the Include method, I
get a NullReferenceException when the code accesses the navigational collection
property. To my mind, that result is much better than getting the wrong data.

Listing 6.3 A entity class with navigational collections set to an empty collection

This navigational property called
Reviews has many entries—that is,

a one-to-many relationship.

The navigational property called Reviews
is preloaded with an empty collection,
making it easier to add ReviewNotSave
to the navigational property when the
primary entity, BookNotSafe, is created.

168 CHAPTER 6 Tips and techniques for reading and writing with EF Core
6.1.6 Using Global Query Filters in real-world situations

Global Query Filters (shortened to Query Filter) were introduced in section 3.5 to
implement a soft-delete feature. In this section, you’ll look at some of the issues
involved in using soft delete in real applications. You will also look at using Query Fil-
ters to produce multitenant systems.

SOFT DELETE IN REAL-WORLD APPLICATIONS

The soft-delete feature is useful because the users of the application get a second
chance when they delete something. Two of my clients both had applications that
used the soft-delete feature on nearly every entity class. Typically, a normal user would
delete something, which in fact meant soft-deleting it, and an admin person could
undelete the item. Both applications were complex and quite different, so I learned a
lot about implementing soft delete.

 First, soft delete doesn’t work like the normal database delete command. With
database deletes, if you delete a Book, you would also delete all the PriceOffer,
Reviews, and AuthorLinks linked to the Book you deleted (see section 3.5.3). That sit-
uation doesn’t happen with soft delete, which has some interesting issues.

 If you soft-delete a Book, for example, the PriceOffer, Reviews, and AuthorLinks
are still there, which can cause problems if you don’t think things through. In sec-
tion 5.11.1, you built a background process that logged the number of Reviews in the
database on every hour. If you soft-deleted a Book that had ten Reviews, you might
expect the number of Reviews to go down, but with the code in listing 5.14, it
wouldn’t. You need a way to handle this problem.

 A pattern in Domain-Driven Design (DDD) called Root and Aggregates helps you
in this situation. In this pattern, the Book entity class is the Root, and the PriceOffer,
Reviews, and AuthorLinks are Aggregates. (See the principal and dependent descrip-
tions in section 3.1.1.) This pattern goes on to say you should access Aggregates only
via the Root. This process works well with soft deletes because if the Book (Root) is
soft-deleted, you can’t access its Aggregates. So the correct code for counting all the
Reviews, taking the soft delete into account, is

var numReviews = context.Books.SelectMany(x => x.Reviews).Count();

NOTE Another way to solve the Root/Aggregate problem with soft deletes is
to mimic the cascade delete behavior when setting soft deletes, which is quite
complex to do. But I have built a library called EfCore.SoftDeleteServices
that mimics cascade-delete behavior but uses soft deletes; see https://github
.com/JonPSmith/EfCore.SoftDeleteServices.

The second thing to consider is that you shouldn’t apply soft deletes to a one-to-one
relationship. You will have problems if you try to add a new one-to-one entity when an
existing but soft-deleted entity is already there. If you had a soft-deleted PriceOffer,
which has a one-to-one relationship with the Book, and tried to add another PriceOffer

https://github.com/JonPSmith/EfCore.SoftDeleteServices
https://github.com/JonPSmith/EfCore.SoftDeleteServices
https://github.com/JonPSmith/EfCore.SoftDeleteServices

169Reading from the database

to the Book, you would get a database exception. A one-to-one relationship has a unique
index on the foreign key BookId, and a (soft-deleted) PriceOffer was taking that slot.

 As my clients have found, the soft-delete feature is useful because users can mistak-
enly delete the wrong data. But being aware of the issues allows you to plan how to
handle them in your applications. I usually use the Root/Aggregate approach and
don’t allow soft deletes of one-to-one dependent entities.

USING QUERY FILTERS TO CREATE MULTITENANT SYSTEMS

A multitenant system is one in which different users or groups of users have data that
should be accessed only by certain users. You can find many examples, such as
Office365 and GitHub. The Query Filters feature isn’t enough to build Office365 on
its own, but you can use Query Filters to build complex multitenant application.

 In the soft-delete use of the Query Filter, you used a Boolean as the filter, but for a
multitenant system, you need a more elaborate key, which I refer to as the DataKey.
Each tenant has a unique DataKey. A tenant might be an individual user or, more
likely, a group of users. Figure 6.5 shows an example Software as a Service (SaaS)
application that provides stock control for lots of retail companies. In this case, Joe
works for Dress4U and has the DataKey on login.

 In the Book App, no one needs to log in, so you can’t implement the exact approach
shown in figure 6.5, but it does have a basket cookie with a pseudo UserId that you
can use. When a user selects a book to buy in the Book App, a basket cookie is created

Dress4U

(Tenant 123)

Tie4U

(Tenant 456)

Jeans4U

(Tenant 789)

Joe

Name

joe@dress4U.com
jill@dress4U.com
jack@tie4U.com
jane@jeans4u.com
...

DataKey

123
123
456
789
...

DataKeyLookup
Product

Blue dress
Striped tie
Silver dress
Blue jeans
...

Price

$$$
$
$$$$$
$$
...

Etc DataKey

123
456
123
789
...

Name: joe@...

UserId: aca1a46 …

DataKey: 123

Login

Look up user to get their DataKey.

StockDbContextInject DataKey

Query

Query where DataKey == 123

Stock

claimsUser’s

Figure 6.5 When Joe logs in, his name and UserId are looked up in the DataKeyLookup
table, and the appropriate DataKey (123) is added to his user claims. When Joe asks for a
list of stock, the DataKey from the user’s claims is extracted and given to the application’s
DbContext when it is created. Then the DataKey is used in a Global Query Filter applied to
the Stock table. Therefore, Joe sees only the Blue dress and the Silver dress.

170 CHAPTER 6 Tips and techniques for reading and writing with EF Core

ssor

. To
gister
,

ext-

s
th

t
th
to hold each book in the user’s basket, plus a UserId. This basket cookie is used if the
user clicks the My Orders menu item to show only the Orders from this user. The fol-
lowing code takes the UserId from the basket cookie and uses a Query Filter to return
only the Orders that the user created. Two main parts make this code work:

 A UserIdService gets the UserId from the basket cookie.
 The IUserIdService is injected via the application’s DbContext constructor

and used to access the current user.

The following listing shows the UserIdService code, which relies on the IHttpContext-
Accessor to access the current HTTP request.

public class UserIdService : IUserIdService
{
 private readonly IHttpContextAccessor _httpAccessor;

 public UserIdService(IHttpContextAccessor httpAccessor)
 {
 _httpAccessor = httpAccessor;
 }

 public Guid GetUserId()
 {
 var httpContext = _httpAccessor.HttpContext;
 if (httpContext == null)
 return Guid.Empty;

 var cookie = new BasketCookie(httpContext.Request.Cookies);
 if (!cookie.Exists())
 return Guid.Empty;

 var service = new CheckoutCookieService(cookie.GetValue());
 return service.UserId;
 }
}

When you have a value to act as a DataKey, you need to provide it to the application’s
DbContext. The typical way is via DI constructor injection; the injected service pro-
vides a way to get the DataKey. For our example, we are using the UserId, taken from
the basket cookie, to serve as a DataKey. Then you use that UserId in a Query Filter
applied to the CustomerId property in the Order entity class, which contains the
UserId of the person who created the Order. Any query for Order entities will return
only Orders created by the current user. The following listing shows how to inject the
UserIdService service into the application’s DbContext and then use that UserId in a
Query Filter.

Listing 6.4 UserIdService that extracts the UserId from the basket cookie

The IHttpContextAcce
is a way to access the
current HTTP context
use it, you need to re
it in the Startup class
using the command
services.AddHttpCont
Accessor().

In some cases, the
HTTPContext could be null,
such as a background task.
In such a case, you provide
an empty GUID.

Uses existing
ervices to look for
e basket cookie. If
here is no cookie,
e code returns an

empty GUID.

If there is a basket cookie, creates the
CheckoutCookieService, which extracts

the UserId and returns it

171Reading from the database

Norma
for se

the appl
Db

Sets
the Us
simple

vers

Guid.
public class EfCoreContext : DbContext
{
 private readonly Guid _userId;

 public EfCoreContext(DbContextOptions<EfCoreContext> options,
 IUserIdService userIdService = null)
 : base(options)
 {
 _userId = userIdService?.GetUserId()
 ?? new ReplacementUserIdService().GetUserId();
 }

 public DbSet<Book> Books { get; set; }
 //… rest of DbSet<T> left out

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 //… other configuration left out for clarity

 modelBuilder.Entity<Book>()
 .HasQueryFilter(p => !p.SoftDeleted);
 modelBuilder.Entity<Order>()
 .HasQueryFilter(x => x.CustomerName == _userId);
 }
}

To be clear, every instance of the application’s DbContext gets the UserId of the cur-
rent user, or an empty GUID if they never “bought” a book. Whereas the DbContext’s
configuration is set up on first use and cached, the lambda Query Filter is linked to a
live field called _userId. The query filter is fixed, but the _userId is dynamic and can
change on every instance of the DbContext.

 But it’s important that the Query Filter not be put in a separate configuration class
(see section 7.5.1), because the _userId would become fixed to the UserId provided
on first use. You must put the lambda query somewhere that it can get the dynamic
_userId variable. In this case, I place it in the OnModelCreating method inside the
application’s DbContext, which is fine. In chapter 7, I show you a way to automate the
configuration of the Query Filters that keep the _userId dynamic; see section 7.15.4.

 If you have an ASP.NET Core application that users log in to, you can use IHttp-
ContextAccessor to access the current ClaimPrincipal. The ClaimPrincipal con-
tains a list of Claims for the logged-in user, including their UserId, which is stored in a
claim with the name defined by the system constant ClaimTypes.NameIdentifier. Or,
as shown in figure 6.5, you could add a new Claim to the user on login to provide a
DataKey that is used in the Query Filter.

Listing 6.5 Book App’s DbContext with injection of UserId and Query Filter

This property holds the UserId used in the
Query Filter on the Order entity class.

l options
tting up
ication’s
Context

Sets the UserIdService. Note
that this parameter is optional,
which makes it much easier to
use in unit tests that don’t use

the Query Filter.

the UserId. If
erId is null, a
 replacement
ion provides

the default
Empty value.

The method where you
configure EF Core and
put your Query Filters

Soft-delete
Query Filter

Order query filter, which matches the current UserId
obtained from the cookie basket with the

CustomerId in the Order entity class

172 CHAPTER 6 Tips and techniques for reading and writing with EF Core
NOTE For an example of a full multitenant system in which a user’s Id is used
to find a tenant’s DataKey at login time and a DataKey Claim is added to the
user Claims, see the article at http://mng.bz/yY7q.

6.1.7 Considering LINQ commands that need special attention

EF Core does a great job of mapping LINQ methods to SQL, the language of most
relational databases. But three types of LINQ methods need special handling:

 Some LINQ commands need extra code to make them fit the way that the data-
base works, such as the LINQ Average, Sum, Max, and other aggregate com-
mands needed to handle a return of null. Just about the only aggregate that
won’t return null is Count.

 Some LINQ commands can work with a database, but only within rigid bound-
aries because the database doesn’t support all the possibilities of the command.
An example is the GroupBy LINQ command; the database can have only a sim-
ple key, and there are significant limitations on the IGrouping part.

 Some LINQ commands have a good match to a database feature, but with some
limitations on what the database can return. Examples are Join and GroupJoin.

The EF Core documentation has a great page called Complex Query Operators (see
http://mng.bz/MXan) with good descriptions of many of these commands, so I’m not
going to go through them all. But I do want to warn you about the feared Invalid-
OperationException exception, with a message containing the words could not be
translated, and tell you what to do when you get it.

 The problem is that if you get your LINQ slightly wrong, you will get the could not
be translated exception. The message might not be too helpful in diagnosing the
problem (but see the following note), other than saying that you should switch to
client evaluation explicitly by inserting a call to AsEnumerable . . .” Although
you could switch to client evaluation, you might take a (big) performance hit.

NOTE The EF Core team is refining the messages returned from a could not
be translated exception and adding specific messages for common situations,
such as trying to use the String.Equal method with a StringComparison
parameter (which can’t be converted to SQL).

The following section provides some tips for making the more mainstream complex
commands work with a relational database. I also suggest that you test any complex
queries, as they are easy to get wrong.

AGGREGATES NEED A NULL (APART FROM COUNT)
You are likely to use the LINQ aggregates Max, Min, Sum, Average, Count, and Count-
Long, so here are some pointers on what to do to get them to work:

 The Count and CountLong methods work fine if you count something sensible
in the database, such as a row or relational links such as the number of Reviews
for a Book.

http://mng.bz/yY7q
http://mng.bz/MXan

173Reading from the database

6.1.8

 The LINQ aggregates Max, Min, Sum, and Average need a nullable result, such as
context.Books.Max(x => (decimal?)x.Price). If the source (Price in this
example) isn’t nullable, you must have cast to the nullable version of the source.
Also, if you are using Sqlite for unit testing, remember that it doesn’t support
decimal, so you would get an error even if you used the nullable version.

 You can’t use the LINQ Aggregate method directly on the database because it
does a per-row calculation.

GROUPBY LINQ COMMAND

The other LINQ method that can be useful is GroupBy. When GroupBy is used on an
SQL database, the Key part needs to be a scalar value (or values) because that’s what
the SQL GROUP BY supports. The IGrouping part can be a selection of data, including
some LINQ commands. My experience is that you need to follow a GroupBy command
with an execute command (see section 2.3.3) such as ToList. Anything else seems to
cause the could not be translated exception.

Here is a real example taken from a client’s application, with some of the names
changed to keep the client’s secrets. Notice that the Key can be a combination of sca-
lar columns and the IGrouping part:

var something = await _context.SomeComplexEntity
.GroupBy(x => new { x.ItemID, x.Item.Name })
.Select(x => new
{

Id = x.Key.ItemID,
Name = x.Key.Name,
MaxPrice = x.Max(o => (decimal?)o.Price)

})
.ToListAsync();

Using AutoMapper to automate building Select queries

In chapter 2, you learned that Select queries allow you to build one query that returns
exactly the data you need, and these queries are often quite efficient from the perfor-
mance side too. The problem is that they take a bit more time to write—only a few more
lines, but real applications can be thousands of queries, so each Select query adds to
development time. I’m always looking for ways to automate things, and AutoMapper
(https://automapper.org) can help you automate the building of Select queries.

I am not going to describe all the features of AutoMapper, which might take a
whole book in itself! But I’ll give you an overview of how to set up and use Auto-
Mapper, because I don’t think those topics are covered well elsewhere. Let’s start by
comparing a simple Select query that is handcoded against an AutoMapper-built
Select query, as shown in figure 6.6.

Although the example in figure 6.6 is simple, it shows that you can collapse a Select

query to one line by using AutoMapper’s ProjectTo method. Figure 6.6 uses Auto-
Mapper’s By Convention configuration, where it maps properties in the source—Book

class, in this case—to the DTO properties by matching them by the type and name of
each property. AutoMapper can automatically map some relationships. A property of

https://automapper.org

174 CHAPTER 6 Tips and techniques for reading and writing with EF Core

type decimal and called PromotionNewPrice would map the Book’s Promotion.NewPrice
relationship, for example. (This AutoMapper feature is called flattening; see http://mng
.bz/aorB.)

 Figure 6.7 shows four by-convention configurations of using AutoMapper:

 Same type and same name mapping—Properties are mapped from the entity class
to DTO properties by having the same type and same name.

var dto = context.Books
.Select(p => new ChangePubDateDto
{

BookId = p.BookId,
Title = p.Title,
PublishedOn = p.PublishedOn

})
.Single(k => k.BookId == lastBook.BookId);

Handcoded version

var dto = context.Books
.ProjectTo<ChangePubDateDtoAm>(config)
.Single(x => x.BookId == lastBook.BookId);

AutoMapper version

Figure 6.6 Both versions of the Select query produce the same results and the same SQL code. This query
is super simple, with only three properties copied over, but it gives you an idea of how AutoMapper works. In
this case, the DTO has properties of the same type and name as the properties we want to copy over, which
means AutoMapper will automatically build the LINQ code to copy those three properties.

public class Book
{

public int BookId {get;set;}
public string Title {get;set;}
public decimal Price {get;set;}

public string Description
{get;set;}

public DateTime PublishedOn
{get;set;}

public string Publisher {get;set;}
public string ImageUrl {get;set;}

public PriceOffer
Promotion {get;set;}

public ICollection<Review>
Reviews {get;set;}

...
}

public class BookDto
{
public int BookId {get;set;}
public string Title {get;set;}
public decimal Price {get;set;}

public decimal?
PromotionNewPrice {get;set;}

public string
PromotionPromotionalText

{get;set;}

public ICollection<ReviewDto>
Reviews {get;set;}

}

1. The first three properties are mapped
by matching their names and types.

2. These properties are not present in the
DTO, so they are left out of the query.

3. This selects specific properties out of a
one-to-one relationship by combining the
names, so that Promotion.NewPrice
becomes This isPromotionNewPrice.
known as flattening.

4. This maps the one-to-many Review collection
to a ReviewDto collection, which selects only
the NumVotes property from the Review class.
This is known as nested DTO.

Figure 6.7 Four ways that AutoMapper maps the Book entity class to the BookDto class. The default
convention is to map via similar names and types, including handling relationships by having a name
equivalent to the property access but without the dot. The DTO property PromotionNewPrice, for
example, is mapped automatically to the Promotion.NewPrice property in the source. Mappings
also can be nested; a collection in the entity class can be mapped to a collection with a DTO.

http://mng.bz/aorB.
http://mng.bz/aorB.
http://mng.bz/aorB.

175Reading from the database
 Trimming properties—By leaving out properties that are in the entity class from
the DTO, the Select query won’t load those columns.

 Flattening relationships—The name in the DTO is a combination of the naviga-
tional property name and the property in the navigational property type. The
Book entity reference of Promotion.NewPrice, for example, is mapped to the
DTO’s PromotionNewPrice property.

 Nested DTOs—This configuration allows you to map collections from the entity
class to a DTO class, so you can copy specific properties from the entity class in
a navigational collection property.

Now that you have an idea of what AutoMapper can do, I want to give you some tips
on how to use and configure it.

FOR SIMPLE MAPPINGS, USE THE [AUTOMAP] ATTRIBUTE

Using AutoMapper’s ProjectTo method is straightforward, but it relies on the config-
uration of AutoMapper, which is more complex. In release 8.1 of AutoMapper, Jimmy
Bogart added the AutoMap attribute, which allows by convention configuration of sim-
ple mappings. The following code snippet shows the [AutoMap] attribute in the first
line (in bold), where you define what entity class this DTO should map from:

[AutoMap(typeof(Book))]
public class ChangePubDateDtoAm
{
 public int BookId { get; set; }
 public string Title { get; set; }
 public DateTime PublishedOn { get; set; }
}

Classes mapped via AutoMap attribute use AutoMapper’s By Convention configura-
tion, with a few parameters and attributes to allow some tweaking. As you saw in figure
6.7, by convention can do quite a lot, but certainly not all that you might need. For
that, you need AutoMapper’s Profile class.

COMPLEX MAPPINGS NEED A PROFILE CLASS

When AutoMapper’s By Convention approach isn’t enough, you need to build an
AutoMapper Profile class, which allows you to define the mapping for properties
that aren’t covered by the By Convention approach. To map a Book to the BookList-
Dto described in listings 2.10 and 2.11, for example, three of the nine DTO properties
need special handling. You have to create a MappingConfiguration. You have a few
ways to do this, but typically, you use AutoMapper’s Profile class, which is easy to find
and register. The following listing shows a class that inherits the Profile class and sets
up the mappings that are too complex for AutoMapper to deduce.

public class BookListDtoProfile : Profile
{
 public BookListDtoProfile()

Listing 6.6 AutoMapper Profile class configuring special mappings for some properties

Your class must inherit the AutoMapper
Profile class. You can have multiple
classes that inherit Profile.

176 CHAPTER 6 Tips and techniques for reading and writing with EF Core

th

nee
me
 {
 CreateMap<Book, BookListDto>()
 .ForMember(p => p.ActualPrice,
 m => m.MapFrom(s => s.Promotion == null
 ? s.Price : s.Promotion.NewPrice))
 .ForMember(p => p.AuthorsOrdered,
 m => m.MapFrom(s => string.Join(", ",
 s.AuthorsLink.Select(x => x.Author.Name))))
 .ForMember(p => p.ReviewsAverageVotes,
 m => m.MapFrom(s =>
 s.Reviews.Select(y =>
 (double?)y.NumStars).Average()));
 }
}

This code sets up three of the nine properties, with the other six properties using Auto-
Mapper’s By Convention approach, which is why some of the names of the properties in
the ListBookDto class are long. The DTO property called PromotionPromotionalText,
for example, has that name because it maps by convention to the navigational property
Promotion and then to the PromotionalText property in the PriceOffer entity class.

 You can add lots of CreateMap calls in one Profile, or you can have multiple
Profiles. Profiles can get complex, and managing them is the main pain point
involved in using AutoMapper. One of my clients had a single Profile that was 1,000
lines long.

REGISTER AUTOMAPPER CONFIGURATIONS

The last stage is registering all the mapping with dependency injection. Fortunately,
AutoMapper has a NuGet package called AutoMapper.Extensions.Microsoft
.DependencyInjection containing the method AddAutoMapper, which scans the assem-
blies you provide and registers an IMapper interface as a service. You use the IMapper
interface to inject the configuration for all your classes that have the [AutoMap] attri-
bute and all the classes that inherit AutoMapper’s Profile class. In an ASP.NET Core
application, the following code snippet would be added to the Configure method of
the Startup class:

public void ConfigureServices(IServiceCollection services)
{
 services.AddControllersWithViews();
 // … other code removed for clarity

 services.AddAutoMapper(MyAssemblyToScan1, MyAssemblyToScan2…);
}

6.1.9 Evaluating how EF Core creates an entity class
when reading data in

Up until now, the entity classes in this book haven’t had user-defined constructors, so
if you read in that entity class, EF Core uses the default parameterless constructor and
then updates the properties and backing fields directly. (Chapter 7 describes backing

Sets up the
mapping from
e Book entity

class to the
BookListDto

The Actual price depends
on whether the Promotion
has a PriceOffer.

Gets the list of Author names
as a comma-delimited string

Contains the special code
ded to make the Average
thod run in the database

177Reading from the database
fields.) But sometimes, it’s useful to have a constructor with parameters, because it
makes it easier to create an instance or because you want to make sure that the class is
created in the correct way.

NOTE Using constructors to create a class is a good approach, because you
can define what parameters you must set to create a valid instance. When
you’re using the DDD approach with EF Core (see chapter 13), the only way
to create an entity class is via some form of constructor or static factory.

Since EF Core 2.1, EF Core has used an entity class’s constructor when it needs to cre-
ate an entity class instance, typically when reading in data. If you use EF Core’s By
Convention pattern for your constructor—that is, the constructor’s parameters match
the properties by type and name (with camel/Pascal casing) and don’t include naviga-
tional properties, as shown in the following listing—EF Core will use it too.

public class ReviewGood
{
 public int Id { get; private set; }
 public string VoterName { get; private set; }
 public int NumStars { get; set; }

 public ReviewGood
 (string voterName)
 {
 VoterName = voterName;
 NumStars = 2;
 }
}

I could have added a constructor to the ReviewGood class that set all the non-navigational
properties, but I wanted to point out that EF Core can use a constructor to create the
entity instance and then fill in any properties that weren’t in the constructor’s param-
eters. Now, having looked at a constructor that works, let’s look at constructors that EF
Core can’t or won’t use and how to handle each problem.

CONSTRUCTORS THAT CAN CAUSE YOU PROBLEMS WITH EF CORE

The first type of constructor that EF Core can’t use is one with a parameter whose type
or name doesn’t match. The following listing shows an example with a parameter
called starRating, which assigns to the property called NumStars. If this constructor is
the only one, EF Core will throw an exception the first time you use the application’s
DbContext.

Listing 6.7 An entity class with a constructor that works with EF Core

You can set your properties
to have a private setter. EF
Core can still set them.

The constructor doesn’t need parameters
for all the properties in the class. Also, the
constructor can be any type of accessibility:
public, private, and so on.

EF Core will look for a parameter with the
same type and a name that matches the
property (with matching of Pascal/camel
case versions of the name).

The assignment should not include any
changing of the data; otherwise, you won’t
get the exact data that was in the database.

Any assignment to a property
that doesn’t have a parameter is

fine. EF Core will set that property
after the constructor to the data

read back from the database.

178 CHAPTER 6 Tips and techniques for reading and writing with EF Core
public class ReviewBadCtor
{
 public int Id { get; set; }
 public string VoterName { get; set; }
 public int NumStars { get; set; }

 public ReviewBadCtor(
 string voterName,
 int starRating)
 {
 VoterName = voterName;
 NumStars = starRating;
 }
}

Another example of a constructor that EF Core can’t use is one with a parameter that
sets a navigational property. If the Book entity class had a constructor that included a
parameter to set the PriceOffer Promotion navigational property, for example, EF
Core couldn’t use it either. A constructor that EF Core can use can have only nonrela-
tional properties.

 If your constructor doesn’t match EF Core’s By Convention pattern, you need to
provide a constructor that EF Core can use. The standard solution is to add a private
parameterless constructor, which EF Core can use to create the class instance and use
its normal parameter/field setting.

NOTE EF Core can use constructors with access modifiers. It uses any level of
access from private to public constructors, for example. As you have already
seen, it can also write to a property with a private setter, such as public int Id
{get; private set;}. EF Core can handle read-only properties (such as
instance public int Id {get;}), but with some limitations; see http://mng
.bz/go2E.

Another, more subtle problem occurs if you alter the parameter data when you assign
it to the matching property. The following code snippet would cause problems because
the data read in would be altered in the assignment:

public ReviewBad(string voterName)
{
 VoterName = "Name: "+voterName; //alter the parameter before assign to

property
 //… other code left out
}

The result of the assignment in the ReviewBad constructor means that if the data in
the database was XXX, after the read, it would be Name: XXX, which is not what you
want. The solution is to change the name of the parameter so that it doesn’t match the
property name. In this case, you might call it voterNameNeedingPrefix.

Class with constructor that EF Core can’t use, causing an exceptionListing 6.8

The only constructor
in this class

This parameter’s name doesn’t
match the name of any property in
this class, so EF Core can’t use it to
create an instance of the class when
it is reading in data.

http://mng.bz/go2E
http://mng.bz/go2E
http://mng.bz/go2E

179Reading from the database

T
reviews
in a bac
(see sec

The
 Finally, be aware that checks and validations you apply to your parameters in your
constructor are going to be applied when EF Core uses the constructor. If you have a
test to make sure that a string is not null, then you should configure the database col-
umn to be non-null (see chapter 7) to make sure that some rogue data in your data-
base doesn’t return a null value.

EF CORE CAN INJECT CERTAIN SERVICES VIA THE ENTITY CONSTRUCTOR

While we are talking about entity class constructors, we should look at EF Core’s abil-
ity to inject some services via the entity class’s constructor. EF Core can inject three
types of services, the most useful of which injects a method to allow lazy loading of
relationships, which I describe in full. The other two uses are advanced features; I
summarize what they do and provide a link to the Microsoft EF Core documentation
for more information.

 In section 2.4.4, you learned how to configure lazy loading of relationships via the
Microsoft.EntityFrameworkCore.Proxies NuGet package. That package is the sim-
plest way to configure lazy loading, but it has the drawback that all the navigational
properties must be set up to use lazy loading—that is, every navigational property
must have the keyword virtual added to its property definition.

 If you want to limit what relationships use lazy loading, you can obtain a lazy load-
ing service via an entity class’s constructor. Then you change the navigational proper-
ties to use this service in the property’s getter method. The following listing shows a
BookLazy entity class that has two relationships: a PriceOffer relationship that
doesn’t use lazy loading and a Reviews relationship that does.

public class BookLazy
{
 public BookLazy() { }

 private BookLazy(ILazyLoader lazyLoader)
 {
 _lazyLoader = lazyLoader;
 }
 private readonly ILazyLoader _lazyLoader;

 public int Id { get; set; }

 public PriceOffer Promotion { get; set; }

 private ICollection<LazyReview> _reviews;
 public ICollection<LazyReview> Reviews
 {
 get => _lazyLoader.Load(this, ref _reviews);
 set => _reviews = value;
 }
}

Listing 6.9 Showing how lazy loading works via an injected lazy loader method

You need a public constructor
so that you can create this
book in your code.

This private constructor
is used by EF Core to
inject the LazyLoader.

A normal relational
link that isn’t loaded
via lazy loadinghe actual

 are held
king field
tion 8.7).

 list that
you will

access

A read of the property
will trigger a lazy
loading of the data
(if not already loaded).

The set simply updates
the backing field.

180 CHAPTER 6 Tips and techniques for reading and writing with EF Core

6.2

Injecting the service via the ILazyLoader interface requires the NuGet package
Microsoft.EntityFrameworkCore.Abstractions to be added to the project. This
package has a minimal set of types and no dependencies, so it doesn’t “pollute” the
project with references to the DbContext and other data-access types.

But if you are enforcing an architecture that doesn’t allow any external packages in
it, you can add a parameter by using the type Action<object, string> in the entity’s
constructor. EF Core will fill the parameter of type Action<object, string> with an
action that takes the entity instance as its first parameter and the name of the field as
the second parameter. When this action is invoked, it loads the relationship data into
the named field in the given entity class instance.

NOTE By providing a small extension method, you can make the Action
<object, string> option work similarly to ILazyLoader. You can see this
effect in the extension method at the end of the “Lazy loading without
proxies” section of the EF Core documentation page at http://mng.bz/e5Zv
in the class LazyBook2 in the Test project in the GitHub repo associated with
this book.

The other two ways of injecting a service into the entity class via a constructor are as
follows:

 Injecting the DbContext instance that the entity class is linked to is useful if you
want to run database accesses inside your entity class. In chapter 13, I cover the
pros and cons of executing database accesses inside your entity class. In a nut-
shell, you shouldn’t use this technique unless you have a serious performance
or business logic problem that can’t be solved any other way.

 The IEntityType for this entity class instance gives you access to the configura-
tion, State, EF Core information about this entity, and so on associated with
this entity type.

These two techniques are advanced features, and I won’t cover these in detail. The EF
Core documentation on entity class constructors has more information on this topic;
see http://mng.bz/pV78.

Writing to the database with EF Core
The first part of this chapter was about querying the database. Now you’ll turn your
mind to writing to the database: creating, updating, and deleting entity classes. As in
section 6.1, the aim is to expose you to how EF Core works inside when writing to the
database. Some subsections of section 6.1 are about learning what is happening when
you write to the database, and some are neat techniques for copying or deleting data
quickly. Here is the list of topics that I will cover:

 Evaluating how EF Core writes entities with relationships to the database
 Evaluating how DbContext handles writing out entities with relationships
 Copying data with relationships quickly
 Deleting an entity quickly

http://mng.bz/e5Zv
http://mng.bz/pV78

181Writing to the database with EF Core
Evaluating how EF Core writes entities/relationships6.2.1
to the database

When you are creating a new entity with new relationship(s), navigational properties
are your friends because EF Core takes on the problem of filling the foreign key for
you. The next listing shows a simple example: adding a new Book that has a new Review.

var book = new Book
{
 Title = "Test",
 Reviews = new List<Review>()
};
book.Reviews.Add(
 new Review { NumStars = 1 });
context.Add(book);
context.SaveChanges();

To add these two linked entities to the database, EF Core has to do the following:

 Work out the order in which it should create these new rows—In this case, it has to cre-
ate a row in the Books table so that it has the primary key of the Book.

 Copy any primary keys into the foreign key of any relationships—In this case, it
copies the Books row’s primary key, BookId, into the foreign key in the new
Review row.

 Copy back any new data created in the database so that the entity classes properly represent
the database—In this case, it must copy back the BookId and update the BookId
property in both the Book and Review entity classes and the ReviewId for the
Review entity class.

The following listing shows the SQL for this create.

-- first database access
SET NOCOUNT ON;
INSERT INTO [Books] ([Description], [Title], ...)
VALUES (@p0, @p1, @p2, @p3, @p4, @p5, @p6);

SELECT [BookId] FROM [Books]
WHERE @@ROWCOUNT = 1 AND [BookId] = scope_identity();

-- second database access
SET NOCOUNT ON;
INSERT INTO [Review] ([BookId], [Comment], ...)
VALUES (@p7, @p8, @p9, @p10);

Adding a newListing 6.10 Book entity with a new Review

The SQL commands to create the two rows, with return of primary keysListing 6.11

Creates a
new Book

Adds a new Review to the Book’s
Reviews navigational property

The Add method says that the entity instance
should be added to the appropriate row, with
any relationships added or updated.SaveChanges carries out the

database update.

Because EF Core wants to return the primary key, it
turns off the return of the database changes.

Inserts a new row into the Books
table. The database generates the
Book’s primary key.

Returns the primary key,
with checks to ensure that
the new row was added

Inserts a new row into the Review
table. The database generates the
Review’s primary key.

182 CHAPTER 6 Tips and techniques for reading and writing with EF Core
SELECT [ReviewId] FROM [Review]
WHERE @@ROWCOUNT = 1 AND [ReviewId] = scope_identity();

This example is simple, but it covers all the main parts. What you need to understand
is that you can create complex data with relationships and relationships of those rela-
tionships, and EF Core will work out how to add them to the database.

 I have seen EF Core code in which the developer used multiple calls to the
SaveChanges method to obtain the primary key from the first create to set the foreign
key for the related entity. You don’t need to do that if you have navigational properties
that link the different entities. So if you think that you need to call SaveChanges twice,
normally you haven’t set up the right navigational properties to handle that case.

WARNING Calling SaveChanges multiple times to create an entity with rela-
tionships isn’t recommended because if the second SaveChanges fails for some
reason, you have an incomplete set of data in your database, which could cause
problems. See the sidebar called “Why you should call SaveChanges only once
at the end of your changes” in section 3.2.2 for more information.

6.2.2 Evaluating how DbContext handles writing out
entities/relationships

In section 6.2.1, you saw what EF Core does at the database end, but now we are
going to look at what happens inside EF Core. Most of the time, you don’t need this
information, but sometimes, knowing it is important. If you are catching changes
during a call to SaveChanges, for example, you get its State only before SaveChanges
is called, but you have the primary key of a newly created entity only after the call to
SaveChanges.

NOTE I bumped into the before/after SaveChanges problem when I wrote
the first edition of this book. I needed to detect changes to a Book entity class
and changes to any of its related entity classes, such as Review, BookAuthor,
and PriceOffer. At that point, I needed to catch the State of each entity at
the start, but I might not have had the right foreign key until SaveChanges
had finished.

Even if you aren’t trying something as complex as the before/after SaveChanges issue,
it is good to understand how EF Core works. This example is a little more complex
than the last one because I want to show you the different ways that EF Core handles
new instances of an entity class over an instance of an entity that has been read from
the database. The code in the next listing creates a new Book, but with an Author that
is already in the database. The code has comments STAGE 1, STAGE 2, and STAGE 3, and
I describe what happens after each stage.

Returns the primary key,
with checks to ensure that
the new row was added

183Writing to the database with EF Core

//STAGE1
var author = context.Authors.First();
var bookAuthor = new BookAuthor { Author = author };
var book = new Book
{
 Title = "Test Book",
 AuthorsLink = new List<BookAuthor> { bookAuthor }
};

//STAGE2
context.Add(book);

//STAGE3
context.SaveChanges();

Figures 6.8, 6.9, and 6.10 show you what is happening inside the entity classes and
their tracked data at each stage. Each of the three figures shows the following data at
the end of its stage:

 The State of each entity instance at each stage of the process (shown above
each entity class)

 The primary and foreign keys with the current value in brackets. If a key is (0),
it hasn’t been set yet.

 The navigational links are shown as connections from the navigational property
to the appropriate entity class that it is linked to.

 Changes between each stage, shown by bold text or thicker lines for the naviga-
tional links.

Figure 6.8 shows the situation after Stage 1 has finished. This initial code sets up a new
Book entity class (left) with a new BookAuthor entity class (middle) that links the Book
to an existing Author entity class (right).

Listing 6.12 Creating a new Book with a new many-to-many link to an existing Author

Each of the three stages
starts with a comment. Reads in an existing

Author for the new book
Creates a new
BookAuthor linking
row, ready to link to
Book to the Author

Creates a Book and fills
in the AuthorsLink
navigational property with
a single entry, linking it
to the existing Author

Calls the Add method, which tells
EF Core that the Book needs to be
added to the database

SaveChanges looks at all the tracked entities and
works out how to update the database to achieve
what you have asked it to do.

BookId

Title

Description

…

AuthorsLink

Book

BookId

AuthorId

Order

Book

Author

BookAuthor

AuthorId (123)

Name

BooksLink

Author

State = unchanged

(0)(0)

(0)

State = detachedState = detached

Figure 6.8 End of stage 1. This figure shows that the new Book with a new BookAuthor
linking to the Book has a State of Detached, and the existing Author, which was read in
from the database, has a State of Unchanged. The figure also shows the two navigational
links that the code set up to link the Book entity to the Author entity. Finally, the primary
and foreign keys of the Book and BookAuthor are unset—that is, zero—whereas the Author
entity has an existing primary key (123) because it is already in the database.

184 CHAPTER 6 Tips and techniques for reading and writing with EF Core
Figure 6.8 is a pictorial version of the three entity classes after Stage 1 has finished in
listing 6.12. This figure is the starting point before you call any EF Core methods. Fig-
ure 6.9 shows the situation after the line context.Add(book) is executed. The changes
are shown in bold and with thick lines for the added navigational links.

You may be surprised by how much happened when the Add method was executed. (I
was!) It seems to be getting the entities as close as possible to the positions they will be
after SaveChanges is called. Here are the things that happen when the Add method is
called in Stage 2.

 The Add method sets the State of the entity provided as a parameter to Added—in
this example, the Book entity. Then it looks at all entities linked to the entity provided
as a parameter, either by navigational properties or by foreign-key values. For each
linked entity, it does the following:

 If the entity is not tracked—that is, its current State is Detached—it sets its
State to Added. In this example, that entity is BookAuthor. The Author’s State
isn’t updated because that entity is tracked.

 It fills in any foreign keys for the correct primary keys. If the linked primary key
isn’t yet available, it puts a unique negative number in the CurrentValue prop-
erties of the tracking data for the primary key and the foreign key, as you see in
figure 6.9.

 It fills in any navigational properties that aren’t currently set up by running a
version of the relational fixup described in section 6.1.1. The relationships are
shown as thick lines in figure 6.9.

The two rectangles containing (-2 47482643) represent the CurrentValue property in1

the tracking data for the two entity classes where EF Core stores a pseudo key.

BookId

Title

Description

…

AuthorsLink

Book

BookId

AuthorId (123)

Order

Book

Author

BookAuthor

AuthorId (123)

Name

BooksLink

Author

State = unchanged

(-2147482643)

State = addedState = added

(0) (-2147482643)(0)

Figure 6.9 End of Stage 2. Lots of things have happened here. The State of the
two new entities, Book and BookAuthor, has changed to Added. At the same
time, the Add method tries to set up the foreign keys: It knows the Author’s
primary key, so it can set the AuthorId in the BookAuthor entity. It doesn’t
know the Book’s primary key (BookId), so it puts a unique negative number in the
hidden tracking values, acting as a pseudo key. The Add also has a relational fixup
stage that fills in any other navigational properties.

185Writing to the database with EF Core
In this example, the only entities to link to are set by your code, but Add’s relational
fixup stage can link to any tracked entity. The call to the Add method can take some
time to execute if you have a lot of relationships and/or lots of tracked entity classes
in the current DbContext. I cover this performance issue in detail in chapter 14.

 The final stage, Stage 3, is what happens when the SaveChanges method is called,
as shown in figure 6.10.

You saw in section 6.2.1 that any columns set or changed by the database are copied
back into the entity class so that the entity matches the database. In this example, the
Book’s BookId and the BookAuthor’s BookId were updated to have the key value cre-
ated in the database. Also, now that all the entities involved in this database write
match the database, their States are set to Unchanged.

 That example may have seemed to be a long explanation of something that “just
works,” and many times, you don’t need to know why. But when something doesn’t
work correctly, or when you want to do something complex, such as logging entity
class changes, this information is useful.

Which wins if they are different: navigational links or foreign key values?
I stated in Stage 2 of section 6.2.2 that the add method “looks at all entities linked
to the entity provided as a parameter, either by navigational properties or by foreign
key values.” Which wins if a navigational link links to one entity and the foreign key
links to a different entity? My tests say that the navigational link wins. But that result
is not defined in the EF Core documentation. I have asked for clarification (see
https://github.com/dotnet/efcore/issues/21105), but until there is an answer to
this issue, you must test your code to ensure the “navigational properties win over
foreign key values” feature hasn’t changed.

BookId

Title

Description

…

AuthorsLink

Book

BookId

AuthorId

Order

Book

Author

BookAuthor

AuthorId (123)

Name

BooksLink

Author

State = unchangedState = unchangedState = unchanged

(456)(456)

(123)

Figure 6.10 End of Stage 3. After SaveChanges has finished, the Book and
BookAuthor entities have been added to the database: two new rows have been
inserted into the Books and BookAuthors tables. Creating the Book row means that
its primary key is generated by the database, which is copied back into the Book’s
BookId and also into the BookAuthor’s BookId foreign key. On return, the State
of the Book and BookAuthor are set to Unchanged.

https://github.com/dotnet/efcore/issues/21105

186 CHAPTER 6 Tips and techniques for reading and writing with EF Core

t

A quick way to copy6.2.3 data with relationships

Sometimes, you want to copy an entity class with all its relationships. One of my clients
needed different versions of a custom-designed structure to send to a customer so
they could pick the version they liked. These designs had many common parts, and
the designers didn’t want to type that data for each design; they wanted to build the
first design and copy it as a starting point for the next design.

 One solution would be to clone each entity class and its relationships, but that’s
hard work. (My client’s designs could have hundreds of items, each with ~25 relation-
ships.) But knowing how EF Core works allowed me to write code to copy a design by
using EF Core itself.

 As an example, you are going to use your knowledge of EF Core to copy a user’s
Book App Order, which has a collection of LineItems, which in turn links to Books. You
want to copy the Order only with the LineItems, but you do not want to copy the Books
that the LineItems links to; two copies of a Book would cause all sorts of problems. Let’s
start by looking at the Order that we want to copy, shown in the following listing.

var books = context.SeedDatabaseFourBooks();
var order = new Order
{
 CustomerId = Guid.Empty,
 LineItems = new List<LineItem>
 {
 new LineItem
 {
 LineNum = 1, ChosenBook = books[0], NumBooks = 1
 },
 new LineItem
 {
 LineNum = 2, ChosenBook = books[1], NumBooks = 2
 },
 }
};
context.Add(order);
context.SaveChanges();

Listing 6.13 Creating an Order with two LineItems ready to be copied

For this test, add four
books to use as test data.

Creates an Order with
two LineItems to copy

Sets CustomerId to the default
value so that the query filter
reads the order back

Adds the first
LineNum linked
o the first book

Adds the second
LineNum linked
to the second
book

Writes this Order
to the database

To copy that Order properly, you need to know three things (and you know the first
two from section 6.2.2):

 If you Add an entity that has linked entities that are not tracked—that is, with a
State of Detached—they will be set to the State Added.

 EF Core can find linked entities via the navigational links.
 If you try to Add an entity class to the database, and the primary key is already in

the database, you will get a database exception because the primary key must be
unique.

187Writing to the database with EF Core

Takes
that

Se
primar
of the

ins
When you know those three things, you can get EF Core to copy the Order with its
LineItems, but not the Books that the LineItems link to. Here is the code that copies
the Order and its LineItems but doesn’t copy the Book linked to the LineItems.

var order = context.Orders
 .AsNoTracking()
 .Include(x => x.LineItems)

 .Single(x => x.OrderId == id);

order.OrderId = default;
order.LineItems.First().LineItemId = default;
order.LineItems.Last().LineItemId = default;
context.Add(order);
context.SaveChanges();

Note that you haven’t reset the foreign keys because you are relying on the fact that
the navigational properties override any foreign key values. (See the earlier sidebar
“Which wins if they are different: navigational links or foreign key values?”) But
because you are careful, you build a unit test to check that the relationships are cop-
ied properly.

6.2.4 A quick way to delete an entity

Now you can copy an entity with its relationships. What about deleting an entity
quickly? It turns out that there is a quick way to delete an entity that works well for a
disconnected state delete when you’re working with a web application.

 Chapter 3 covered deleting an entity by reading in the entity you want to delete
and then calling EF Core’s Remove method with that entity instance. That approach
works, but it requires two database accesses—one to read in the entity you want to
delete and another when the SaveChanges is called to delete the entity. As it turns out,
though, all that the Remove method needs is the appropriate entity class with its pri-
mary key(s) set. The following listing shows the deletion of a Book entity by providing
the Book’s primary key value, BookId.

var book = new Book
{
 BookId = bookId
};
context.Remove(book);
context.SaveChanges();

Copying anListing 6.14 Order with its LineItems

Deleting an entity from the database by setting its primary keyListing 6.15

This code is going
to query the
Orders table.

AsNoTracking means that
the entities are read-only;

their State will be Detached.

Include the LineItems, as
you want to copy them too.

You do not add .ThenInclude(x =>
x.ChosenBook) to the query. If you did,
the query would copy the Book entities,
which is not what you want.

the Order
 you want

to copy

Resets the primary keys (Order
and LineItem) to their default
value, telling the database to
generate new primary keys

Writes out the order
and creates a copy

Creates the entity class that you
want to delete (in this case, a Book)ts the

y key
entity
tance

The call to Remove tells EF Core that
you want this entity/row to be deleted.

SaveChanges sends the command
to the database to delete that row.

188 CHAPTER 6 Tips and techniques for reading and writing with EF Core
In a disconnected situation, such as some form of web application, the command to
delete returns only the type and primary key value(s), making the delete code simpler
and quicker. Some minor things are different from the read/remove approach to
relationships:

 If there is no row for the primary key you gave, EF Core throws a DbUpdate-
ConcurrencyException, saying that nothing was deleted.

 The database is in command of which other linked entities are deleted; EF
Core has no say in that. (See the discussion of OnDelete in chapter 8 for more
information.)

Summary
 When reading in entity classes as tracked entities, EF Core uses a process

called relational fixup that sets up all the navigational properties to any other
tracked entities.

 The normal tracking query uses identity resolution, producing the best repre-
sentation of the database structure with one entity class instance for each unique
primary key.

 The AsNoTracking query is quicker than a normal tracking query because it
doesn’t use identity resolution, but it can create duplicate entity classes with the
same data.

 If your query loads multiple collections of relationships by using the Include
method, it creates one big database query, which can be slow in some circum-
stances.

 If your query is missing an Include method, you will get the wrong result, but
there is a way to set up your navigational collections so that your code will fail
instead of returning incorrect data.

 Using Global Query Filters to implement a soft-delete feature works well, but
watch how you handle relationships that rely on the soft-deleted entity.

 Select queries are efficient from the database side but can take more lines of
code to write. The AutoMapper library can automate the building of Select
queries.

 EF Core creates an entity class when reading in data. It does this via the default
parameterless constructor or any other constructors you write if you follow the
normal pattern.

 When EF Core creates an entity in the database, it reads back any data gener-
ated by the database, such as a primary key provided by the database, so that it
can update the entity class instance to match the database.

Part 2

Entity Framework in depth

Part 1 showed how you might build an application by using EF Core. Part 2
covers how to configure EF Core exactly the way you need it and the different
ways you can change (EF Core term: migrate) your database. It also introduces
you to advanced features that can make your software more efficient in both
development and performance terms. Part 2 is more of a reference section that
covers each part of EF Core in detail, but (I hope) not in a boring way.

 Chapter 7 introduces the way that EF Core configures itself when it’s first
used so that you know where and how to apply any of your own EF Core configu-
rations. The chapter focuses on nonrelational properties, with types such as int,
string, and DateTime.

 Chapter 8 shows how EF Core finds and configures relationships. EF Core
does a good job of configuring most relationships for you, but it does need help
on some, and you’ll want to configure others because EF Core’s default settings
don’t suit your needs.

 Chapter 9 covers the important issue of matching the database to your EF
Core configuration, with either the software or the database SQL in control. It
deals with different ways to safely alter—that is, migrate—a database as your
application evolves.

 Chapter 10 covers more-advanced configurable features, such as defining
computed columns in your database and catching and handling concurrent
updates of the database. You’ll use these features only in certain circumstances,
but you should know that they’re there in case you need them.

190 PART 2 Entity Framework in depth
 Chapter 11 looks at methods inside the EF Core’s DbContext class, especially how
SaveChanges works out what to write to the database and how you can influence that.
This chapter covers other diverse topics, such as raw SQL access to the database, data-
base connection resiliency, and the DbContext’s Model property.

Configuring
nonrelational properties
This chapter introduces configuring EF Core in general but concentrates on configur-
ing the nonrelational properties in an entity class; these properties are known as scalar
properties. Chapter 8 covers configuring relational properties, and chapter 10 covers
configuring more-advanced features, such as DbFunctions, computed columns, and
so on.

 This chapter starts with an overview of the configuration process that EF Core
runs when the application’s DbContext is used for the first time. Then you’ll learn
how to configure the mapping between the .NET classes and their associated data-
base tables, with features such as setting the name, SQL type, and nullability of the
columns in a table.

This chapter covers
 Configuring EF Core three ways

 Focusing on nonrelational properties

 Defining the database structure

 Introducing value converters, shadow properties,
and backing fields

 Deciding which type of configuration works best in
different situations
191

192 CHAPTER 7 Configuring nonrelational properties

 This chapter also introduces three EF Core features—value converters, shadow proper-
ties, and backing fields—that enable you to control how the data is stored and con-
trolled by the rest of your non-EF Core code. Value converters, for example, allow you
to transform data when it is written/read from the database, allowing you to make the
database representation easier to understand and debug; shadow properties and back-
ing fields allow you to “hide,” or control access to, database data at the software level.
These features can help you write better, less fragile applications that are easier to
debug and refactor.

Three ways of configuring EF Core7.1
Chapter 1 covered how EF Core models the database and presented a figure to show
what EF Core is doing, with the focus on the database. Figure 7.1 has a more detailed
depiction of the configuration process that happens the first time you use the applica-
tion’s DbContext. This figure shows the entire process, with the three configuration
approaches: By Convention, Data Annotations, and the Fluent API. This example
focuses on the configuration of scalar properties, but the process is the same for all
configurations of EF Core.

Etc...Etc...Etc...

ReviewReviewReview

1. E s a a D rty andF Core look t e ch BSet<T> prope
scans each class and any connected class.

2. For each class, it applies
• By Convention configuration
• Data Annotations configuration

3. Then it runs the OnModelCreating
method and applies any Fluent API
commands you’ve placed there.

Book
Class

Fluent API

By Convention

Data Annotations

Properties

BookId : int

...

NOTE: You can introduce extra entity

classes in your Fluent API commands,

in which case they’re scanned too.

Your application’s DbContextYour entity classes

protected override void
OnModelCreating(ModelBuilder
modelBuilder)

{
modelBuilder.Entity<Book>()
.Property(x -> x.PublishedOn)
.HasColumnType("date");

ModelBuilder.Entity<Book>()
.Property(x -> x.ImageUrl)
.IsUnicode(false);

//etc. ...

public class Book
{

public int BookId
{ get: set: }

[Required]
[MaxLength(256)]
public string Title

{ get; set; }
//etc. ...

AppDbContext
Class
Properties

Books : DbSet<Book>

Authors : DbSet<Author>

Etc. ...

Methods

void OnModelCreating(...

Figure 7.1 When the application’s DbContext is first used, EF Core sets off a process to configure
itself and build a model of the database it’s supposed to access. You can use three approaches to
configure EF Core: By Convention, Data Annotations, and Fluent API. Most real applications need
a mixture of all three approaches to configure EF Core in exactly the way your application needs.

193A worked example of configuring EF Core
This list summarizes the three approaches to configuring EF Core:

 By Convention—When you follow simple rules on property types and names, EF
Core will autoconfigure many of the software and database features. The By
Convention approach is quick and easy, but it can’t handle every eventuality.

 Data Annotations—A range of .NET attributes known as Data Annotations can be
added to entity classes and/or properties to provide extra configuration informa-
tion. These attributes can also be useful for data validation, covered in chapter 4.

 Fluent API—EF Core has a method called OnModelCreating that’s run when the
EF context is first used. You can override this method and add commands,
known as the Fluent API, to provide extra information to EF Core in its model-
ing stage. The Fluent API is the most comprehensive form of configuration
information, and some features are available only via that API.

NOTE Most real applications need to use all three approaches to configure
EF Core and the database in exactly the way they need. Some configuration
features are available via two or even all three approaches (such as defining
the primary key in an entity class). Section 7.16 gives you my recommenda-
tions on which approach to use for certain features, plus a way to automate
some of your configurations.

7.2 A worked example of configuring EF Core
For anything beyond a Hello World version of using EF Core, you’re likely to need
some form of Data Annotations or Fluent API configuration. In part 1, you needed to
set up the key for the many-to-many link table. In this chapter, you’ll see an example
of applying the three configuration approaches introduced in section 7.1 to better
match the database to the needs of our Book App.

 In this example, you’re going to remodel the Book entity class used in chapters 2–5
and change the size and type of some of the columns from the defaults that EF Core
uses via a EF Core migration. These changes make your database smaller, make sort-
ing or searching on some columns faster, and check that some columns aren’t null.
It’s always good practice to define the correct size, type, and nullability for your data-
base columns based on the business needs.

 To do this, you’ll use a combination of all three configuration approaches. The By
Convention configuration has a major part to play, as it defines the table and column
names, but you’ll add specific Data Annotations and Fluent API configuration meth-
ods to change a few of the columns from the default By Convention settings. Figure 7.2
shows how each configuration approach affects EF Core’s internal model of database
table structure. Because of space limitations, the figure doesn’t show all the Data
Annotations and Fluent API configuration methods applied to the table, but you can
see them in listings 7.1 and 7.2, respectively.

NOTE Figure 7.2 uses arrows to link different EF Core configuration code to
the parts of the database table’s columns. To be completely clear, changing

194 CHAPTER 7 Configuring nonrelational properties

1.The BookId property follows the By
Convention naming rules and becomes
the primary key for the Books table.

2. The [Required] annotation sets the Title column
as NOT NULL, while [MaxLength (256)] sets the
number of chars in the column.

3. HasColumnType (“date”) sets the
TE,PublishedOn column type to DA

while the IsUnicode (false) sets
ImageUrl column type to VARCHAR.

OnConfiguring method in DbContext

Fluent API

protected override void
OnModelCreating(ModelBuilder

modelBuilder)
{

modelBuilder.Entity<Book>()
.Property(x -> x.PublishedOn)
.HasColumnType("date");

ModelBuilder.Entity<Book>()
.Property(x -> x.ImageUrl)
.IsUnicode(false);

//etc. ...

SQL code produced by EF Core

CREATE TABLE [dbo].[Books] (
[BookId] INT
IDENTITY (1, 1) NOT NULL,
CONSTRAINT [PK_Books]
PRIMARY KEY CLUSTERED

[Title] NVARCHAR ()256 NOT NULL,
[Description] NVARCHAR (MAX) NULL,
[Price] DECIMAL ()9, 2 NOT NULL,
[Publisher] NVARCHAR (64) NULL,
[PublishedOn] DATE NOT NULL,
[ImageUrl] VARCHAR ()512 NULL

);

Book entity class

public class Book
{

public int BookId
{ get: set: }

[Required]
[MaxLength(256)]
public string Title

[get; set;]
//etc. ...

Figure 7.2 To configure the Books table in the exact format you want, you must use all three
configuration approaches. A large part is done with By Convention (all the parts not in bold), but then
you use Data Annotations to set the size and nullability of the Title column and the Fluent API to
change the type of the PublishedOn and ImageUrl columns.

EF Core configurations doesn’t magically change the database. Chapter 9,
which is about changing the database structure (known as the schema) covers
several ways in which the EF Core configurations alter the database or the
database alters the EF Core configurations in your code.

You will see more detailed explanations of these settings as you read this chapter, but
this part gives you an overall view of different ways you can configure your applica-
tion’s DbContext. It’s also interesting to think about how some of these configurations
could be useful in your own projects. Here are a few EF Core configurations that I use
in most projects I work on:

 [Required] attribute—This attribute tells EF Core that the Title column can’t be
SQL NULL, which means that the database will return an error if you try to
insert/update a book with a null Title property.

 [MaxLength(256)] attribute—This attribute tells EF Core that the number of char-
acters stored in the database should 256 rather than defaulting to the database’s

195A worked example of configuring EF Core
maximum size (2 GB in SQL Server). Having fixed-length strings of the right type,
2-byte Unicode or 1-byte ASCII, makes the database access slightly more efficient
and allows an SQL index to be applied to these fixed-size columns.

DEFINITION An SQL index is a feature that improves the performance of sort-
ing and searching. Section 7.10 covers this topic in more detail.

 HasColumnType("date") Fluent API—By making the PublishedOn column hold
only the date (which is all you need) rather than the default datetime2, you
reduce the column size from 8 bytes to 3 bytes, which makes searching and sort-
ing on the PublishedOn column faster.

 IsUnicode(false) Fluent API—The ImageUrl property contains only 8-bit ASCII
characters, so you tell EF Core so, which means that the string will be stored
that way. So if the ImageUrl property has a [MaxLength(512)] attribute (as
shown in listing 7.1), the IsUnicode(false)method would reduce the size of
the ImageUrl column from 1024 bytes (Unicode takes 2 bytes per character) to
512 bytes (ASCII takes 1 byte per character).

This listing shows you the updated Book entity class code, with the new Data Annota-
tions in bold. (The Fluent API commands are described in section 7.5.)

public class Book
{
 public int BookId { get; set; }

 [Required]
 [MaxLength(256)]
 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime PublishedOn { get; set; }
 [MaxLength(64)]
 public string Publisher { get; set; }
 public decimal Price { get; set; }

 [MaxLength(512)]
 public string ImageUrl { get; set; }
 public bool SoftDeleted { get; set; }

 //---
 //relationships

 public PriceOffer Promotion { get; set; }
 public IList<Review> Reviews { get; set; }
 public IList<BookAuthor> AuthorsLink { get; set; }
}

TIP You’d normally set the size parameter in the [MaxLength(nn)] attri-
bute by using a constant so that if you create a DTO, it will use the same

Listing 7.1 The Book entity class with added Data Annotations

Tells EF Core
that the string
is non-nullable

Defines the size
of the string
column in the
database

196 CHAPTER 7 Configuring nonrelational properties
constant. If you change the size of one property, you change all the associ-
ated properties.

Now that you’ve seen an example that uses all three configuration approaches, let’s
explore each approach in detail.

Configuring by convention7.3
By Convention is the default configuration, which can be overridden by the other two
approaches, Data Annotations and the Fluent API. The By Convention approach
relies on the developer to use the By Convention naming standards and type map-
pings, which allow EF Core to find and configure entity classes and their relationships,
as well as define much of the database model. This approach provides a quick way to
configure much of your database mapping, so it’s worth learning.

Conventions for entity classes7.3.1

Classes that EF Core maps to the database are called entity classes. As stated in chap-
ter 2, entity classes are normal .NET classes, sometimes referred to as POCOs (plain
old CLR objects). EF Core requires entity classes to have the following features:

 The class must be of public access: the keyword public should be before the
class.

 The class can’t be a static class, as EF Core must be able to create a new
instance of the class.

 The class must have a constructor that EF Core can use. The default, parame-
terless constructor works, and other constructors with parameters can work. See
section 6.1.10 for the detailed rules on how EF Core uses constructors.

Conventions for parame7.3.2 ters in an entity class

By convention, EF Core will look for public properties in an entity class that have a
public getter and a setter of any access mode (public, internal, protected, or pri-
vate). The typical, all-public property is

public int MyProp { get; set; }

Although the all-public property is the norm, in some places having a property with a
more localized access setting (such as public int MyProp { get; private set; }) gives
you more control of how it’s set. One example would be a method in the entity class
that also does some checks before setting the property; see chapter 13 for more infor-
mation.

NOTE EF Core can handle read-only properties—properties with only a get-
ter, such as public int MyProp { get; }. But in that case, the By Convention
approach won’t work; you need to use Fluent API to tell EF Core that those
properties are mapped to the database.

197Configuring by convention

Conventions for name, type, and size7.3.3

Here are the rules for the name, type, and size of a relational column:

 The name of the property is used as the name of the column in the table.
 The .NET type is translated by the database provider to the corresponding SQL

type. Many basic .NET types have a one-to-one mapping to a corresponding
database type. These basic .NET types are mostly .NET primitive types (int,
bool, and so on), with some special cases (such as string, DateTime, and Guid).

 The size is defined by the .NET type; for instance, the 32-bit int type is stored in
the corresponding SQL’s 32-bit INT type. String and byte[] types take on a
size of max, which will be different for each database type.

EF6 One change in the default mapping conventions is that EF Core maps a
.NET DateTime type to SQL datetime2(7), whereas EF6 maps .NET DateTime
to SQL datetime. Microsoft recommends using datetime2(7) because it fol-
lows the ANSI and ISO SQL standard. Also, datetime2(7) is more accurate:
SQL datetime’s resolution is about 0.004 seconds, whereas datetime2(7)
has a resolution of 100 nanoseconds.

By convention, the nullability of7.3.4 a property is based on .NET type

In relational databases, NULL represents missing or unknown data. Whether a column
can be NULL is defined by the .NET type:

 If the type is string, the column can be NULL, because a string can be null.
 Primitive types (such as int) or struct types (such as DateTime) are non-null by

default.
 Primitive or struct types can be made nullable by using either the ? suffix (such

as int?) or the generic Nullable<T> (such as Nullable<int>). In these cases,
the column can be NULL.

Figure 7.3 shows the name, type, size, and nullability conventions applied to a property.

1. he meT na of the property is used
for the name of the table column.

2. The .NET type is converted to a default
SQL type—in this case, nvarchar (Unicode).

4. The .NET type, string, is nullable, so
the SQL column is made nullable too.

a3. For each .NET type, EF Core uses
default size—for strings, max.

pub De get;set Description];} [max) N

SQL column.N T class propertyE

Figure 7.3 The application of the By Convention rules to define an SQL column. The type of the
property is converted by the database provider to the equivalent SQL type, whereas the name of the
property is used for the name of the column.

198 CHAPTER 7 Configuring nonrelational properties
An EF Core naming conven7.3.5 tion identifies primary keys

The other rule is about defining the database table’s primary key. The EF Core con-
ventions for designating a primary key are as follows:

 EF Core expects one primary-key property. (The By Convention approach doesn’t
handle keys made up of multiple properties/columns, called composite keys.)

 The property is called Id or <class name>id (such as BookId).
 The type of the property defines what assigns a unique value to the key. Chapter 8

covers key generation.

Figure 7.4 shows an example of a database-generated primary key with By Convention
mapping for the Book’s BookId property and the Books table’s SQL column BookId.

TIP Although you have the option of using the short name, Id, for a primary
key, I recommend that you use the longer name: <class name> followed by Id
(BookId, for example). Understanding what’s going on in your code is easier
if you use Where(p => BookId == 1) rather than the shorter Where(p => Id == 1),
especially when you have lots of entity classes.

7.4 Configuring via Data Annotations
Data Annotations are a specific type of .NET attribute used for validation and database
features. These attributes can be applied to an entity class or property and provide
configuration information to EF Core. This section introduces where you can find
them and how they’re typically applied. The Data Annotation attributes that are rele-
vant to EF Core configuration come from two namespaces.

3. Because the property follows
the pattern <ClassName>Id, this
defines the primary key of the table.

1. he meT na of the property is used
for the name of the primary key.

2. The .NET int type is one that maps to a
primary key that the database server
creates via the SQL IDENTITY keyword.

public int BookId {get;set [BookId] [int];} IDENTITY(1,1)
CONSTANT [PK_Books]
PRIMARY KEY CLUSTERED,

SQL column.N T class propertyE

Figure 7.4 The mapping between the .NET class property BookId and the SQL primary column
BookId, using the By Convention approach. The name of the property tells EF Core that this
property is the primary key. Also, the database provider knows that a type of int means that it
should create a unique value for each row added to the table.

199Configuring via the Fluent API

Using annotations from Syst7.4.1 em.ComponentModel.DataAnnotations

The attributes in the System.ComponentModel.DataAnnotations namespace are used
mainly for data validation at the frontend, such as ASP.NET, but EF Core uses some of
them for creating the mapping model. Attributes such as [Required] and [Max-
Length] are the main ones, with many of the other Data Annotations having no effect
on EF Core. Figure 7.5 shows how the main attributes, [Required] and [MaxLength],
affect the database column definition.

7.4.2

7.5

[Required]

[MaxLength(256)]
public string AuthorName {get;set;}

[AuthorName] [nvarchar](256) NOT NULL

1. heT Required attribute says that
the property/column can’t be NULL.

2. The MaxLength attribute sets the maximum
size of the property string/column.

SQL column.N T class propertyE

Figure 7.5 The [Required] and [MaxLength] attributes affect the mapping to a database
column. The [Required] attribute indicates that the column shouldn’t be null, and the
[MaxLength] attribute sets the size of the nvarchar.

Using annotations from System.ComponentModel.DataAnnotations.Schema

The attributes in the System.ComponentModel.DataAnnotations.Schema namespace
are more specific to database configuration. This namespace was added in NET
Framework 4.5, well before EF Core was written, but EF Core uses its attributes, such
as [Table], [Column], and so on, to set the table name and column name/type, as
described in section 7.11.

Configuring via the Fluent API
The third approach to configuring EF Core, called the Fluent API, is a set of methods
that works on the ModelBuilder class that’s available in the OnModelCreating method
inside your application’s DbContext. As you will see, the Fluent API works by exten-
sion methods that can be chained together, as LINQ commands are chained together,
to set a configuration setting. The Fluent API provides the most comprehensive list of
configuration commands, with many configurations available only via that API.

But before defining the Fluent API relationship commands, I want to introduce a
different approach that segregates your Fluent API commands into per-entity class
sized groups. This approach is useful because as your application grows, putting all
Fluent API commands in the OnModelCreating method (as shown in figure 2.6)
makes finding a specific Fluent API hard work. The solution is to move the Fluent API

200 CHAPTER 7 Configuring nonrelational properties

DbCo
the

u
reg

t
con
for

class
co
for an entity class into a separate configuration class that’s then called from the
OnModelCreating method.

 EF Core provides a method to facilitate this process in the shape of the IEntity-
TypeConfiguration<T> interface. Listing 7.2 shows your new application DbContext,
EfCoreContext, where you move the Fluent API setup of the various classes into sep-
arate configuration classes. The benefit of this approach is that the Fluent API for
an entity class is all in one place, not mixed with Fluent API commands for other
entity classes.

EF6 EF6.x has an EntityTypeConfiguration<T> class that you can inherit
to encapsulate the Fluent API configuration for a given entity class. EF
Core’s implementation achieves the same result but uses an IEntityType-
Configuration<T> interface that you apply to your configuration class.

public class EfCoreContext : DbContext
{
 public EfCoreContext(DbContextOptions<EfCoreContext> options)
 : base(options)
 { }

 public DbSet<Book> Books { get; set; }
 public DbSet<Author> Authors { get; set; }
 public DbSet<PriceOffer> PriceOffers { get; set; }
 public DbSet<Order> Orders { get; set; }

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.ApplyConfiguration(new BookConfig());
 modelBuilder.ApplyConfiguration(new BookAuthorConfig());
 modelBuilder.ApplyConfiguration(new PriceOfferConfig());
 modelBuilder.ApplyConfiguration(new LineItemConfig());
 }
}

Let’s look at the BookConfig class used in listing 7.2 to see how you would construct a
per-type configuration class. Listing 7.3 shows a configuration class that implements
the IEntityTypeConfiguration<T> interface and contains the Fluent API methods
for the Book entity class.

NOTE I am not describing the Fluent APIs in listing 7.3 because it is an exam-
ple of the use of the IEntityTypeConfiguration<T> interface. The Fluent
APIs are covered in section 7.7 (database type) and section 7.10 (indexes).

Listing 7.2 Application’s DbContext for database with relationships

UserId of the user who
has bought some books

Creates the
ntext, using
 options set
p when you
istered the
DbContext

The entity classes
that your code
will access

The method in which your
Fluent API commands runRun each of

he separate
figurations

 each entity
 that needs
nfiguration.

201Configuring via the Fluent API

T
bas
.NE

n

com
t

internal class BookConfig : IEntityTypeConfiguration<Book>
{
 public void Configure
 (EntityTypeBuilder<Book> entity)
 {
 entity.Property(p => p.PublishedOn)
 .HasColumnType("date");

 entity.Property(p => p.Price)
 . HasPrecision(9,2);

 entity.Property(x => x.ImageUrl)
 .IsUnicode(false);

 entity.HasIndex(x => x.PublishedOn);
 }
}

In listing 7.2, I list each of the separate modelBuilder.ApplyConfiguration calls so that
you can see them in action. But a time-saving method called ApplyConfigurations-
FromAssembly can find all your configuration classes that inherit IEntityType-
Configuration<T> and run them all for you. See the following code snippet, which
finds and runs all your configuration classes in the same assembly as the DbContext:

modelBuilder.ApplyConfigurationsFromAssembly(
 Assembly.GetExecutingAssembly());

Listing 7.3 shows a typical use of the Fluent API, but please remember that the flu-
ent nature of the API allows chaining of multiple commands, as shown in this code
snippet:

modelBuilder.Entity<Book>()
 .Property(x => x.ImageUrl)
 .IsUnicode(false)
 .HasColumnName("DifferentName")
 .HasMaxLength(123)
 .IsRequired(false);

EF6 The Fluent API works the same in EF6.x, but with lots of new features
and substantial changes in setting up relationships (covered in chapter 8) and
subtle changes in data types.

OnModelCreating is called when the application first accesses the application’s
DbContext. At that stage, EF Core configures itself by using all three approaches: By
Convention, Data Annotations, and any Fluent API you’ve added in the OnModel-
Creating method.

Listing 7.3 BookConfig extension class configures Book entity class

Convention-based mapping for
.NET DateTime is SQL datetime2.
This command changes the SQL
column type to date, which holds
only the date, not the time.

The precision of (9,2) sets a max
price of 9,999,999.99 (9 digits,
2 after decimal point), which
takes up the smallest size in
the database.

he convention-
ed mapping for
T string is SQL

varchar (16 bit
Unicode). This
mand changes
he SQL column
type to varchar

(8-bit ASCII).

Adds an index to the PublishedOn
property because you sort and
filter on this property

202 CHAPTER 7 Configuring nonrelational properties

Now that you’ve learned about the Data Annotations and Fluent API configuration
approaches, let’s detail the configuration of specific parts of the database model.

7.6 Excluding properties and classes from the database
Section 7.3.2 described how EF Core finds properties. But at times, you’ll want to
exclude data in your entity classes from being in the database. You might want to have
local data for a calculation used during the lifetime of the class instance, for example,
but you don’t want it saved to the database. You can exclude a class or a property in
two ways: via Data Annotations or via the Fluent API.

7.6.1 Excluding a class or property via Data Annotations

EF Core will exclude a property or a class that has a [NotMapped] data attribute
applied to it. The following listing shows the application of the [NotMapped] data attri-
bute to both a property and a class.

public class MyEntityClass
{
 public int MyEntityClassId { get; set; }

 public string NormalProp{ get; set; }

 [NotMapped]
 public string LocalString { get; set; }

 public ExcludeClass LocalClass { get; set; }
}

[NotMapped]
public class ExcludeClass
{
 public int LocalInt { get; set; }
}

What if Data Annotations and the Fluent API say different things?
The Data Annotations and the Fluent API modeling methods always override convention-
based modeling. But what happens if a Data Annotation and the Fluent API both pro-
vide a mapping of the same property and setting?

I tried setting the SQL type and length of the WebUrl property to different values via
Data Annotations and via the Fluent API. The Fluent API values were used. That test
wasn’t a definitive one, but it makes sense that the Fluent API was the final arbitrator.

Listing 7.4 Excluding three properties, two by using [NotMapped]

Included: A normal public
property, with public
getter and setter

Excluded: Placing a [NotMapped]
attribute tells EF Core to not map
this property to a column in the
database.

Excluded: This class won’t
be included in the database
because the class definition
has a [NotMapped] attribute
on it.

Excluded: This
class will be
excluded because
the class definition
has a [NotMapped]
attribute on it.

203Setting database column type, size, and nullability
Excluding a class or property via the Fluent API7.6.2

In addition, you can exclude properties and classes by using the Fluent API configura-
tion command Ignore, as shown in listing 7.5.

NOTE For simplicity, I show the Fluent API inside the OnModelCreating method
rather than in a separate configuration class.

public class ExcludeDbContext : DbContext
{
 public DbSet<MyEntityClass> MyEntities { get; set; }

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<MyEntityClass>()
 .Ignore(b => b.LocalString);

 modelBuilder.Ignore<ExcludeClass>();
 }
}

As I said in section 7.3.2, by default, EF Core will ignore read-only properties—that is,
a property with only a getter (such as public int MyProp { get; }).

7.7 Setting database column type, size, and nullability
As described earlier, the convention-based modeling uses default values for the SQL
type, size/precision, and nullability based on the .NET type. A common requirement
is to set one or more of these attributes manually, either because you’re using an exist-
ing database or because you have performance or business reasons to do so.

 In the introduction to configuring (section 7.3), you worked through an example
that changed the type and size of various columns. Table 7.1 provides a full list of the
commands that are available to perform this task.

Excluding a property and a class by using the Fluent APIListing 7.5

Setting nullability and SQL type/size for a columnTable 7.1

Setting Data Annotations Fluent API

Set not null
(Default is nullable.)

[Required]
public string MyProp
 { get; set; }

modelBuilder.Entity<MyClass>()
 .Property(p => p.MyProp)
 .IsRequired();

Set size (string)
(Default is MAX length.)

[MaxLength(123)]
public string MyProp
 { get; set; }

modelBuilder.Entity<MyClass>()
 .Property(p => p.MyProp)
 .HasMaxLength(123);

Set SQL type/size
(Each type has a default
precision and size.)

[Column(TypeName =
 "date")]
public DateTime
 PublishedOn
 { get; set; }

modelBuilder.Entity<MyClass>(
 .Property(p =>
 p.PublishedOn)
 .HasColumnType("date");

The Ignore method is used to exclude
the LocalString property in the entity
class, MyEntityClass, from being added
to the database.

A different Ignore method can
exclude a class such that if you have
a property in an entity class of the
Ignored type, that property isn’t
added to the database.

204 CHAPTER 7 Configuring nonrelational properties

Some specific SQL types have their own Fluent API commands, which are shown in
the following list. You can see the first Fluent API commands in use in listing 7.3:

 IsUnicode(false)—Sets the SQL type to varchar(nnn) (1-byte character, known
as ASCII) rather than the default of nvarchar(nnn) (2-byte character, known as
Unicode).

 HasPrecision(precision, scale)—Sets the number of digits (precision param-
eter) and how many of the digits are after the decimal point (scale parameter).
This Fluent command is new in EF Core 5. The default setting of the SQL
decimal is (18,2).

 HasCollation(“collation name”)—Another EF Core 5 feature that allows you
to define the collation on a property—that is, the sorting rules, case, and accent
sensitivity properties of char and string types. (See section 2.8.3 for more
about collations.)

I recommend using the IsUnicode(false) method to tell EF Core that a string prop-
erty contains only single-byte ASCII-format characters, because using the IsUnicode
method allows you to set the string size separately.

EF6 EF Core has a slightly different approach to setting the SQL data type of
a column. If you provide the data type, you need to give the whole definition,
both type and length/precision—as in [Column(TypeName = "varchar(nnn)")],
where nnn is an integer number. In EF6, you can use [Column(TypeName =
"varchar")] and then define the length by using [MaxLength(nnn)], but
that technique doesn’t work in EF Core. See https://github.com/dotnet/
efcore/issues/3985 for more information.

Value conversions: Changing data to/from7.8
the database
EF Core’s value conversions feature allows you to change data when reading and writ-
ing a property to the database. Typical uses are

 Saving Enum type properties as a string (instead of a number) so that it’s easier
to understand when you’re looking at the data in the database

 Fixing the problem of DateTime losing its UTC (Coordinated Universal Time)
setting when read back from the database

 (Advanced) Encrypting a property written to the database and decrypting on
reading back

The value conversions have two parts:

 Code that transforms the data as it is written out to the database
 Code that transforms the database column back to the original type when

read back

The first example of value conversions deals with a limitation of the SQL database in
storing DateTime types, in that it doesn’t save the DateTimeKind part of the DateTime

https://github.com/dotnet/efcore/issues/3985
https://github.com/dotnet/efcore/issues/3985
https://github.com/dotnet/efcore/issues/3985

205Value conversions: Changing data to/from the database

On
the d

add th
to t

p
want

struct that tells us whether the DateTime is local time or UTC. This situation can cause
problems. If you send that DateTime to your frontend using JSON, for example, the
DateTime won’t contain the Z suffix character that tells JavaScript that the time is
UTC, so your frontend code may display the wrong time. The following listing shows
how to configure a property to have a value conversion that sets the DateTimeKind on
the return from the database.

protected override void OnModelCreating
 (ModelBuilder modelBuilder)
{
 var utcConverter = new ValueConverter<DateTime, DateTime>(
 toDb => toDb,
 fromDb =>
 DateTime.SpecifyKind(fromDb, DateTimeKind.Utc));

 modelBuilder.Entity<ValueConversionExample>()
 .Property(e => e.DateTimeUtcUtcOnReturn)
 .HasConversion(utcConverter);
 //… other configurations left out
}

Listing 7.6 Configuring a DateTime property to replace the lost DateTimeKind setting

Creates a
ValueConverter from

DateTime to DateTime

Saves the DateTime
to the database in
the normal way (such
as no conversion)

reading from
atabase, you
e UTC setting
he DateTime.

Selects the
roperty you
to configure Adds the utcConverter

to that property

In this case, you had to create your own value converter, but about 20 built-in value
converters are available. (See http://mng.bz/mgYP.) In fact, one value converter is so
popular that it has a predefined Fluent API method or an attribute—a conversion to
store an Enum as a string in the database. Let me explain.

Enums are normally stored in the database as numbers, which is an efficient format,
but it does make things harder if you need to delve into the database to work out what
happened. So some developers like to save Enums in the database as a string. You can
configure a conversion of an Enum type to a string by using the HasConversion

<string>() command, as in the following code snippet:

modelBuilder.Entity<ValueConversionExample>()
.Property(e => e.Stage)
.HasConversion<string>();

Following are some rules and limitations on using value conversions:

 A null value will never be passed to a value converter. You need to write a value
converter to handle only the non-null value, as your converter will be called
only if the value isn’t a null.

 Watch out for queries that contain sorting on a converted value. If you con-
verted your Enums to a string, for example, the sorting will sort by the Enum

name, not by the Enum value.
 The converter can only map a single property to a single column in the database.
 You can create some complex value converters, such as serializing a list of ints

to a JSON string. At this point, EF Core cannot compare the List<int> property

http://mng.bz/mgYP

206 CHAPTER 7 Configuring nonrelational properties
with the JSON in the database, so it won’t update the database. To solve this
problem, you need to add what is called a value comparer. See the EF Core doc at
http://mng.bz/5j5z for more information on this topic.

Later, in section 7.16.4, you will learn a way to automatically apply value converters to
certain property types/names to make your life easier.

7.9 The different ways of configuring the primary key
You’ve already seen the By Convention approach of setting up the primary key of an
entity. This section covers the normal primary-key setting—one key for which the
.NET property defines the name and type. You need to configure the primary key
explicitly in two situations:

 When the key name doesn’t fit the By Convention naming rules
 When the primary key is made up of more than one property/column, called a

composite key

A many-to-many relationship-linking table is an example of where the By Conven-
tion approach doesn’t work. You can use two alternative approaches to define pri-
mary keys.

NOTE Chapter 8 deals with configuring foreign keys, because they define
relationships even though they’re of a scalar type.

7.9.1 Configuring a primary key via Data Annotations

The [Key] attribute allows you to designate one property as the primary key in a class.
Use this annotation when you don’t use the By Convention primary key name, as
shown in the following listing. This code is simple and clearly marks the primary key.

private class SomeEntity
{
 [Key]
 public int NonStandardKeyName { get; set; }

 public string MyString { get; set; }
}

Note that the [Key] attribute can’t be used for composite keys. In earlier versions of
EF Core, you could define composite keys by using [Key] and [Column] attributes, but
that feature has been removed.

7.9.2 Configuring a primary key via the Fluent API

You can also configure a primary key via the Fluent API, which is useful for primary
keys that don’t fit the By Convention patterns. The following listing shows two primary
keys being configured by the Fluent API’s HasKey method. The first primary key is a

Listing 7.7 Defining a property as the primary key bu using the [Key] annotation

[Key] attribute tells EF
Core that the property
is a primary key.

http://mng.bz/5j5z

207The different ways of configuring the primary key

s
single primary key with a nonstandard name in the SomeEntity entity class, and the
second is a composite primary key, consisting of two columns, in the BookAuthor link-
ing table.

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<SomeEntity>()
 .HasKey(x => x.NonStandardKeyName);

 modelBuilder.Entity<BookAuthor>()
 .HasKey(x => new {x.BookId, x.AuthorId});

 //… other configuration settings removed
}

There is no By Convention version for composite keys, so you must use the Fluent
API’s HasKey method.

7.9.3 Configuring an entity as read-only

In some advanced situations, your entity class might not have a primary key. Here are
three examples:

 You want to define an entity class as read-only. If an entity class hasn’t got a primary
key, then EF Core will treat it as read-only.

 You want to map an entity class to a read-only SQL View. SQL Views are SQL queries
that work like SQL tables. See this article for more information: http://mng
.bz/6g6y.

 You want to map an entity class to an SQL query by using the ToSqlQuery Fluent API
command. The ToSqlQuery method allows you to define an SQL command
string that will be executed when you read in that entity class.

To set an entity class explicitly as read-only, you can use the fluent API HasNoKey()
command or apply the attribute [Keyless] to the entity class. And if your entity class
doesn’t have a primary key, you must mark it as read-only, using either of the two
approaches. Any attempt to change the database via an entity class with no primary
key will fail with an exception. EF Core does this because it can’t execute the update
without a key, which is one way you can define an entity class as read-only. The other
way to mark an entity as read-only is to map an entity to an SQL View by using the flu-
ent API method ToView("ViewNameString") command, as shown in the following
code snippet:

modelBuilder.Entity<MyEntityClass>()
 .ToView("MyView");

Listing 7.8 Using the Fluent API to configure primary keys on two entity classes

Defines a normal, single-column
primary key. Use HasKey when
your key name doesn’t match
the By Convention defaults.

Uses an anonymous object to
define two (or more) propertie
to form a composite key. The
order in which the properties
appear in the anonymous
object defines their order.

http://mng.bz/6g6y
http://mng.bz/6g6y
http://mng.bz/6g6y

208 CHAPTER 7 Configuring nonrelational properties
EF Core will throw an exception if you try to change the database via an entity class
that is mapped to a View. If you want to map an entity class to an updatable view—an
SQL View that can be updated—you should use the ToTable command instead.

Adding indexes to database columns7.10
Relational databases have a feature called an index, which provides quicker searching
and sorting of rows based on the column, or columns, in the index. In addition, an
index may have a constraint, which ensures that each entry in the index is unique. A
primary key is given a unique index, for example, to ensure that the primary key is dif-
ferent for each row in the table.

 You can add an index to a column via Fluent API and attributes, as shown in table 7.2.
An index will speed quick searching and sorting, and if you add the unique constraint,
the database will ensure that the column value in each row will be different.

TIP Don’t forget that you can chain the Fluent API commands together to
mix and match these methods.

Some databases allow you to specify a filtered or partial index to ignore certain situa-
tions by using a WHERE clause. You could set a unique filtered index that ignored any
soft-deleted items, for example. To set up a filtered index, you use the HasFilter Flu-
ent API method containing an SQL expression to define whether the index should be
updated with the value. The following code snippet gives an example of enforcing

Adding an index to a columnTable 7.2

Action Fluent API

Add index, Fluent modelBuilder.Entity<MyClass>()
 .HasIndex(p => p.MyProp);

Add index, Attribute [Index(nameof(MyProp))]
public class MyClass …

Add index, multiple columns modelBuilder.Entity<Person>()
 .HasIndex(p => new {p.First, p.Surname});

Add index, multiple columns,
Attribute

[Index(nameof(First), nameof(Surname)]
public class MyClass …

Add unique index, Fluent modelBuilder.Entity<MyClass>()
 .HasIndex(p => p.BookISBN)
 .IsUnique();

Add unique index, Attribute [Index(nameof(MyProp), IsUnique = true)]
public class MyClass …

Add named index, Fluent modelBuilder.Entity<MyClass>()
 .HasIndex(p => p.MyProp)
 .HasDatabaseName("Index_MyProp");

209Configuring the naming on the database side
that the property MyProp will contain a unique value unless the SoftDeleted column of
the table is true:

modelBuilder.Entity<MyClass>()
 .HasIndex(p => p.MyProp)
 .IsUnique()
 .HasFilter(“NOT SoftDeleted");

NOTE When you’re using the SQL Server provider, EF adds an IS NOT NULL
filter for all nullable columns that are part of a unique index. You can over-
ride this convention by providing null to the HasFilter parameter—that is
HasFilter(null).

7.11 Configuring the naming on the database side
If you’re building a new database, using the default names for the various parts of the
database is fine. But if you have an existing database, or if your database needs to be
accessed by an existing system you can’t change, you most likely need to use specific
names for the schema name, the table names, and the column names of the database.

DEFINITION Schema refers to the organization of data inside a database—the
way the data is organized as tables, columns, constraints, and so on. In some
databases, such as SQL Server, schema is also used to give a namespace to a
particular grouping of data that the database designer uses to partition the
database into logical groups.

7.11.1 Configuring table names

By convention, the name of a table is set by the name of the DbSet<T> property in the
application’s DbContext, or if no DbSet<T> property is defined, the table uses the class
name. In the application’s DbContext of our Book App, for example, you defined a
DbSet<Book> Books property, so the database table name is set to Books. Conversely,
you haven’t defined a DbSet<T> property for the Review entity class in the applica-
tion’s DbContext, so its table name used the class name and is, therefore, Review.

 If your database has specific table names that don’t fit the By Convention naming
rules—for example, if the table name can’t be converted to a valid .NET variable
name because it has a space in it—you can use either Data Annotations or the Fluent
API to set the table name specifically. Table 7.3 summarizes the two approaches to set-
ting the table name.

Table 7.3 Two ways to configure a table name explicitly for an entity class

Configuration method Example: Setting the table name of the Book class to "XXX"

Data Annotations [Table("XXX")]
public class Book … etc.

Fluent API modelBuilder.Entity<Book>().ToTable("XXX");

210 CHAPTER 7 Configuring nonrelational properties
7.11.2 Configuring the schema name and schema groupings

Some databases, such as SQL Server, allow you to group your tables by using what is
called a schema name. You could have two tables with the same name but different
schema names: a table called Books with a schema name Display, for example, would
be different from a table called Books with a schema name Order.

 By convention, the schema name is set by the database provider because some
databases, such as SQLite and MySQL, don’t support schemas. In the case of SQL
Server, which does support schemas, the default schema name is dbo, which is the
SQL Server default name. You can change the default schema name only via the Flu-
ent API, using the following snippet in the OnModelCreating method of your applica-
tion’s DbContext:

modelBuilder.HasDefaultSchema("NewSchemaName");

Table 7.4 shows how to set the schema name for a table. You use this approach if your
database is split into logical groups such as sales, production, accounts, and so on, and
a table needs to be specifically assigned to a schema.

7.11.3 Configuring the database column names in a table

By convention, the column in a table has the same name as the property name. If your
database has a name that can’t be represented as a valid .NET variable name or
doesn’t fit the software use, you can set the column names by using Data Annotations
or the Fluent API. Table 7.5 shows the two approaches.

Setting the schema name on a specific tableTable 7.4

Configuration method Example: Setting the schema name "sales" on a table

Data Annotations [Table("SpecialOrder", Schema = "sales")]
class MyClass … etc.

Fluent API modelBuilder.Entity<MyClass>()
 .ToTable("SpecialOrder", schema: "sales");

The two ways to configure a column nameTable 7.5

Configuration method Setting the column name of the BookId property to SpecialCol

Data Annotations [Column("SpecialCol")]
public int BookId { get; set; }

Fluent API modelBuilder.Entity<MyClass>()
 .Property(b => b.BookId)
 .HasColumnName("SpecialCol");

211Applying Fluent API commands based on the database provider type
Configuring Global Query Filters7.12
Many applications, such as ASP.NET Core, have security features that control what
views and controls the user can access. EF Core has a similar security feature called
Global Query Filters (shortened to Query Filters). You can use Query Filters to build a
multitenant application. This type of application holds data for different users in one
database, but each user can see only the data they are allowed to access. Another use is
to implement a soft-delete feature; instead of deleting data in the database, you might
use a Query Filter to make the soft-deleted row disappear, but the data will still be
there if you need to undelete it later.

 I have found Query Filters to be useful in many client jobs, so I included a detailed
section called “Using Global Query Filters in real-world situations” in chapter 6 (sec-
tion 6.1.6). That section contains information on how to configure Query Filters, so
please look there for that information. In section 7.16.4 of this chapter, I show how
you can automate the configuration of Query Filters, which ensures that you won’t
forget to add an important Query Filter to one of your entity classes.

Applying Fluent API commands based on the database7.13
provider type
The EF Core database providers provide a way to detect what database provider is
being used when an instance of an application DbContext is created. This approach
is useful for situations such as using, say, an SQLite database for your unit tests, but
the production database is on an SQL Server, and you want to change some things to
make your unit tests work.

 SQLite, for example, doesn’t fully support a few NET types, such as decimal, so if
you try to sort on a decimal property in an SQLite database, you’ll get an exception
saying that you won’t get the right result from an SQLite database. One way to get
around this issue is to convert the decimal type to a double type when using SQLite; it
won’t be accurate, but it might be OK for a controlled set of unit tests.

 Each database provider provides an extension method to return true if the data-
base matches that provider. The SQL Server database provider, for example, has a
method called IsSqlServer(); the SQLite database provider has a method called
IsSqlite(); and so on. Another approach is to use the ActiveProvider property in
the ModelBuilder class, which returns a string that is the NuGet package name of the
database provider, such as "Microsoft.EntityFrameworkCore.SqlServer".

 The following listing is an example of applying the decimal to double type change
if the database is SQLite. This code allows the Book App’s OrderBooksBy query object
method to use an in-memory SQLite database.

Using database-provider commands to set a column nameListing 7.9

protected override void OnModelCreating
(ModelBuilder modelBuilder)

{
//… put your normal configration here

212 CHAPTER 7 Configuring nonrelational properties

The I
ret
th

p
t

 if (Database.IsSqlite())
 {
 modelBuilder.Entity<Book>()
 .Property(e => e.Price)
 .HasConversion<double>();
 modelBuilder.Entity<PriceOffer>()
 .Property(e => e.NewPrice)
 .HasConversion<double>();
 }
}

EF Core 5 added the IsRelational() method, which returns false for database pro-
viders that aren’t relational, such as Cosmos Db. You can find a few database-specific
Fluent API commands, such as the SQL Server provider method IsMemoryOptimized,
in the EF Core documentation for each database provider.

NOTE Although you could use this approach to create migrations for differ-
ent production database types, it’s not recommended. The EF Core team sug-
gests that you create a migration for each database type and store each
migration in separate directories. For more information, see chapter 9.

7.14 Shadow properties: Hiding column data inside EF Core

EF6 EF6.x had the concept of shadow properties, but they were used only
internally to handle missing foreign keys. In EF Core, shadow properties
become a proper feature that you can use.

Shadow properties allow you to access database columns without having them appear in
the entity class as a property. Shadow properties allow you to “hide” data that you con-
sider not to be part of the normal use of the entity class. This is all about good soft-
ware practice: you let upper layers access only the data they need, and you hide
anything that those layers don’t need to know about. Let me give you two examples
that show when you might use shadow properties:

 A common need is to track by whom and when data was changed, maybe for
auditing purposes or to understand customer behavior. The tracking data you
receive is separate from the primary use of the class, so you may decide to
implement that data by using shadow properties, which can be picked up out-
side the entity class.

 When you’re setting up relationships in which you don’t define the foreign-key
properties in your entity class, EF Core must add those properties to make the rela-
tionship work, and it does this via shadow properties. Chapter 8 covers this topic.

7.14.1 Configuring shadow properties

There’s a By Convention approach to configuring shadow properties, but because it
relates only to relationships, I explain it in chapter 8. The other method is to use
the Fluent API. You can introduce a new property by using the Fluent API method

sSqlite will
urn true if
e database
rovided in
he options
is SQLite.

You set the two decimal
values to double so that
a unit test that sorts on
these values doesn’t
throw an exception.

213Shadow properties: Hiding column data inside EF Core

Property<T>. Because you’re setting up a shadow property, there won’t be a property of
that name in the entity class, so you need to use the Fluent API’s Property<T> method,
which takes a .NET Type and the name of the shadow property. The following listing
shows the setup of a shadow property called UpdatedOn that’s of type DateTime.

public class Chapter06DbContext : DbContext
{
 …

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<MyEntityClass>()
 .Property<DateTime>("UpdatedOn");
 …
 }
}

Under By Convention, the name of the table column the shadow property is mapped
to is the same as the name of the shadow property. You can override this setting by
adding the HasColumnName method on to the end of the property method.

WARNING If a property of that name already exists in the entity class, the con-
figuration will use that property instead of creating a shadow property.

7.14.2 Accessing shadow properties

Because the shadow properties don’t map to a class property, you need to access them
directly via EF Core. For this purpose, you have to use the EF Core command
Entry(myEntity).Property("MyPropertyName").CurrentValue, which is a read/write
property, as shown in the following listing.

var entity = new SomeEntityClass();
context.Add(entity);
context.Entry(entity)
 .Property("UpdatedOn").CurrentValue
 = DateTime.Now;
context.SaveChanges();

Creating theListing 7.10 UpdatedOn shadow property by using the Fluent API

UsingListing 7.11 Entry(inst).Property(name) to set the shadow property

Uses the Property<T>
method to define the
shadow property type

Creates an entity class and adds it to the context,
so it’s now tracked

Gets the EntityEntry from
the tracked entity data

Uses the Property method
to get the shadow property
with read/write access

Sets that
property to
the value
you want

Calls SaveChanges to save the
MyEntityClass instance, with its normal and

shadow property values, to the database

If you want to read a shadow property in an entity that has been loaded, use the
context.Entry(entityInstance).Property("PropertyName").CurrentValue com-
mand. But you must read the entity as a tracked entity; you should read the entity

214 CHAPTER 7 Configuring nonrelational properties
without the AsNoTracking method being used in the query. The Entry(<entity-
Instance>).Property method uses the tracked entity data inside EF Core to hold the
value, as it’s not held in the entity class instance.

 In LINQ queries, you use another technique to access a shadow property: the
EF.Property command. You could sort by the UpdatedOn shadow property, for exam-
ple, by using the following query snippet, with the EF.Property method in bold:

context.MyEntities
 .OrderBy(b => EF.Property<DateTime>(b, "UpdatedOn"))
 .ToList();

Backing fields: Cont7.15 rolling access to data
in an entity class

EF6 Backing fields aren’t available in EF6. This EF Core feature provides a
level of control over access to data that EF6.x users have been after for
some time.

As you saw earlier, columns in a database table are normally mapped to an entity
class property with normal getters and setters—public int MyProp { get ; set; }.
But you can also map a private field to your database. This feature is called a backing
field, and it gives you more control of the way that database data is read or set by the
software.

 Like shadow properties, backing fields hide data, but they do the hiding in
another way. For shadow properties, the data is hidden inside EF Core’s data, but
backing fields hide the data inside the entity class, so it’s easier for the entity class to
access the backing field inside the class. Here are some examples of situations in
which you might use backing fields:

 Hiding sensitive data—Hiding a person’s date of birth in a private field and mak-
ing their age in years available to the rest of the software.

 Catching changes—Detecting an update of a property by storing the data in a pri-
vate field and adding code in the setter to detect the update of a property. You
will use this technique in chapter 12, when you use property change to trigger
an event.

 Creating Domain-Driven Design (DDD) entity classes—Creating DDD entity classes
in which all the entity classes’ properties need to be read-only. Backing fields
allow you to lock down navigational collection properties, as described in sec-
tion 8.7.

But before you get into the complex versions, let’s start with the simplest form of back-
ing fields, in which a property getter/setter accesses the field.

215Backing fields: Controlling access to data in an entity class
7.15.1 Creating a simple backing field accessed by
a read/write property

The following code snippet shows you a string property called MyProperty, in which
the string data is stored in a private field. This form of backing field doesn’t do any-
thing particularly different from using a normal property, but this example shows the
concept of a property linked to a private field:

public class MyClass
{
 private string _myProperty;
 public string MyProperty
 {
 get { return _myProperty; }
 set { _myProperty = value; }
 }
}

EF Core’s By Convention configuration will find the type of backing field and config-
ure it as a backing field (see section 7.15.4 for backing-field configuration options),
and by default, EF Core will read/write the database data to this private field.

7.15.2 Creating a read-only column

Creating a read-only column is the most obvious use, although it can also be imple-
mented via a private setting property (see section 7.3.2). If you have a column in the
database that you need to read but don’t want the software to write, a backing field
is a great solution. In this case, you can create a private field and use a public prop-
erty, with a getter only, to retrieve the value. The following code snippet gives you
an example:

public class MyClass
{
 private string _readOnlyCol;
 public string ReadOnlyCol => _readOnlyCol;
}

Something must set the column property, such as setting a default value in the database
column (covered in chapter 9) or through some sort of internal database method.

7.15.3 Concealing a person’s date of birth: Hiding data inside a class

Hiding a person’s date of birth is a possible use of backing fields. In this case, you
deem for security reasons that a person’s date of birth can be set, but only their age
can be read from the entity class. The following listing shows how to do this in the
Person class by using a private _dateOfBirth field and then providing a method to set
it and a property to calculate the person’s age.

216 CHAPTER 7 Configuring nonrelational properties
public class Person
{
 private DateTime _dateOfBirth;

 public void SetDateOfBirth(DateTime dateOfBirth)
 {
 _dateOfBirth = dateOfBirth;
 }

 public int AgeYears =>
 Years(_dateOfBirth, DateTime.Today);

 //Thanks to dana on stackoverflow

//see
 private static int Years(DateTime start, DateTime end)
 {
 return (end.Year - start.Year - 1) +
 (((end.Month > start.Month) ||
 ((end.Month == start.Month)
 && (end.Day >= start.Day)))
 ? 1 : 0);
 }}

NOTE In the preceding example, you need to use the Fluent API to create a
backing-field-only variable (covered in section 7.15.2), because EF Core can’t
find this backing field by using the By Convention approach.

From the class point of view, the _dateOfBirth field is hidden, but you can still access
the table column via various EF Core commands in the same way that you accessed the
shadow properties: by using the EF.Property<DateTime>(entity, "_dateOfBirth")
method.

 The backing field, _dateOfBirth, isn’t totally secure from the developer, but that’s
not the aim. The idea is to remove the date-of-birth data from the normal properties
so that it doesn’t get displayed unintentionally in any user-visible view.

7.15.4 Configuring backing fields

Having seen backing fields in action, you can configure them By Convention, via Flu-
ent API, and now in EF Core 5 via Data Annotations. The By Convention approach
works well but relies on the class to have a property that matches a field by type and a
naming convention. If a field doesn’t match the property name/type or doesn’t have a
matching property such as in the _dateOfBirth example, you need to configure your
backing fields with Data Annotations or by using the Fluent API. The following sec-
tions describe the various configuration approaches.

Listing 7.12 Using a backing field to hide sensitive data from normal access

The private backing field, which
can’t be accessed directly via
normal .NET software

Allows the
backing field
to be set

You can access the
person’s age but not
their exact date of birth.

217Backing fields: Controlling access to data in an entity class

CONFIGURING BACKING FIELDS BY CONVENTION

If your backing field is linked to a valid property (see section 7.3.2), the field can be
configured by convention. The rules for By Convention configuration state that
the private field must have one of the following names that match a property in the
same class:

 _<property name> (for example, _MyProperty)
 _<camel-cased property name > (for example, _myProperty)
 m_<property name> (for example, m_MyProperty)
 m_<camel-cased property name> (for example, m_myProperty)

DEFINITION Camel case is a convention in which a variable name starts with a
lowercase letter but uses an uppercase letter to start each subsequent word in
the name—as in thisIsCamelCase.

CONFIGURING BACKING FIELDS VIA DATA ANNOTATIONS

New in EF Core 5 is the BackingField attribute, which allows you to link a property to
a private field in the entity class. This attribute is useful if you aren’t using the By Con-
vention backing field naming style, as in this example:

private string _fieldName;
[BackingField(nameof(_fieldName))]
public string PropertyName
{

get { return _fieldName; }
}

public void SetPropertyNameValue(string someString)
{

_fieldName = someString;
}

CONFIGURING BACKING FIELDS VIA THE FLUENT API
You have several ways of configuring backing fields via the Fluent API. We’ll start with
the simplest and work up to the more complex. Each example shows you the OnModel-

Creating method inside the application’s DbContext, with only the field part being
configured:

 Setting the name of the backing field—If your backing field name doesn’t follow
EF Core’s conventions, you need to specify the field name via the Fluent API.
Here’s an example:

protected override void OnModelCreating
(ModelBuilder modelBuilder)

{
modelBuilder.Entity<Person>()

.Property(b => b.MyProperty)

.HasField("_differentName");
…

}

218 CHAPTER 7 Configuring nonrelational properties
 Supplying only the field name—In this case, if there’s a property with the correct
name, by convention EF Core will refer to the property, and the property name
will be used for the database column. Here’s an example:

protected override void OnModelCreating
 (ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Person>()
 .Property("_dateOfBirth")
 .HasColumnName("DateOfBirth");
 …
}

If no property getter or setter is found, the field will still be mapped to the col-
umn, using its name, which in this example is _dateOfBirth, but that’s most
likely not the name you want for the column. So you add the HasColumnName
Fluent API method to get a better column name. The downside is that you’d
still need to refer to the data in a query by its field name (in this case, _dateOf-
Birth), which isn’t too friendly or obvious.

ADVANCED: CONFIGURING HOW DATA IS READ/WRITTEN TO THE BACKING FIELD
Since the release of EF Core 3, the default database access mode for backing fields is
for EF Core to read and write to the field. This mode works in nearly all cases, but if
you want to change the database access mode, you can do so via the Fluent API Use-
PropertyAccessMode method. The following code snippet tells EF Core to try to use
the property for read/write, but if the property is missing a setter, EF Core will fill in
the field on a database read:

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Person>()
 .Property(b => b.MyProperty)
 .HasField("_differentName")
 .UsePropertyAccessMode(PropertyAccessMode.PreferProperty);
 …
}

TIP To see the various access modes for a backing field, use Visual Studio’s
intellisense feature to look at the comments on each of the PropertyAccess-
Mode Enum values.

Recommendations for usin7.16 g EF Core’s configuration
You have so many ways to configure EF Core, some of which duplicate each other,
that it isn’t always obvious which of the three approaches you should use for each
part of the configuration. Here are suggested approaches to use for each part of EF
Core configuration:

219Recommendations for using EF Core’s configuration
 Start by using the By Convention approach wherever possible, because it’s quick
and easy.

 Use the validation attributes—MaxLength, Required, and so on—from the Data
Annotations approach, as they’re useful for validation.

 For everything else, use the Fluent API approach, because it has the most com-
prehensive set of commands. But consider writing code to automate common
settings, such as applying the DateTime “UTC fix” to all DateTime properties
whose Name ends with "Utc".

The following sections provide more-detailed explanations of my recommendations
for configuring EF Core.

7.16.1 Use By Convention configuration first

EF Core does a respectable job of configuring most standard properties, so always
start with that approach. In part 1, you built the whole of this initial database by using
the By Convention approach, apart from the composite key in the BookAuthor many-
to-many linking entity class.

 The By Convention approach is quick and easy. You’ll see in chapter 8 that most
relationships can be set up purely by using the By Convention naming rules, which
can save you a lot of time. Learning what By Convention can configure will dramati-
cally reduce the amount of configuration code you need to write.

7.16.2 Use validation Data Annotations wherever possible

Although you can do things such as limit the size of a string property with either Data
Annotations or the Fluent API, I recommend using Data Annotations for the follow-
ing reasons:

 Frontend validation can use them. Although EF Core doesn’t validate the entity
class before saving it to the database, other parts of the system may use Data
Annotations for validation. ASP.NET Core uses Data Annotations to validate
input, for example, so if you input directly into an entity class, the validation
attributes will be useful. Or if you use separate ASP.NET ViewModel or DTO
classes, you can cut and paste the properties with their validation attributes.

 You may want to add validation to EF Core’s SaveChanges. Using data validation to
move checks out of your business logic can make your business logic simpler.
Chapter 4 showed you how to add validation of entity classes when SaveChanges
is called.

 Data Annotations make great comments. Attributes, which include Data Annota-
tions, are compile-time constants; they’re easy to see and easy to understand.

220 CHAPTER 7 Configuring nonrelational properties

 the
he
me

thr
the

that
has c

ma
the d
7.16.3 Use the Fluent API for anything else

Typically, I use the Fluent API for setting up the database column mapping (column
name, column data type, and so on) when it differs from the conventional values. You
could use the schema Data Annotations to do that, but I try to hide things like these
inside the OnModelCreating method because they’re database implementation issues
rather than software structure issues. That practice is more a preference than a rule,
though, so make your own decision. Section 7.16.4 describes how to automate some of
your Fluent API configurations, which saves you time and also ensures that all your
configuration rules are applied to every matching class/property.

7.16.4 Automate adding Fluent API commands by
class/property signatures

One useful feature of the Fluent API commands allows you to write code to find and
configure certain configurations based on the class/property type, name, and so on.
In a real application, you might have hundreds of DateTime properties that need the
UTC fix you used in listing 7.6. Rather than add the configuration for each property
by hand, wouldn’t it be nice to find each property that needs the UTC fix and apply it
automatically? You’re going to do exactly that.

 Automating finding/adding configurations relies on a type called IMutableModel,
which you can access in the OnModelCreating method. This type gives you access to all
the classes mapped by EF Core to the database, and each IMutableEntityType allows
you to access the properties. Most configuration options can be applied via methods
in these two interfaces, but a few, such as Query Filters, need a bit more work.

 To start, you will build the code that will iterate through each entity class and its
properties, and add one configuration, as shown in listing 7.13. This iteration approach
defines the way to automate configurations, and in later examples, you will add extra
commands to do more configurations.

 The following example adds a value converter to a DateTime that applies the UTC
fix shown in listing 7.6. But in the following listing, the UTC fix value converter is
applied to every property that is a DateTime with a Name that ends with "Utc".

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 var utcConverter = new ValueConverter<DateTime, DateTime>(
 toDb => toDb,
 fromDb =>
 DateTime.SpecifyKind(fromDb, DateTimeKind.Utc));

 foreach (var entityType in modelBuilder.Model.GetEntityTypes())
 {

Listing 7.13 Applying value converter to any DateTime property ending in "Utc"

The Fluent API commands
are applied in the
OnModelCreating method.

Defines a value
converter to set
UTC setting to t
returned DateTi

Loops
ough all
 classes
EF Core
urrently

found
pped to
atabase

221Recommendations for using EF Core’s configuration

Loo
th

th
t

ue

e
me
 foreach (var entityProperty in entityType.GetProperties())
 {
 if (entityProperty.ClrType == typeof(DateTime)
 && entityProperty.Name.EndsWith("Utc"))
 {
 entityProperty.SetValueConverter(utcConverter);
 }
 //… other examples left out for clarity
 }
 }
 //… rest of configration code left out

Listing 7.13 showed the setup of only one Type/Named property, but normally, you would
have lots of Fluent API settings. In this example, you are going to do the following:

1 Add the UTC fix value converter to properties of type DateTime whose Names
end with "Utc".

2 Set the decimal precision/scale where the property’s Name contains "Price".
3 Set any string properties whose Name ends in "Url" to be stored as ASCII—that

is, varchar(nnn).

The following code snippet shows the code inside the OnModelCreating method in
the Book App DbContext to add these three configuration settings:

foreach (var entityType in modelBuilder.Model.GetEntityTypes())
{
 foreach (var entityProperty in entityType.GetProperties())
 {
 if (entityProperty.ClrType == typeof(DateTime)
 && entityProperty.Name.EndsWith("Utc"))
 {
 entityProperty.SetValueConverter(utcConverter);
 }

 if (entityProperty.ClrType == typeof(decimal)
 && entityProperty.Name.Contains("Price"))
 {
 entityProperty.SetPrecision(9);
 entityProperty.SetScale(2);
 }

 if (entityProperty.ClrType == typeof(string)
 && entityProperty.Name.EndsWith("Url"))
 {
 entityProperty.SetIsUnicode(false);
 }
 }
}

A few Fluent APIs configurations need class-specific code, however. The Query Filters,
for example, need a query that accesses entity classes. For this case, you need to add

ps through all
e properties in
an entity class
at are mapped
o the database

Adds the UTC val
converter to
properties of typ
DateTime and Na
ending in “Utc”

222 CHAPTER 7 Configuring nonrelational properties

r

he
ty
ance

Adds a
User
bette
an interface to the entity class you want to add a Query Filter to and create the correct
filter query dynamically.

 As an example, you are going to build code that allows you to add automatically
the SoftDelete Query Filter described in section 3.5.1 and the UserId Query Filter
shown in section 6.1.7. Of these two Query Filters, UserId is more complex because it
needs to get the current UserId, which changes on every instance of the Book App’s
DbContext. You can do this in a couple of ways, but you decide to provide the current
instance of the DbContext to the query. The following listing shows the extension
class, called SoftDeleteQueryExtensions, with its MyQueryFilterTypes enum.

public enum MyQueryFilterTypes { SoftDelete, UserId }

public static class SoftDeleteQueryExtensions
{
 public static void AddSoftDeleteQueryFilter(
 this IMutableEntityType entityData,
 MyQueryFilterTypes queryFilterType,
 IUserId userIdProvider = null)
 {
 var methodName = $"Get{queryFilterType}Filter";
 var methodToCall = typeof(SoftDeleteQueryExtensions)
 .GetMethod(methodName,
 BindingFlags.NonPublic | BindingFlags.Static)
 .MakeGenericMethod(entityData.ClrType);
 var filter = methodToCall
 .Invoke(null, new object[] { userIdProvider });
 entityData.SetQueryFilter((LambdaExpression)filter);
 if (queryFilterType == MyQueryFilterTypes.SoftDelete)
 entityData.AddIndex(entityData.FindProperty(
 nameof(ISoftDelete.SoftDeleted)));
 if (queryFilterType == MyQueryFilterTypes.UserId)
 entityData.AddIndex(entityData.FindProperty(
 nameof(IUserId.UserId)));
 }

 private static LambdaExpression GetUserIdFilter<TEntity>(
 IUserId userIdProvider)
 where TEntity : class, IUserId
 {
 Expression<Func<TEntity, bool>> filter =
 x => x.UserId == userIdProvider.UserId;
 return filter;
 }

TheListing 7.14 enum/class to use to set up Query Filters on every compatible class

Defines the
different type of

LINQ query to put
in the Query Filter

A static
extension class

Call this method
to set up the
query filter.

First parameter
comes from EF Core
and allows you to
add a query filter

Second parameter allows you to pick
which type of query filter to add

Third optional property holds a copy of
the current DbContext instance so that
the UserId will be the current one

Creates the correctly
typed method to
create the Where
LINQ expression to
use in the Query
Filter

Uses the filter
eturned by the

created type
method in the
SetQueryFilter

method

Adds an index on t
SoftDeleted proper
for better perform

n index on the
Id property for
r performance

Creates a query
that is true only
if the _userId
matches the
UserID in the
entity class

223Recommendations for using EF Core’s configuration

Cre
that

if the
pro

Sets u
If the

return
Us

replace

Lo
a

tha
cu
m

 private static LambdaExpression GetSoftDeleteFilter<TEntity>(
 IUserId userIdProvider)
 where TEntity : class, ISoftDelete
 {
 Expression<Func<TEntity, bool>> filter =
 x => !x.SoftDeleted;
 return filter;
 }
}

Because every query of an entity that has a Query Filter will contain a filter on that
property, the code automatically adds an index on every property that is used in a
Query Filter. That technique improves performance on that entity. Finally, the follow-
ing listing shows how to use the code shown in listing 7.14 within the Book App’s
DbContext to automate the configuration of the Query Filters.

public class EfCoreContext : DbContext, IUserId
{
 public Guid UserId { get; private set; }

 public EfCoreContext(DbContextOptions<EfCoreContext> options,
 IUserIdService userIdService = null)
 : base(options)
 {
 UserId = userIdService?.GetUserId()
 ?? new ReplacementUserIdService().GetUserId();
 }

 //DbSets removed for clarity

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 //other configration code removed for clarity

 foreach (var entityType in modelBuilder.Model.GetEntityTypes()
 {
 //other property code removed for clarity

 if (typeof(ISoftDelete)
 .IsAssignableFrom(entityType.ClrType))
 {
 entityType.AddSoftDeleteQueryFilter(
 MyQueryFilterTypes.SoftDelete);
 }
 if (typeof(IUserId)
 .IsAssignableFrom(entityType.ClrType))
 {

Adding code to the DbContext to automate setting up Query FiltersListing 7.15

ates a query
 is true only
 SoftDeleted
perty is false

Adding the IUserId to the
DbContext means that we
can pass the DbContext to
the UserId query filter.

Holds the UserId, which is used in the
Query Filter that uses the IUserId interface

p the UserId.
userIdService
is null, or if it
s null for the

erId, we set a
ment UserId.

The automate code goes in the
OnModelCreating method.

ops through
ll the classes
t EF Core has
rrently found
apped to the

database

If the class inherits the
ISoftDelete interface, it
needs the SoftDelete
Query Filter.Adds a Query Filter

to this class, with a
query suitable for

SoftDelete If the class inherits the
IUserId interface, it
needs the IUserId
Query Filter.

224 CHAPTER 7 Configuring nonrelational properties
 entityType.AddSoftDeleteQueryFilter(
 MyQueryFilterTypes.UserId, this);
 }
 }
}

For the Book App, all this automation is overkill, but in bigger applications, it can save
you a great deal of time; more important, it ensures that you have set everything up
correctly. To end this section, here are some recommendations and limitations that
you should know about if you are going to use this approach:

 If you run the automatic Fluent API code before your handcoded configura-
tions, your handcoded configurations will override any of the automatic Fluent
API settings. But be aware that if there is an entity class that is registered only
via manually written Fluent API, that entity class won’t be seen by the automatic
Fluent API code.

 The configuration commands must apply the same configurations every time
because the EF Core configures the application’s DbContext only once—on
first use—and then works from a cache version.

Summary
 The first time you create the application’s DbContext, EF Core configures itself

by using a combination of three approaches: By Convention, Data Annotations,
and the Fluent API.

 Value converters allow you to transform the software type/value when writing
and reading back from the database.

 Two EF Core features, shadow properties and backing fields, allow you to hide
data from higher levels of your code and/or control access to data in an entity
class. Use the By Convention approach to set up as much as you can, because
it’s simple and quick to code.

 When the By Convention approach doesn’t fit your needs, Data Annotations
and/or EF Core’s Fluent API can provide extra commands to configure both
the way EF Core maps the entity classes to the database and the way EF Core will
handle that data.

 In addition to writing configuration code manually, you can also add code to
configure entity classes and/or properties automatically based on the class/
properties signature.

For readers who are familiar with EF6:

 The basic process of configuring EF Core is, on the surface, similar to the way
EF6 works, but there is a significant number of changed or new commands.

 EF Core can use configuration classes to hold the Fluent API commands for a
given entity class. The Fluent API commands provide a feature similar to the

Adds the UserId
Query Filter to this
class. Passing ‘this’
allows access to the
current UserId.

225Summary
EF6.x EntityType-Configuration<T> class, but EF Core uses an IEntityType-
Configuration<T> interface instead.

 EF Core has introduced many extra features that are not available in EF6, such
as value converters, shadow properties, and backing fields, all of which are wel-
come additions to EF.

Configuring relationships
Chapter 7 described how to configure scalar (nonrelational) properties. This chap-
ter covers how to configure database relationships. I assume that you’ve read at
least the first part of chapter 7, because configuring relationships uses the same
three approaches—By Convention, Data Annotations, and the Fluent API—to map
the database relationships.

 This chapter covers how EF Core finds and configures relationships between
entity classes, with pointers and examples showing how to configure each type of
relationship: one-to-one, one-to-many, and many-to-many. EF Core’s By Convention
relationship rules can configure many relationships quickly, but you’ll also learn
about all the Data Annotations and Fluent API configuration options, which
allow you to define precisely the way you want a relationship to behave. You’ll also
look at features that allow you to enhance your relationships with extra keys and

This chapter covers
 Configuring relationships with By Convention

 Configuring relationships with Data Annotations

 Configuring relationships with the Fluent API

 Mapping entities to database tables in five
other ways
226

227Defining some relationship terms
alternative table-mapping approaches. Finally, you’ll consider five ways to map your
classes to the database.

8.1 Defining some relationship terms
This chapter refers to the various parts of a relationship, and you need clear terms so
that you know exactly what part of the relationship we’re talking about. Figure 8.1
shows those terms, using the Book and Review entity classes from our Book App. I fol-
low this figure with a more detailed description so the terms will make sense to you
when I use them in this chapter.

To ensure that these terms are clear, here are detailed descriptions:

 Principal key—A new term, taken from EF Core’s documentation, that refers to
either the primary key, defined in part 1, or the new alternate key, which has a
unique value per row and isn’t the primary key (see section 8.8.3)

NOTE Figure 8.1 provides an example of an alternate key called UniqueISBN,
which represents a unique value per entity. (ISBN stands for International Stan-
dard Book Number, which is unique for every book.)

 Principal entity—The entity that contains the principal-key properties, which the
dependent relationship refer to via a foreign key(s) (covered in chapter 3)

 Dependent entity—The entity that contains the foreign-key properties that refer
to the principal entity (covered in chapter 3)

 Principal key—The entity has a principal key, also known as the primary key, which
is unique for each entity stored in the database

Principal key
(primary key)

Principal key
(primary key)

Principal key
(alternate key)

Navigation property
(collection)

Required relationshipForeign key
(foreign key isn’t nullable)

Book
Class

Dependent entityPrincipal entity

Properties

BookId : int

Title : string

... properties removed

UniqueISBN : string

Reviews : ICollection<Review>

Review
Class

Properties

ReviewId : int

... properties removed

BookId : int

Figure 8.1 The Book and Review entity classes show six of the terms used in this chapter to
discuss relationships: principal entity, dependent entity, principal key, navigational property, foreign
key, and required relationship. Not shown is optional relationship, which is described in section 2.1.1.

228 CHAPTER 8 Configuring relationships
 Navigational property—A term taken from EF Core’s documentation that refers
to the property containing a single entity class, or a collection of entity classes,
that EF Core uses to link entity classes

 Foreign key—Defined in section 2.1.3, holds the principal key value(s) of the
database row it’s linked to (or could be null)

 Required relationship—A relationship in which the foreign key is non-nullable
(and principal entity must exist)

 Optional relationship—A relationship in which the foreign key is nullable (and
principal entity can be missing)

NOTE A principal key and a foreign key can consist of more than one prop-
erty/column. These keys are called composite keys. You’ve already seen one of
these keys in section 3.4.4, as the BookAuthor many-to-many linking entity
class has a composite primary key consisting of the BookId and the AuthorId.

You’ll see in section 8.4 that EF Core can find and configure most relationships By
Convention. In some cases, EF Core needs help, but generally, it can find and config-
ure your navigational properties for you if you use the By Convention naming rules.

What navigational pr8.2 operties do you need?
The configuring of relationships between entity classes should be guided by the busi-
ness needs of your project. You could add navigational properties at both ends of a
relationship, but that suggests that every navigational property is useful, and some
navigational properties aren’t. It is good practice to provide only navigational proper-
ties that make sense from the business or software design point of view.

 In our Book App, for example, the Book entity class has many Review entity classes,
and each Review class is linked, via a foreign key, to one Book. Therefore, you could
have a navigational property of type ICollection<Review> in the Book class and a nav-
igational property of type Book in the Review class. In that case, you’d have a fully
defined relationship: a relationship with navigational properties at both ends.

 But do you need a fully defined relationship? From the software design point of
view, there are two questions about the Book/Review navigational relationships. The
answers to these questions define which navigational relationship you need to include:

 Does the Book entity class need to know about the Review entity classes? I say
yes, because we want to calculate the average review score.

 Does the Review entity class need to know about the Book entity class? I say no,
because in this example application, we don’t do anything with that relationship.

Our solution, therefore, is to have only the ICollection<Review> navigational prop-
erty in the Book class, which is what figure 8.1 portrays.

 My experience is you should add a navigational property only when it makes
sense from a business point of view or when you need a navigational property to cre-
ate (EF Core’s Add) an entity class with a relationship (see section 6.2.1). Minimizing

229Configuring relationships By Convention
navigational properties will help make the entity classes easier to understand, and
more-junior developers won’t be tempted to use relationships that aren’t right for
your project.

8.3 Configuring relationships
In the same way as in chapter 7, which covered configuring nonrelational properties,
EF Core has three ways to configure relationships. Here are the three approaches for
configuring properties, but focused on relationships:

 By Convention—EF Core finds and configures relationships by looking for refer-
ences to classes that have a primary key in them.

 Data Annotations—These annotations can be used to mark foreign keys and
relationship references.

 Fluent API—This API provides the richest set of commands to configure any
relationship fully.

The next three sections detail each of these approaches in turn. As you’ll see, the By
Convention approach can autoconfigure many relationships for you if you follow its
naming standards. At the other end of the scale, the Fluent API allows you to define
every part of a relationship manually, which can be useful if you have a relationship
that falls outside the By Convention approach.

8.4 Configuring relationships By Convention
The By Convention approach is a real time-saver when it comes to configuring rela-
tionships. In EF6.x, I used to define my relationships laboriously because I didn’t
fully understand the power of the By Convention approach to relationships. Now
that I understand the conventions, I let EF Core set up most of my relationships,
other than in the few cases in which By Convention doesn’t work. (Section 8.4.6 lists
those exceptions.)

 The rules are straightforward, but the ways that the property name, type, and nul-
lability work together to define a relationship take a bit of time to absorb. I hope that
reading this section will save you time when you’re developing your next application
that uses EF Core.

8.4.1 What makes a class an entity class?

Chapter 2 defined the term entity class as a normal .NET class that has been mapped
by EF Core to the database. Here, you want to define how EF Core finds and identifies
a class as an entity class by using the By Convention approach.

 Figure 7.1 showed the three ways that EF Core configures itself. Following is a recap
of that process, now focused on finding the relationships and navigational properties:

1 EF Core scans the application’s DbContext, looking for any public DbSet<T>
properties. It assumes that the classes, T, in the DbSet<T> properties are entity
classes.

230 CHAPTER 8 Configuring relationships
2 EF Core also looks at every public property in the classes found in step 1 and
looks at properties that could be navigational properties. The properties whose
type contains a class that isn’t defined as being scalar properties (string is a class,
but it’s defined as a scalar property) are assumed to be navigational properties.
These properties may appear as a single link (such as public PriceOffer Promo-
tion (get; set; }) or a type that implements the IEnumerable<T> interface
(such as public ICollection<Review> Reviews { get; set; }).

3 EF Core checks whether each of these entity classes has a primary key (see sec-
tion 7.9). If the class doesn’t have a primary key and hasn’t been configured as
not having a key (see section 7.9.3), or if the class isn’t excluded, EF Core will
throw an exception.

An example of an entity class with navigational properties8.4.2

Listing 8.1 shows the entity class Book, which is defined in the application’s DbContext.
In this case, you have a public property of type DbSet<Book>, which passed the “must
have a valid primary key” test in that it has a public property called BookId.

 What you’re interested in is how EF Core’s By Convention configuration handles the
three navigational properties at the bottom of the class. As you’ll see in this section, EF
Core can work out which sort of relationship it is by the type of the navigational prop-
erty and the foreign key in the class that the navigational property refers to.

public class Book
{
 public int BookId { get; set; }
 //other scalar properties removed as not relevant…

 public PriceOffer Promotion { get; set; }

 public ICollection<Tag> Tags { get; set; }

 public ICollection<BookAuthor> AuthorsLink { get; set; }

 public ICollection<Review> Reviews { get; set; }
}

If two navigational properties exist between the two entity classes, the relationship is
known as fully defined, and EF Core can work out By Convention whether it’s a one-to-
one or a one-to-many relationship. If only one navigational property exists, EF Core
can’t be sure, so it assumes a one-to-many relationship.

 Certain one-to-one relationships may need configuration via the Fluent API if you
have only one navigational property or if you want to change the default By Conven-
tion setting, such as when you’re deleting an entity class with a relationship.

Listing 8.1 The Book entity class, with the relationships at the bottom

Links to a PriceOffer,
which is one-to-zero-
or-one relationship

Links directly to a list of
Tag entities, using EF
Core 5’s automatic many-
to-many relationship

Links to one
side of the
many-to-many
relationship of
authors via a
linking table

Links to any reviews for this
book: one-to-many relationship

231Configuring relationships By Convention
How EF Core finds fo8.4.3 reign keys By Convention

A foreign key must match the principal key (defined in section 8.1) in type and in
name, but to handle a few scenarios, foreign-key name matching has three options,
shown in figure 8.2. The figure shows all three options for a foreign-key name using
the entity class Review that references the primary key, BookId, in the entity class Book.

Option 1 is the one I use most; it’s depicted in figure 8.1. Option 2 is for developers
who use the short, By Convention primary-key name, Id, as it makes the foreign key
unique to the class it’s linking to. Option 3 helps with specific cases in which you’d get
duplicate named properties if you used option 1. The following listing shows an exam-
ple of using option 3 to handle a hierarchical relationship.

public class Employee
{
 public int EmployeeId { get; set; }

 public string Name { get; set; }

 //------------------------------
 //Relationships

 public int? ManagerEmployeeId { get; set; }
 public Employee Manager { get; set; }
}

A hierarchical relationship with an option-3 foreign keyListing 8.2

Review
Class

Properties

...

BookId : int

Option works for1

most relationships.
Try this first.

Option 3 is useful for
• Two or more relationships

to the same class
• Hierarchical relationships

with a reference back to
the class itself

Option 2 is useful if the
foreign key references a
short primary-key name, Id.

Review
Class

Properties

...

BookBookId : int

Book
Class

Properties

BookId : int

Review
Class

Properties

...

Link : Book

LinkBookId : int

1 2.<Class>. <PrincipalKeyName>
<PrincipalKeyName>

3.<NavigationPropertyName>
<PrincipalKeyName>

Figure 8.2 Three By Convention options for a foreign key referring to the Book entity class’s
primary key. These options allow you to use a unique name for your foreign key, from which EF
Core can work out which primary key this relationship refers to.

Foreign key uses the
<NavigationalPropertyName>
<PrimaryKeyName> pattern

232 CHAPTER 8 Configuring relationships

8.4.4

8.4.5

The entity class called Employee has a navigational property called Manager that links
to the employee’s manager, who is an employee as well. You can’t use a foreign key of
EmployeeId (option 1), because it’s already used for the primary key. Therefore, you
use option 3 and call the foreign key ManagerEmployeeId by using the navigational
property name at the start.

Nullability of foreign keys: Required or optional dependent
relationships

The nullability of the foreign key defines whether the relationship is required (non-
nullable foreign key) or optional (nullable foreign key). A required relationship ensures
that relationships exist by ensuring that the foreign key is linked to a valid principal
key. Section 8.6.1 describes an Attendee entity that has a required relationship to a
Ticket entity class.

An optional relationship allows there to be no link between the principal entity and
the dependent entity by having the foreign-key value(s) set to null. The Manager naviga-
tional property in the Employee entity class, shown in listing 8.2, is an example of an
optional relationship, as someone at the top of the business hierarchy won’t have a boss.

The required or optional status of the relationship also affects what happens to
dependent entities when the principal entity is deleted. The default setting of the
OnDelete action for each relationship type is as follows:

 For a required relationship, EF Core sets the OnDelete action to Cascade. If the
principal entity is deleted, the dependent entity will be deleted too.

 For a optional relationship, EF Core sets the OnDelete action to ClientSetNull. If
the dependent entity is being tracked, the foreign key will be set to null

when the principal entity is deleted. But if the dependent entity isn’t being
tracked, the database constraint delete setting takes over, and the ClientSetNull

setting sets the database rules as though the Restrict setting were in place. The
result is that the delete fails at the database level, and an exception is thrown.

NOTE The ClientSetNull delete behavior is rather unusual, and section
8.8.1 explains why. That section also describes how to configure the delete
behavior of a relationship.

Foreign keys: What happens if you leave them out?

If EF Core finds a relationship via a navigational property or through a relationship
you configured via the Fluent API, it needs a foreign key to set up the relationship in
the relational database. Including foreign keys in your entity classes is good practice,
giving you better control of the nullability of the foreign key. Also, access to foreign
keys can be useful when you’re handling relationships in a disconnected update (see
section 3.3.1).

But if you do leave out a foreign key (on purpose or by accident), EF Core config-
uration will add a foreign key as a shadow property. Shadow properties, which were intro-
duced in chapter 7, are hidden properties that can be accessed only via specific EF

233Configuring relationships By Convention
Core commands. Having foreign keys added automatically as shadow properties can
be useful. One of my clients, for example, had a general Note entity class that was
added to a Notes collection in many entities.

 Figure 8.3 shows a one-to-many relationship in which the Note entity class is used
in a collection navigational property in two entity classes: Customer and Job. Note that
the primary-key names of the Customer and Job entity classes use different By Conven-
tion naming approaches to show how the shadow properties are named.

If the entity class that gains a shadow property foreign key has a navigational link to
the other end of the relationship, the name of that shadow property would be <navi-
gation property name><principal key property name>. If the Note entity in figure
8.3 has a navigational link back to the Customer entity called LinkBack, the shadow
property foreign key’s name would be LinkBackId.

NOTE My unit tests show that one-to-one relationships are rejected if there is
no foreign key to link the two entities. Therefore, EF Core’s By Convention
won’t set up shadow property foreign keys on one-to-one relationships auto-
matically.

If you want to add a foreign key as a shadow property, you can do that via the Fluent
API HasForeignKey, shown in section 8.6, but with the name of the shadow property
name provided via a string. Be careful not to use the name of an existing property, as
that will not add a shadow property but will use the existing property.

int Id

…

ICollection<Notes> Notes

Customer

int NoteId

These are
shadow properties.

Because the Note entity has no navigational
property back to the Customer or Job entity,
the shadow properties are given the name
<class name><principal key name>
or just the <principal key name> if the
primary key name already contains the
class name.

string Text

int? CustomerId

int? JobId

Note

int JobId

…

ICollection<Notes> Notes

Job

Figure 8.3 EF Core’s By Convention configuration will add nullable
(that is, optional relationship) foreign keys as shadow properties if you
don’t provide your own foreign keys in the Notes entity class.

234 CHAPTER 8 Configuring relationships
 The shadow foreign-key property will be nullable, which has the effect described in
section 8.4.4 on nullability of foreign keys. If this effect isn’t what you want, you can
alter the shadow property’s nullability by using the Fluent API IsRequired method, as
described in section 8.8.2.

EF6 EF6.x uses a similar approach to adding foreign keys if you left them out
of your entity classes, but in EF6.x, you can’t configure the nullability or
access the content. EF Core’s shadow properties make leaving out foreign
keys more controllable.

When does By Convention configuration not work?8.4.6

If you’re going to use the By Convention configuration approach, you need to
know when it’s not going to work so that you can use other means to configure your
relationship. Here’s my list of scenarios that won’t work, with the most common
listed first:

 You have composite foreign keys (see section 8.6 or section 8.5.1).
 You want to create a one-to-one relationship without navigational links going

both ways (see section 8.6.1).
 You want to override the default delete-behavior setting (see section 8.8.1).
 You have two navigational properties going to the same class (see section 8.5.2).
 You want to define a specific database constraint (see section 8.8.4).

Configuring relationships8.5 by using Data Annotations
Only two Data Annotations relate to relationships, as most of the navigational configu-
ration is done via the Fluent API: the ForeignKey and InverseProperty annotations.

The ForeignKey Data Annotation8.5.1

The ForeignKey Data Annotation allows you to define the foreign key for a naviga-
tional property in the class. Taking the hierarchical example of the Employee class,
you can use this annotation to define the foreign key for the Manager navigational
property. The following listing shows an updated Employee entity class with a new,
shorter foreign-key name for the Manager navigational property that doesn’t fit By
Convention naming: ManagerEmployeeId.

public class Employee
{
 public int EmployeeId { get; set; }
 public string Name { get; set; }

 public int? ManagerId { get; set; }
 [ForeignKey(nameof(ManagerId))]
 public Employee Manager { get; set; }
}

Using theListing 8.3 ForeignKey data annotation to set the foreign-key name

Defines which property is the
foreign key for the Manager
navigational property

235Configuring relationships by using Data Annotations
NOTE You’ve applied the ForeignKey data annotation to the Manager navi-
gational property, giving the name of the foreign key, ManagerId. But
the ForeignKey data annotation also works the other way around. You
could’ve applied the ForeignKey data annotation to the foreign-key prop-
erty, ManagerId, giving the name of the navigational property, Manager—
such as [ForeignKey(nameof(Manager))].

The ForeignKey data annotation takes one parameter, which is a string. This string
should hold the name of the foreign-key property. If the foreign key is a composite
key (has more than one property), it should be comma-delimited—as in [Foreign-
Key("Property1, Property2")].

TIP I suggest that you use the nameof keyword to provide the property name
string. That’s safer, because if you change the name of the foreign-key prop-
erty, nameof will either be updated at the same time or throw a compile error
if you forgot to change all the references.

8.5.2 The InverseProperty Data Annotation

The InverseProperty Data Annotation is a rather specialized Data Annotation for
use when you have two navigational properties going to the same class. At that point,
EF Core can’t work out which foreign keys relate to which navigational property. This
situation is best shown in code. The following listing shows an example Person entity
class with two lists: one for books owned by the librarian and one for Books out on
loan to a specific person.

public class LibraryBook
{
 public int LibraryBookId { get; set; }
 public string Title { get; set; }

 public int LibrarianPersonId { get; set; }
 public Person Librarian { get; set; }

 public int? OnLoanToPersonId { get; set; }
 public Person OnLoanTo { get; set; }
}

The Librarian and the borrower of the book (OnLoanTo navigational property) are
both represented by the Person entity class. The Librarian navigational property and
the OnLoanTo navigational property both link to the same class, and EF Core can’t set
up the navigational linking without help. The InverseProperty Data Annotation
shown in the following listing provides the information to EF Core when it’s configur-
ing the navigational links.

Listing 8.4 LibraryBook entity class with two relationships to Person class

236 CHAPTER 8 Configuring relationships

public class Person
{
 public int PersonId { get; set; }
 public string Name { get; set; }

 [InverseProperty("Librarian")]
 public ICollection<LibraryBook>
 LibrarianBooks { get; set; }

 [InverseProperty("OnLoanTo")]
 public ICollection<LibraryBook>
 BooksBorrowedByMe { get; set; }
}

This code is one of those configuration options that you rarely use, but if you have this
situation, you must either use it or define the relationship with the Fluent API. Other-
wise, EF Core will throw an exception when it starts, as it can’t work out how to config-
ure the relationships.

8.6 Fluent API relationship configuration commands
As I said in section 8.4, you can configure most of your relationships by using EF
Core’s By Convention approach. But if you want to configure a relationship, the Flu-
ent API has a well-designed set of commands that cover all the possible combinations
of relationships. It also has extra commands that allow you to define other database
constraints. Figure 8.4 shows the format for defining a relationship with the Fluent
API. All Fluent API relationship configuration commands follow this pattern.

EF6 EF Core’s Fluent API command names have changed from EF6, and for
me, they’re much clearer. I found EF6’s WithRequired and WithRequired-
Principal/WithRequiredDependent commands to be a bit confusing, whereas

TheListing 8.5 Person entity class, which uses the InverseProperty annotation

Links LibrarianBooks to the
Librarian navigational property
in the LibraryBook class

Links the BooksBorrowedByMe
list to the OnLoanTo navigational
property in the LibraryBook class

public void Configure
(EntityTypeBuilder<Book> entity)

{
entity

.HasMany(p => p.Reviews)

.WithOne()

.HasForeignKey(p => p.BookId)

The entity class
you’re configuring

The entity’s
navigational property

Either .HasOne()
or .HasMany()

Either .WithOne()
or .WithMany() Optional navigational

property in linked class

Optional additional configuration, such as
.HasForeignKey, .IsRequired, .OnDelete, and so on

Figure 8.4 The Fluent API allows you to define a relationship between two entity classes.
HasOne/HasMany and WithOne/WithMany are the two main parts, followed by other commands
to specify other parts or set certain features.

237Fluent API relationship configuration commands
the EF Core Fluent API commands have a clearer HasOne/HasMany followed
by WithOne/WithMany syntax.

Next, we’ll define one-to-one, one-to-many, and many-to-many relationships to illus-
trate the use of these Fluent API relationships.

8.6.1 Creating a one-to-one relationship

One-to-one relationships can get a little complicated because there are three ways to
build them in a relational database. To understand these options, you’ll look at an
example in which you have attendees (entity class Attendee) at a software convention,
and each attendee has a unique ticket (entity class Ticket).

 Chapter 3 showed how to create, update, and delete relationships. To recap, here’s
a code snippet showing how to create a one-to-one relationship:

var attendee = new Attendee
{
 Name = "Person1",
 Ticket = new Ticket{ TicketType = TicketTypes.VIP}
};
context.Add(attendee);
context.SaveChanges();

Figure 8.5 shows the three options for building this sort of one-to-one relationship.
The principal entities are at the top of the diagram, and the dependent entities are at
the bottom. Note that option 1 has the Attendee as the dependent entity, whereas
options 2 and 3 have the Ticket as the dependent entity.

 Each option has advantages and disadvantages. You should use the one that’s right
for your business needs.

 Option 1 is the standard approach to building one-to-one relationships, because
it allows you to define that the one-to-one dependent entity is required (must be
present). In our example, an exception will be thrown if you try to save an Attendee
entity instance without a unique Ticket attached to it. Figure 8.6 shows option 1 in
more detail.

 With the option-1 one-to-one arrangement, you can make the dependent entity
optional by making the foreign key nullable. Also, in figure 8.6, you can see that
the WithOne method has a parameter that picks out the Attendee navigational
property in the Ticket entity class that links back to the Attendee entity class.
Because the Attendee class is the dependent part of the relationship, if you delete
the Attendee entity, the linked Ticket won’t be deleted, because the Ticket is the
principal entity in the relationship. The downside of option 1 in this example is that it
allows one Ticket to be used for multiple Attendees, which doesn’t match the busi-
ness rules I stated at the start. Finally, this option allows you to replace Ticket with
another Ticket instance by assigning a new Ticket to the Attendee’s Ticket naviga-
tional property.

238 CHAPTER 8 Configuring relationships
Attendee

AttendeeIdPK

Attendee

AttendeeIdPK

Ticket

Option 3

The dependent class uses the

principal’s primary key as its

primary key and foreign key.

Option 2

The principal class

holds the foreign key

of dependent class.

Option 1

The dependent class

holds the foreign

key of principal class.

This improves option 2 by
reducing the database size.

This is another option but
cannot handle IsRequired.

This is the standard
approach for EF Core.

TicketIdPK

Ticket

AttendeeIdPK, FK1

Ticket

TicketIdPK

AttendeeIdFK1

Attendee

AttendeeIdPK

TicketIdFK1

Principal entities
Dependent entities

Figure 8.5 The three ways of defining a one-to-one relationship in a relational database;
comments at the bottom indicate EF Core’s handling of each approach. Option 1 is different
from options 2 and 3 in that the order of the two ends of the one-to-one relationship are
swapped, which changes which part can be forced to exist. In option 1, the Attendee
must have a Ticket, whereas in options 2 and 3, the Ticket is optional for the
Attendee. Also, if the principal entity (top row) is deleted, the dependent entity
(bottom row) will be deleted too.

Attendee

The foreign key, TicketId, isn’t nullable. This tells EF Core
that every attendee must have a ticket (IsRequired).

The .WithOne method tells EF Core
to create a unique constraint on the
foreign key, TicketId.

AttendeeId: int

Name: string

TicketId: int

Ticket

TicketId: int

Type: TikType

EF Core Fluent API commands

modelBuilder.Entity<Attendee>()
.HasOne(p => p.Ticket)
.WithOne(p => p.Attendee)
.HasForeignKey<Attendee>

(p => p.TicketId);

Figure 8.6 The non-nullable foreign key ensures that the principal entity (in this
case, Attendee) must have a dependent, one-to-one entity, Ticket. Also,
configuring the relationship as one-to-one ensures that each dependent entity,
Ticket, is unique. Notice that the Fluent API on the right has navigational
properties going both ways; each entity has a navigational property going to
the other.

239Fluent API relationship configuration commands

Options 2 and 3 in figure 8.5 turn the principal/dependent relationship around, with
the Attendee becoming the principal entity in the relationship. This situation swaps
the required/optional nature of the relationship. Now the Attendee can exist without
the Ticket, but the Ticket can’t exist without the Attendee. Options 2 and 3 do
enforce the assignment of a Ticket to only one Attendee, but replacing Ticket with
another Ticket instance requires you to delete the old ticket first. Figure 8.7 shows
this relationship.

8.6.2

Attendee

By making the Ticket class hold a foreign key of the
Attendee, the principal/dependent entity is flipped.

Now the Attendee is the principal entity and can exist
without a Ticket, and the Ticket is the dependent entity
and can’t exist without the Attendee.

AttendeeId: int

Name: string

Ticket

TicketId: int

AttendeeId: int

Type: TikType

EF Core Fluent API commands

modelBuilder.Entity<Attendee>()
.HasOne(p => p.Ticket)
.WithOne(p => p.Attendee)
.HasForeignKey<Ticket>

(p => p.AttendeeId);

Figure 8.7 Option 2: The Ticket entity holds the foreign key of the
Attendee entity, changing which entity is the principal and which is the
dependent entity. In this case, the Attendee is now the principal entity,
and the Ticket is the dependent entity.

Option 2 and 3 are useful because they form optional one-to-one relationships, often
referred to as one-to-zero-or-one relationships. Option 3 is a more efficient way to define
option 2, with the primary key and the foreign key combined. I would’ve used option 3
for the PriceOffer entity class in the Book App, but I wanted to start with the simpler
option-2 approach. Another, even better version uses an Owned type (see section 8.9.1)
because it is automatically loaded from the same table, which is safer (I can’t forget to
add the Include) and more efficient.

Creating a one-to-many relationship

One-to-many relationships are simpler, because there’s one format: the many entities
contain the foreign-key value. You can define most one-to-many relationships with the
By Convention approach simply by giving the foreign key in the many entities a name
that follows the By Convention approach (see section 8.4.3). But if you want to define
a relationship, you can use the Fluent API, which gives you complete control of how
the relationship is set up. Figure 8.8 provides an example of the Fluent API code to
create a “one Book has many Reviews” relationship in the Book App.

In this case, the Review entity class doesn’t have a navigational link back to the
Book, so the WithOne method has no parameter.

240 CHAPTER 8 Configuring relationships

8.6.3

The Review table is linked to
the Books table via the
foreign key called BookId.

EF Core Fluent API commands

modelBuilder.Entity<Book>()
.HasMany(p => p.Reviews)
.WithOne()
.HasForeignKey(p =>

p.BookId);

Books

BookId

Title

Description

PublishedOn

... etc.

PK

Review

ReviewId

VoterName

NumStars

Comment

BookIdFK1

PK
1

0..*

Figure 8.8 A one-to-many relationship, in which the foreign key must be in the dependent
entity—in this case, the Review entity class. You can see in the Fluent API on the right that
the Book has a collection navigational property, Reviews, linked to the Review entity
classes, but Review doesn’t have a navigational property back to Book.

NOTE Listing 3.16 shows how to add a Review to the Book’s one-to-many col-
lection navigational property, Reviews.

Collections have a couple of features that are worth knowing about. First, you can use
any generic type for a collection that implements the IEnumerable<T> interface, such
as IList<T>, Collection<T>, HashSet<T>, List<T>, and so on. IEnumerable<T> on its
own is a special case, as you can’t add to that collection.

For performance reasons, you should use HashSet<T> for navigational collections,
because it improves certain parts of EF Core’s query and update processes. (See chap-
ter 14 for more on this topic.) But HashSet doesn’t guarantee the order of entries,
which could cause problems if you add sorting to your Includes (see section 2.4.1, list-
ing 2.5). That’s why I recommend in part 1 and 2 using ICollection<T> if you might
sort your Include methods, as ICollection preserves the order in which entries are
added. But in part 3, which is about performance, you don’t use sort in Includes so
that you can use HashSet<T> for better performance.

Second, although you typically define a collection navigational property with a get-
ter and a setter (such as public ICollection<Review> Reviews { get; set; }), doing
so isn’t necessary. You can provide a getter only if you initialize the backing field with
an empty collection. The following is also valid:

public ICollection<Review> Reviews { get; } = new List<Review>();

Although initializing the collection might make things easier in this case, I don’t rec-
ommend initializing a navigational collection property. I have given my reasons for
not initializing collection navigational properties in section 6.1.6.

Creating a many-to-many relationship

Many-to-many relationships are described in chapters 2 and 3; in this section, you
learn how to configure them. In those chapters, you learned about the two types of
many-to-many relationships:

241Fluent API relationship configuration commands
 Your linking table contains information that you want to access when reading in the data
on the other side of the many-to-many relationship. An example is the Book to Author
many-to-many relationship, in which the linking table contains the order in
which the Author Names should be shown.

 You directly access the other side of the many-to-many relationship. An example is the
Book to Tag many-to-many relationship, in which you can directly access the Tags
collection in the Book entity class without ever needing to access the linking table.

CONFIGURING A MANY-TO-MANY RELATIONSHIP USING A LINKING ENTITY CLASS

You start with the many-to-many relationship in which you access the other end of the
relationship via the linking table. This relationship takes more work but allows you to add
extra data to the linking table, which you can sort/filter on. You saw how to do this in sec-
tion 3.4.4. Figure 8.9 looks at the configuration parts of this many-to-many relationship.

In the Book/Author example, the By Convention configuration can find and link all
the scalar and navigational properties so that the only configuration required is set-
ting up the primary key. The following code snippet uses Fluent API in the applica-
tion’s DbContext’s OnModelCreating method:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<BookAuthor>()
 .HasKey(x => new {x.BookId, x.AuthorId});
}

You can configure the four relationships in the many-to-many relationship by using
the Fluent API with the code in the following listing. Note that the HasOne/WithMany
Fluent API commands in the listing aren’t needed because the BookAuthor entity class
follows the By Convention naming and typing rules.

The By Convention configuration stage can find and configure the four relationships.
But the composite key in the BookAuthor class has to be configured manually.

BookId PK

Title

Description

…

AuthorsLink

Book

PK, FKBookId

AuthorId PK, FK

Order (byte)

Book (class)

Author (class)

BookAuthor

AuthorId PK

Name

BooksLink

Author

Figure 8.9 The three entity classes involved in a many-to-many relationship, using
a linking table. This type of many-to-many relationship is used only if you have extra
data in the linking table entity class. In this case, the BookAuthor class contains
an Order property that defines the order in which the Author Names should be
displayed alongside a Book.

242 CHAPTER 8 Configuring relationships

public static void Configure
 (this EntityTypeBuilder<BookAuthor> entity)
{
 entity.HasKey(p =>
 new { p.BookId, p.AuthorId });

 //-----------------------------
 //Relationships

 entity.HasOne(p => p.Book)
 .WithMany(p => p.AuthorsLink)
 .HasForeignKey(p => p.BookId);

 entity.HasOne(p => p.Author)
 .WithMany(p => p.BooksLink)
 .HasForeignKey(p => p.AuthorId);
}

CONFIGURING A MANY-TO-MANY RELATIONSHIP WITH DIRECT ACCESS TO THE OTHER ENTITY

With the release of EF Core 5, you can reference the other end of a many-to-many
relationship directly. The example shown in chapter 2 and 3 was the Book entity class,
which has an ICollection<Tag> Tags navigation property that holds a series of Tag
entity classes. The Tag entity class contains a category (Microsoft .NET, Web, and so
on), which helps the customer find the book they are looking for.

 The By Convention configuration works well for a direct many-to-many relation-
ship. If the entity classes at the two ends are valid, the By Convention configuration
will set up the relationships and keys for you, as shown in figure 8.10. By Convention
will also create the linking entity for you by using a property bag (see section 8.9.5).

Listing 8.6 Configuring a many-to-many relationship via two one-to-many relationships

Uses the names of the Book
and Author primary keys to
form its own composite key

Configures the one-to-many
relationship from the Book
to BookAuthor entity class

Configures the one-to-many
relationship from the Author
to the BookAuthor entity class

Tags property is of type
ICollection<Tag> The collections refer directly

to the other entity in the
many-to-many relationships.

EF Core
creates this
hidden entity.

This sort of many-to-many relationship is much easier to use because
you can access the other side of the relationship (Tags, in this example)
directly. EF Core handles creating the linking entity class and its table.

Books property is of type
ICollection<Book>

BookId (int)

Title (string)

Description (…)

…

Tags

Book

BooksBookId

AuthorAuthorId

BookTag TagId (string)

Books

Tag

Figure 8.10 EF Core 5’s direct many-to-many relationship works because (a) EF Core
creates the linking entity class for you and (b) when it sees a query containing a direct
many-to-many relationship, it adds the SQL commands to use the hidden linking entity
class. Not having to create the linking entity class or perform configuration makes
these sorts of many-to-many relationships much easier to set up.

243Controlling updates to collection navigational properties

p

But if you want to add your own linking table and configuration, you can do that via
Fluent API configuration. The entity class for the linking table is similar to the Book-
Author linked entity class shown in figure 8.9. The difference is that the Author
key/relationship is replaced by the Tag key/relationship. The following listing shows
the Book configuration class setting up the BookTag entity class to link the two parts.

public void Configure
 (EntityTypeBuilder<Book> entity)
{
 //… other configrations left out for clarity

 entity.HasMany(x => x.Tags)
 .WithMany(x => x.Books)
 .UsingEntity<BookTag>(
 bookTag => bookTag.HasOne(x => x.Tag)
 .WithMany().HasForeignKey(x => x.TagId),
 bookTag => bookTag.HasOne(x => x.Book)
 .WithMany().HasForeignKey(x => x.BookId));
}

The code shown in listing 8.7 does nothing but replace the linking entity that EF Core
would have added, so it isn’t worth doing. But it would be useful if you wanted to add
extra properties to the BookTag entity class, such as a SoftDeleted property that uses a
Query Filter to soft-delete a link.

MORE INFO When EF Core 5 was released, a useful video offered good cover-
age of direct-access many-to-many relationships, including adding your own
linking table (and TPH and TPT). See http://mng.bz/opzM.

8.7 Controlling updates to collection navigational
properties
Sometimes, you need to control access to collection navigational properties. Although
you can control access to a one-to-one navigational by making the setter private, that
approach doesn’t work for a collection, as most collection types allow you to add or
remove entries. To control collection navigational properties fully, you need to use EF
Core backing fields, described in section 7.14.

EF6 EF6.x didn’t have a way to control access to collection navigational
properties, which meant that some patterns, such as DDD, were hard to
implement successfully. EF Core’s backing fields allow you to build entity
classes that follow DDD principles.

Configuring direct many-to-many relationships using Fluent APIListing 8.7

The HasMany/WithMany sets up a
direct many-to-many relationship.

The UsingEntity<T> method allows you to
define an entity class for the linking table.

Defined Tag side of the
many-to-many relationshi

Defined Book side
of the many-to-
many relationship

http://mng.bz/opzM

244 CHAPTER 8 Configuring relationships

A r
c
s

ch
c

Adds a
to allo

Rev
add

c

Storing the collection of linked entities classes in a field allows you to intercept any
attempt to update a collection. Here are some business/software design reasons why
this feature is useful:

 Triggering some business logic on a change, such as calling a method if a collec-
tion contains more than ten entries.

 Building a local cached value for performance reasons, such as holding a cached
ReviewsAverageVotes property whenever a Review is added to or removed from
your Book entity class.

 Applying a DDD to your entity classes. Any change to data should be done via a
method (see chapter 13).

For the example of controlling collection navigational properties, you are going to
add a cached ReviewsAverageVotes property to the Book class. This property will hold
the average of the votes in all the Reviews linked to this Book. To do so, you need to

 Add a backing field called _reviews to hold the Reviews collection and change
the property to return a read-only copy of the collection held in the _reviews
backing field.

 Add a read-only property called ReviewsAverageVotes to hold the cached aver-
age votes from the Reviews linked to this Book.

 Add methods to Add Reviews to and Remove Reviews from the _reviews back-
ing field. Each method recalculates the average votes, using the current list of
Reviews.

The following listing shows the updated Book class showing the code related to the
Reviews and the cached ReviewsAverageVotes property.

public class Book
{
 private readonly ICollection<Review> _reviews
 = new List<Review>();

 public int BookId { get; set; }
 public string Title { get; set; }
 //… other properties/relationships left out

 public double? ReviewsAverageVotes { get; private set; }

 public IReadOnlyCollection<Review> Reviews =>
 _reviews.ToList();

 public void AddReview(Review review)
 {
 _reviews.Add(review);
 ReviewsAverageVotes =
 _reviews.Average(x => x.NumStars);
 }

Listing 8.8 Book class with a read-only Reviews collection navigational property

You add a backing field,
which is a list. By default,
EF Core will read and
write to this field.

Holds a
precalculated
average of the
reviews and is
read-only

ead-only
ollection
o that no

one can
ange the
ollection Returns a copy of the

reviews in the _reviews
backing field

 method
w a new

iew to be
ed to the
_reviews
ollection

Adds the new review to the backing field
_reviews and updates the database on
the call to SaveChanges

Recalculates the average
votes for the book

245Additional methods available in Fluent API relationships

 public void RemoveReview(Review review)
 {
 _reviews.Remove(review);
 ReviewsAverageVotes = _reviews.Any()
 ? _reviews.Average(x => x.NumStars)
 : (double?)null;
 }
}

You didn’t have to configure the backing field because you were using By Convention
naming, and by default, EF Core reads and writes data to the _reviews field.

 This example shows how to make your collection navigational properties read-
only, but it’s not perfect because concurrent updates could make the Reviews-
AverageVotes cache property out of date. In part 3, you will build an application
using DDD throughout and implement a robust caching approach that handles con-
currency issues.

8.8 Additional methods available in Fluent API
relationships
We have covered all the ways to configure standard relationships, but some of the
most detailed parts of a relationship require adding extra commands to your Fluent
API configuration of a relationship. In this section, we’ll go through four methods
that define some of the deeper parts of a relationship:

 OnDelete—Changes the delete action of a dependent entity
 IsRequired—Defines the nullability of the foreign key
 HasPrincipalKey—Uses an alternate unique key
 HasConstraintName—Sets the foreign-key constraint name and MetaData access

to the relationship data

8.8.1 OnDelete: Changing the delete action of a dependent entity

Section 8.4.4 described the default action on the deletion of a principal entity, which
is based on the nullability of the dependent’s foreign key(s). The OnDelete Fluent API
method allows you to alter what EF Core does when a deletion that affects a depen-
dent entity occurs.

 You can add the OnDelete method to the end of a Fluent API relationship configu-
ration. This listing shows the code added in chapter 4 to stop a Book entity from being
deleted if it was referred to in a customer order, via the LineItem entity class.

Changing the defaultListing 8.9 OnDelete action on a dependent entity

Adds a method to
remove a review from
the _reviews collection

Removes the review from the
list and updates the database
on the call to SaveChanges

If there are any reviews, recalculates
the average votes for the book

If there are no
reviews, sets the

value to null

public static void Configure
(this EntityTypeBuilder<LineItem> entity)

{
entity.HasOne(p => p.ChosenBook)

246 CHAPTER 8 Configuring relationships
 .WithMany()
 .OnDelete(DeleteBehavior.Restrict);
}

This code causes an exception to be thrown if someone tries to delete a Book entity
that a LineItem’s foreign key links to that Book. You do this because you want a cus-
tomer’s order to not be changed. Table 8.1 explains the possible DeleteBehavior
settings.

Two delete behaviors whose names start with Client are ClientSetNull (added in EF
Core 2.0) and ClientCascade (added in EF Core 3.0). These two delete behaviors
move some of the handling of deletion actions from the database to the client—that
is, the EF Core code. I believe that these two settings have been added to prevent the
problems you can get in some databases, such as SQL Server, when your entities have
navigational links that loop back to themselves. In these cases, you would get an error
from the database server when you try to create your database, which can be hard to
diagnose and fix.

 In both cases, these commands execute code inside EF Core that does the same
job that the database would do with the SetNull and Cascade delete behaviors,
respectively. But—and it’s a big but—EF Core can apply these changes only if you have

Table 8.1 Delete behaviors available in EF Core. The middle column highlights the delete behavior that
will be used if you don’t apply the OnDelete option.

Name Effect of the delete behavior on the dependent entity Default for

Restrict The delete operation isn’t applied to dependent entities. The
dependent entities remain unchanged, which may cause the
delete to fail, either in EF Core or in the relational database.

SetNull The dependent entity isn’t deleted, but its foreign-key property is
set to null. If any of the dependent entity foreign-key properties
isn’t nullable, an exception is thrown when SaveChanges is
called.

ClientSetNull If EF Core is tracking the dependent entity, its foreign key is set
to null, and the dependent entity isn’t deleted. But if EF Core
isn’t tracking the dependent entity, the database rules apply. In
a database created by EF Core, this DeleteBehavior will set
the SQL DELETE constraint to NO ACTION, which causes the
delete to fail with an exception.

Optional
relationships

Cascade RequiredThe dependent entity is deleted.
relationships

ClientCascade For entities being tracked by the DbContext, dependent entities
will be deleted when the related principal is deleted. But if EF
Core isn’t tracking the dependent entity, the database rules
apply. In a database created by EF Core, this will be set to
Restrict, which causes the delete to fail with an exception.

Adds the OnDelete method to the
end of defining a relationship

247Additional methods available in Fluent API relationships
loaded all the relevant dependent entities linked to the principal entity that you are
going to delete. If you don’t, the database applies its delete rules, which normally will
throw an exception.

 The ClientSetNull delete setting is the default for optional relationships, and EF
Core will set the foreign key of the loaded dependent entity class to null. If you use
EF Core to create/migrate the database, EF Core sets the database delete rules to ON
DELETE NO ACTION (SQL Server). The database server won’t throw an exception if your
entities have a circular loop (referred to as possible cyclic delete paths by SQL
Server). The SetNull delete setting would set the database delete rules to ON DELETE
SET NULL (SQL Server), which would cause the database server to throw a possible
cyclic delete paths exception.

 The ClientCascade delete setting does the same thing for the database’s cascade-
delete feature, in that it will delete any loaded dependent entity class(es). Again, if
you use EF Core to create/migrate the database, EF Core sets the database delete
rules to ON DELETE NO ACTION (SQL Server). The Cascade delete setting would set the
database delete rules to ON DELETE CASCADE (SQL Server), which would cause the data-
base server to throw a possible cyclic delete paths exception.

NOTE The EF Core documentation has a page on cascade delete with some
worked examples; see http://mng.bz/nMGK. Also, the Part2 branch of the
associated GitHub repo has a unit test called Ch08_DeleteBehaviour, with
tests of each of the settings.

Listing 8.10 shows the correct way to use the ClientSetNull and ClientCascade
when you delete a principal entity. The entity in this listing is loaded with an optional
dependent entity, which (by default) has the default delete behavior of ClientSet-
Null. But the same code would work for the ClientCascade as long as you load the
correct dependent entity or entities.

var entity = context.DeletePrincipals
 .Include(p => p.DependentDefault)
 .Single(p => p.DeletePrincipalId == 1);

context.Remove(entity);
context.SaveChanges();

Note that if you don’t include the Include method or another way of loading the
optional dependent entity, SaveChanges will throw a DbUpdateException because
the database server will have reported a foreign-key constraint violation. One way to
align EF Core’s approach to an optional relationship with the database server’s
approach is to set the delete behavior to SetNull instead of the default ClientSetNull,

Listing 8.10 Deleting a principal entity with an optional dependent entity

Reads in the
principal entity

Includes the
dependent entity
that has the default
delete behavior of
ClientSetNull

Sets the
principal
entity for
deletion

Calls SaveChanges, which
sets its foreign key to null

http://mng.bz/nMGK

248 CHAPTER 8 Configuring relationships

making the foreign-key constraint in the database ON DELETE SET NULL (SQL Server)
and putting the database in charge of setting the foreign key to null. Whether or not
you load the optional dependent entity, the outcome of the called SaveChanges will
be the same: the foreign key on the optional dependent entity will be set to null.

 But be aware that some database servers may return an error on database creation
if you have a delete-behavior setting of SetNull or Cascade and the servers detect a
possible circular relationship, such as hierarchical data. That’s why EF Core has the
ClientSetNull and ClientCascade delete behaviors.

NOTE If you’re managing the database creation/migration outside EF Core,
it’s important to ensure that the relational database foreign-key constraint is
in line with EF Core’s OnDelete setting. Otherwise, you’ll get inconsistent
behavior, depending on whether the dependent entity is being tracked.

IsRequired: Defining the nullability of the foreign key8.8.2

Chapter 6 describes how the Fluent API method IsRequired allows you to set the nul-
lability of a scalar property, such as a string. In a relationship, the same command sets
the nullability of the foreign key—which, as I’ve already said, defines whether the rela-
tionship is required or optional.

 The IsRequired method is most useful in shadow properties because EF Core
makes shadow properties nullable by default, and the IsRequired method can change
them to non-nullable. The next listing depicts the Attendee entity class, used previ-
ously to show a one-to-one relationship, but showing two other one-to-one relation-
ships that use shadow properties for their foreign keys.

public class Attendee
{
 public int AttendeeId { get; set; }
 public string Name { get; set; }

 public int TicketId { get; set; }
 public Ticket Ticket { get; set; }

 public MyOptionalTrack Optional { get; set; }
 public MyRequiredTrack Required { get; set; }
}

Listing 8.11 The Attendee entity class showing all its relationships

Foreign key for the one-to-one
relationship, Ticket

One-to-one navigational
property that accesses the
Ticket entity

One-to-one navigational
property using a shadow
property for the foreign key.
By default, the foreign key is
nullable, so the relationship
is optional.One-to-one navigational property using a shadow property for

the foreign key. You use Fluent API commands to say that the
foreign key isn’t nullable, so the relationship is required.

The Optional navigational property, which uses a shadow property for its foreign key,
is configured by convention, which means that the shadow property is left as a nul-
lable value. Therefore, it’s optional, and if the Attendee entity is deleted, the
MyOptionalTrack entity isn’t deleted.

For the Required navigational property, the following listing presents the Fluent
API configuration. Here, you use the IsRequired method to make the Required

249Additional methods available in Fluent API relationships

one-to-one navigational property as required. Each Attendee entity must have a MyRe-
quiredTrack entity assigned to the Required property.

public void Configure
 (EntityTypeBuilder<Attendee> entity)
{
 entity.HasOne(attendee => attendee.Ticket)
 .WithOne(attendee => attendee.Attendee)
 .HasForeignKey<Attendee>
 (attendee => attendee.TicketId)
 .IsRequired();

 entity.HasOne(attendee => attendee.Required)
 .WithOne(attendee => attendee.Attend)
 .HasForeignKey<Attendee>(
 "MyShadowFk")
 .IsRequired();
}

8.8.3

Listing 8.12 The Fluent API configuration of the Attendee entity class

Sets up the one-to-one
navigational relationship,
Ticket, which has a foreign key
defined in the Attendee class

Specifies the property that’s the foreign
key. You need to provide the class
type, as the foreign key could be in the
principal or dependent entity class.

Sets up the one-to-one
navigational relationship,
Required, which doesn’t
have a foreign key defined

Uses the HasForeignKey<T> method, which takes a
string because it’s a shadow property and can be referred
to only via a name. Note that you use your own name.

Uses IsRequired to say
the foreign key should
not be nullable

You could’ve left out the configuration of the Ticket navigational property, as it
would be configured correctly under the By Convention rules, but you leave it in so
that you can compare it with the configuration of the Required navigational property,
which uses a shadow property for its foreign key. The configuration of the Required

navigational property is necessary because the IsRequired method changes the
shadow foreign-key property from nullable to non-nullable, which in turn makes the
relationship required.

TYPE AND NAMING CONVENTIONS FOR SHADOW PROPERTY FOREIGN KEYS

Notice how listing 8.12 refers to the shadow foreign-key property: you need to use
the HasForeignKey<T>(string) method. The <T> class tells EF Core where to place
the shadow foreign-key property, which can be either end of the relationship for
one-to-one relationships or the many entity class of a one-to-many relationship.

The string parameter of the HasForeignKey<T>(string) method allows you to
define the shadow foreign-key property name. You can use any name; you don’t need
to stick with the By Convention name listed in figure 8.3. But you need to be careful
not to use a name of any existing property in the entity class you’re targeting, because
that approach can lead to strange behaviors. (There’s no warning if you do select an
existing property, as you might be trying to define a nonshadow foreign key.)

HasPrincipalKey: Using an alternate unique key

I mentioned the term alternate key at the beginning of this chapter, saying that it is a
unique value but not the primary key. I gave an example of an alternate key called
UniqueISBN, which represents a unique key that isn’t the primary key. (Remember

250 CHAPTER 8 Configuring relationships

that ISBN stands for International Standard Book Number, which is a unique number for
every book.)

 Now let’s look at a different example. The following listing creates a Person entity
class, which uses a normal int primary key, but you’ll use the UserId as an alternate key
when linking to the person’s contact information, shown in listing 8.14.

public class Person
{
 public int PersonId { get; set; }

 public string Name { get; set; }

 public Guid UserId { get; set; }

 public ContactInfo ContactInfo { get; set; }
}

public class ContactInfo
{
 public int ContactInfoId { get; set; }

 public string MobileNumber { get; set; }
 public string LandlineNumber { get; set; }

 public Guid UserIdentifier { get; set; }
}

Listing 8.13 Person class, with Name taken from ASP.NET authorization

Listing 8.14 ContactInfo class with EmailAddress as a foreign key

Holds the
person’s
unique Id

Navigational
property linking
to the ContactInfo

The UserIdentifier is used
as a foreign key for the
Person entity to link to
this contact info.

Figure 8.11 shows the Fluent API configuration commands, which use the alternate
key in the Person entity class as a foreign key in the ContactInfo entity class.

Here are a few notes on alternate keys:

 You can have composite alternate keys, which are made up of two or more prop-
erties. You handle them in the same way that you do composite keys: by using
an anonymous Type, such as HasPrincipalKey<MyClass>(c => new {c.Part1,

c.Part2}).
 Unique keys (see section 7.10) and alternate keys are different, and you should

choose the correct one for your business case. Here are some of the differences:
– Unique keys ensure that each entry is unique; they can’t be used in a for-

eign key.
– Unique keys can be null, but alternate keys can’t.
– Unique key values can be updated, but alternate keys can’t. (See EF Core

issue #4073 at http://mng.bz/vzEM).
 You can define a property as a standalone alternate key by using the Fluent API

command modelBuilder.Entity<Car>().HasAlternateKey(c => c.License-

Plate), but you don’t need to do that, because using the HasPrincipalKey

http://mng.bz/vzEM

251Alternative ways of mapping entities to database tables
method to set up a relationship automatically registers the property as an alter-
nate key.

8.8.4 Less-used options in Fluent API relationships

This section briefly mentions—but doesn’t cover in detail—two Fluent API commands
that can be used for setting up relationships.

HASCONSTRAINTNAME: SETTING THE FOREIGN-KEY CONSTRAINT NAME

The method HasConstraintName allows you to set the name of the foreign-key con-
straint, which can be useful if you want to catch the exception on foreign-key errors
and use the constraint name to form a more user-friendly error message. This article
shows how: http://mng.bz/4ZwV.

METADATA: ACCESS TO THE RELATIONSHIP INFORMATION

The MetaData property provides access to the relationship data, some of which is
read/write. Much of what the MetaData property exposes can be accessed via specific
commands, such as IsRequired, but if you need something out of the ordinary, look
through the various methods/properties supported by the MetaData property.

8.9 Alternative ways of mapping entities
to database tables
Sometimes, it’s useful to not have a one-to-one mapping from an entity class to a data-
base table. Instead of having a relationship between two classes, you might want to
combine both classes into one table. This approach allows you to load only part of the
table when you use one of the entities, which will improve the query’s performance.

The HasPrincipalKey method places
a unique constraint on the UserId;
it must be unique.

The HasPrincipalKey tells EF Core
to use the UserId property as the
key, instead of the normal primary
key, PersonId.

The HasForeignKey method defines the
UserIdentifier property as the foreign key.

ContactInfo

ContactInfoId : int

MobileNumber : string

UserIdentifier: Guid

Person

PersonId: int

Name: string

UserId: Guid

EF Core Fluent API commands

modelBuilder.Entity<Person>()
.HasOne(p => p.ContactInfo)
.WithOne()
.HasForeignKey<ContactInfo>

(p => p.UserIdentifier)
.HasPrincipalKey<Person>

(c => c.UserId);

Figure 8.11 The Fluent API sets up a one-to-one relationship by using the UserId property, which
contains the person’s unique Id, as the foreign key to link to the ContactInfo. The command
HasPrincipalKey both defines the UserId property as an alternate key and creates the foreign-
key constraint link between the UserIdentifier property in the ContactInfo entity and the
UserId in the Person entity.

http://mng.bz/4ZwV

252 CHAPTER 8 Configuring relationships
This section describes five alternative ways to map classes to the database, each with
advantages in certain situations:

 Owned types—Allows a class to be merged into the entity class’s table and is use-
ful for using normal classes to group data.

 Table per hierarchy (TPH)—Allows a set of inherited classes to be saved in one
table, such as classes called Dog, Cat, and Rabbit that inherit from the Animal
class.

 Table per type (TPT)—Maps each class to a different table. This approach works
like TPH except that each class is mapped to a separate table.

 Table splitting—Allows multiple entity classes to be mapped to the same table
and is useful when some columns in a table are read more often than all the
table columns.

 Property bags—Allows you to create an entity class via a Dictionary, which gives
you the option to create the mapping on startup. Property bags also use two
other features: mapping the same type to multiple tables and using an indexer
in your entity classes.

Owned types: Adding a norm8.9.1 al class into an entity class

EF Core has owned types, which allow you to define a class that holds a common group-
ing of data, such as an address or audit data, that you want to use in multiple places in
your database. The owned type class doesn’t have its own primary key, so it doesn’t
have an identity of its own; it relies on the entity class that “owns” it for its identity. In
DDD terms, owned types are known as value objects.

EF6 EF Core’s owned types are similar to EF6.x’s complex types. The biggest
change is that you must specifically configure an owned type, whereas EF6.x
considers any class without a primary key to be a complex type (which could
cause bugs). EF Core’s owned types have an extra feature over EF6.x’s imple-
mentation: the data in an owned type can be configured to be saved in a sepa-
rate, hidden table.

Here are two ways of using owned types:

 The owned type data is held in the same table that the entity class is mapped to.
 The owned type data is held in a separate table from the entity class.

OWNED TYPE DATA IS HELD IN THE SAME TABLE AS THE ENTITY CLASS

As an example of an owned type, you’ll create an entity class called OrderInfo that
needs two addresses: BillingAddress and DeliveryAddress. These addresses are pro-
vided by the Address class, shown in the following listing. You can mark an Address
class as an owned type by adding the attribute [Owned] to the class. An owned type has
no primary key, as shown at the bottom of the listing.

253Alternative ways of mapping entities to database tables

public class OrderInfo
{
 public int OrderInfoId { get; set; }
 public string OrderNumber { get; set; }

 public Address BillingAddress { get; set; }
 public Address DeliveryAddress { get; set; }
}

[Owned]
public class Address
{
 public string NumberAndStreet { get; set; }
 public string City { get; set; }
 public string ZipPostCode { get; set; }
 [Required]
 [MaxLength(2)]
 public string CountryCodeIso2 { get; set; }
}

Because you added the attribute [Owned] to the Address class, and because you are
using the owned type within the same table, you don’t need use the Fluent API to con-
figure the owned type. This approach saves you time, especially if your owned type is
used in many places, because you don’t have to write the Fluent API configuration.
But if you don’t want to use the [Owned] attribute, the next listing shows you the Flu-
ent API to tell EF Core that the BillingAddress and the DeliveryAddress properties
in the OrderInfo entity class are owned types, not relationships.

public class SplitOwnDbContext: DbContext
{
 public DbSet<OrderInfo> Orders { get; set; }
 //… other code removed for clarity

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 modelBulder.Entity<OrderInfo>()
 .OwnsOne(p => p.BillingAddress);
 modelBulder.Entity<OrderInfo>()
 .OwnsOne(p => p.DeliveryAddress);
 }
}

The result is a table containing the two scalar properties in the OrderInfo entity class,
followed by two sets of Address class properties, one prefixed by BillingAddress_ and
another prefixed by DeliveryAddress_. Because an owned type property can be null,

TheListing 8.15 Address owned type, followed by the OrderInfo entity class

The Fluent API to configure the owned types withinListing 8.16 OrderInfo

The entity class OrderInfo,
with a primary key and
two addresses

Two distinct Address classes.
The data for each Address class
will be included in the table that
the OrderInfo is mapped to.

The attribute [Owned]
tells EF Core that it is
an owned type.

An owned type has
no primary key.

Selects the owner of
the owned type

Uses the OwnsOne method to tell
EF Core that property BillingAddress
is an owned type and that the data
should be added to the columns in
the table that the OrderInfo maps to

Repeats the process for
the second property,
DeliveryAddress

254 CHAPTER 8 Configuring relationships

dle
all the properties are held in the database as nullable columns. The CountryCodeIso2
property in listing 8.15, for example, is marked as [Required], so it should be non-
nullable, but to allow for a null property value for the BillingAddress or Delivery-
Address, it is stored in a nullable column. EF Core does this to tell whether an
instance of the owned type should be created when the entity containing an owned
type is read in.

 The fact that the owned type property can be null means that owned types within
an entity class are a good fit for what DDD calls a value object. A value object has no key,
and two value objects with the same properties are considered to be equal. The fact
that they can be null allows for an “empty” value object.

NOTE Nullable owned types were introduced in EF Core 3.0 but had some
performance issues. (The SQL uses a LEFT JOIN.) EF Core 5 has fixed those per-
formance issues.

The following listing shows part of the SQL Server CREATE TABLE command that EF
Core produces for the OrderInfo entity class with the naming convention.

CREATE TABLE [Orders] (
 [OrderInfoId] int NOT NULL IDENTITY,
 [OrderNumber] nvarchar(max) NULL,
 [BillingAddress_City] nvarchar(max) NULL,
 [BillingAddress_NumberAndStreet] nvarchar(max) NULL,
 [BillingAddress_ZipPostCode] nvarchar(max) NULL,
 [BillingAddress_CountryCodeIso2] [nvarchar](2) NULL
 [DeliveryAddress_City] nvarchar(max) NULL,
 [DeliveryAddress_CountryCodeIso2] nvarchar(max) NULL,
 [DeliveryAddress_NumberAndStreet] nvarchar(max) NULL,
 [DeliveryAddress_CountryCodeIso2] [nvarchar](2) NULL,
 CONSTRAINT [PK_Orders] PRIMARY KEY ([OrderInfoId])
);

By default, every property or field in an owned type is stored in a nullable column,
even if they are non-nullable. EF Core does this to allow you to not assign an instance
to an owned type, at which point all the columns that the owned type uses are set to
NULL. And if an entity with an owned type is read in, and all the columns for an
owned type are NULL, the owned type property is set to null.

 But EF Core 5 added a feature to allow you to say that an owned type is required—
that is, must always be present. To do so, you add the Fluent API IsRequired method
to the OrderInfo’s DeliveryAddress navigational property mapped to the owned type
(see the next listing). In addition, this feature allows the individual nullability of col-
umns to follow normal rules. The DeliveryAddress_CountryCodeIso2 column shown
in listing 8.17, for example, is now NOT NULL.

TheListing 8.17 SQL CREATE TABLE command showing the column names

Property has a
[Required] attribute
but is stored as a
nullable value to han
the billing/delivery
address being null.

255Alternative ways of mapping entities to database tables
protected override void OnModelCreating
 (ModelBuilder modelBuilder)
{
 modelBulder.Entity<OrderInfo>()
 .OwnsOne(p => p.BillingAddress);
 modelBulder.Entity<OrderInfo>()
 .OwnsOne(p => p.DeliveryAddress);

 modelBulder.Entity<OrderInfo>()
 .Navigation(p => p.DeliveryAddress)
 .IsRequired();
}

Using owned types can help you organize your database by turning common groups
of data into owned types, making it easier to handle common data groups, such as
Address and so on, in your code. Here are some final points on owned types held in
an entity class:

 The owned type navigation properties, such as BillingAddress, are automati-
cally created and filled with data when you read the entity. There’s no need for
an Include method or any other form of relationship loading.

 Julie Lerman (@julielerman on Twitter) pointed out that owned types can replace
one-to-zero-or-one relationships, especially if an owned type is small. Owned
types have better performance and are automatically loaded, which means that
they would be better implementations of the zero-or-one PriceOffer used in
the Book App.

 Owned types can be nested. You could create a CustomerContact owned type,
which in turn contains an Address owned type, for example. If you used the
CustomerContact owned type in another entity class—let’s call it SuperOrder—
all the CustomerContact properties and the Address properties would be
added to the SuperOrder’s table.

OWNED TYPE DATA IS HELD IN A SEPARATE TABLE FROM THE ENTITY CLASS

The other way that EF Core can save the data inside an owned type is in a separate
table rather than the entity class. In this example, you’ll create a User entity class that
has a property called HomeAddress of type Address. In this case, you add a ToTable
method after the OwnsOne method in your configuration code.

The Fluent API to configure the owned types withinListing 8.18 OrderInfo

Configuring the owned table data to be stored in a separate tableListing 8.19

Selects the DeliveryAddress
navigational property

Applying the IsRequired method means
that the DeliveryAddress must not be null.

public class SplitOwnDbContext: DbContext
{

public DbSet<OrderInfo> Orders { get; set; }
//… other code removed for clarity

protected override void OnModelCreating
(ModelBuilder modelBuilder)

256 CHAPTER 8 Configuring relationships
 {
 modelBulder.Entity<User>()
 .OwnsOne(p => p.HomeAddress);
 .ToTable("Addresses");
 }
}

EF Core sets up a one-to-one relationship in which the primary key is also the foreign
key (see section 8.6.1, option 3), and the OnDelete state is set to Cascade so that the
owned type entry of the primary entity, User, is deleted. Therefore, the database has
two tables: Users and Addresses.

CREATE TABLE [Users] (
 [UserId] int NOT NULL IDENTITY,
 [Name] nvarchar(max) NULL,
 CONSTRAINT [PK_Orders] PRIMARY KEY ([UserId])
);
CREATE TABLE [Addresses] (
 [UserId] int NOT NULL IDENTITY,
 [City] nvarchar(max) NULL,
 [CountryCodeIso2] nvarchar(2) NOT NULL,
 [NumberAndStreet] nvarchar(max) NULL,
 [ZipPostCode] nvarchar(max) NULL,
 CONSTRAINT [PK_Orders] PRIMARY KEY ([UserId]),
 CONSTRAINT "FK_Addresses_Users_UserId" FOREIGN KEY ("UserId")
 REFERENCES "Users" ("UserId") ON DELETE CASCADE
);

This use of owned types differs from the first use, in which the data is stored in the
entity class table, because you can save a User entity instance without an address. But
the same rules apply on querying: the HomeAddress property will be read in on a query
of the User entity without the need for an Include method.

 The Addresses table used to hold the HomeAddress data is hidden; you can’t access it
via EF Core. This situation could be a good thing or a bad thing, depending on your
business needs. But if you want to access the Address part, you can implement the same
feature by using two entity classes with a one-to-many relationship between them.

8.9.2 Table per hierarchy (TPH): Placing inherited classes
into one table

Table per hierarchy (TPH) stores all the classes that inherit from one another in a sin-
gle database table. If you want to save a payment in a shop, for example, that payment
could be cash (PaymentCash) or credit card (PaymentCard). Each option contains the
amount (say, $10), but the credit card option has extra information, such as an
online-transaction receipt. In this case, TPH uses a single table to store all the versions
of the inherited classes and return the correct entity type, PaymentCash or Payment-
Card, depending on what was saved.

The Users and Addresses tables in the databaseListing 8.20

Adding ToTable to OwnsOne tells EF
Core to store the owned type, Address,
in a separate table, with a primary key
equal to the primary key of the User
entity that was saved to the database.

Notice that non-nullable
properties, or nullable
properties with the Required
setting, are now stored in
non-nullable columns.

257Alternative ways of mapping entities to database tables
TIP I have used TPH classes in a couple of projects for my clients, and I find
TPH to be a good solution for storing sets of data that are similar when some
sets need extra properties. Suppose that you had a lot of product types with
common Name, Price, ProductCode, Weight, and other properties, but the
Sealant products needs MinTemp and MaxTemp properties, which TPH could
implement by using one table rather than lots of tables.

TPH can be configured By Convention, which will combine all the versions of the
inherited classes into one table. This approach has the benefit of keeping common
data in one table, but accessing that data is a little cumbersome because each inher-
ited type has its own DbSet<T> property. But when you add the Fluent API, all the
inherited classes can be accessed via one DbSet<T> property, which in our example
makes the PaymentCash / PaymentCard example much more useful.

 The first example uses multiple DbSet<T>s, one for each class, and is configured By
Convention. The second example uses one DbSet<T> mapped to the base class, which
I find to be the more useful version, and shows the TPH Fluent API commands.

CONFIGURING TPH BY CONVENTION

To apply the By Convention approach to the PaymentCash/PaymentCard example,
you create a class called PaymentCash and then a class called PaymentCard that inher-
its from PaymentCash, as shown in the following listing. As you can see, PaymentCard
inherits from PaymentCash and adds an extra ReceiptCode property.

public class PaymentCash
{
 [Key]
 public int PaymentId { get; set; }
 public decimal Amount { get; set; }
}

//PaymentCredit – inherits from PaymentCash
public class PaymentCard : PaymentCash
{
 public string ReceiptCode { get; set; }
}

Listing 8.22, which uses the By Convention approach, shows your application’s
DbContext with two DbSet<T> properties, one for each of the two classes. Because you
include both classes, and PaymentCard inherits from PaymentCash, EF Core will store
both classes in one table.

public class Chapter08DbContext : DbContext
{
 //… other DbSet<T> properties removed

The two classes:Listing 8.21 PaymentCash and PaymentCard

The updated application’s DbContext with the twoListing 8.22 DbSet<T> properties

258 CHAPTER 8 Configuring relationships

 //Table-per-hierarchy
 public DbSet<PaymentCash> CashPayments { get; set; }
 public DbSet<PaymentCard> CreditPayments { get; set; }

 public Chapter08DbContext(
 DbContextOptions<Chapter08DbContext> options)
 : base(options)
 { }

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 //no configuration needed for PaymentCash or PaymentCard
 }
}

Finally, this listing shows the code that EF Core produces to create the table that will
store both the PaymentCash and PaymentCard entity classes.

CREATE TABLE [CashPayments] (
 [PaymentId] int NOT NULL IDENTITY,
 [Amount] decimal(18, 2) NOT NULL,
 [Discriminator] nvarchar(max) NOT NULL,
 [ReceiptCode] nvarchar(max),
 CONSTRAINT [PK_CashPayments]
 PRIMARY KEY ([PaymentId])
);

Listing 8.23 The SQL produced by EF Core to build the CashPayment table

The Discriminator column holds
the name of the class, which EF
Core uses to define what sort
of data is saved. When set by
convention, this column holds
the name of the class as a string.

The ReceiptCode column is used
only if it’s a PaymentCredit.

As you can see, EF Core has added a Discriminator column, which it uses when return-
ing data to create the correct type of class: PaymentCash or PaymentCard, based on
what was saved. Also, the ReceiptCode column is filled/read only if the class type is
PaymentCard.

Any scalar properties not in the TPH base class are mapped to nullable columns
because those properties are used by only one version of the TPH’s classes. If you have
lots of classes in your TPH classes, it’s worth seeing whether you can combine similar
typed properties to the same column. In the Product TPH classes, for example, you
might have a Product type "Sealant" that needs a double MaxTemp and another
Product type, "Ballast", that needs a double WeightKgs. You could map both prop-
erties to the same column by using this code snippet:

public class Chapter08DbContext : DbContext
{

//… other part left out

Protected override void OnModelCreating
(ModelBuilder modelBuilder)

{
modelBuilder.Entity<Sealant>()

259Alternative ways of mapping entities to database tables
 .Property(b => b.MaxTemp)
 .HasColumnName("DoubleValueCol");

 modelBuilder.Entity<Ballast>()
 .Property(b => b.WeightKgs)
 .HasColumnName("DoubleValueCol");
 }
}

USING THE FLUENT API TO IMPROVE OUR TPH EXAMPLE

Although the By Convention approach reduces the number of tables in the database,
you have two separate DbSet<T> properties, and you need to use the right one to find
the payment that was used. Also, you don’t have a common Payment class that you can
use in any other entity classes. But by doing a bit of rearranging and adding some Flu-
ent API configuration, you can make this solution much more useful.

 Figure 8.12 shows the new arrangement. You create a common base class by having
an abstract class called Payment that the PaymentCash and PaymentCard inherit from.
This approach allows you to use the Payment class in another entity class called SoldIt.

This approach is much more useful because now you can place a Payment abstract
class in the SoldIt entity class and get the amount and type of payment, whether it’s
cash or a card. The PType property tells you the type (the PType property is of type
PTypes, which is an enum with values Cash or Card), and if you need the Receipt
property in the PaymentCard, you can cast the Payment class to the type PaymentCard.

Payment
Abstract class

Properties

PaymentId : int

PTypes : PType

Amount : decimal

SoldIt
Class

Properties

SoldIt : int

WhatSold : string

PaymentId : int

Relationships

Payment : Payment

Relationship

Foreign key

PaymentCash
Class

Properties

PaymentCard
Class

Payment is an abstract class, which PaymentCash
and PaymentCard inherit from.

PTypes is an enum
with the values Cash
and Card. You use the
PType property as
the discriminator.

The SoldIt entity class can use the
abstract Payment class for its
relationship. The actual type of the
class assigned to that relationship
will depend on the type of payment
that was used in the sale.

Properties

Receipt : string

Figure 8.12 By using the Fluent API, you can create a more useful form of the TPH. Here, an abstract
class called Payment is used as the base, and this class can be used inside another entity class. The
actual class type placed in the SoldIt payment property will be either PaymentCash or
PaymentCard, depending on what was used when the SoldIt class was created.

260 CHAPTER 8 Configuring relationships

 In addition to creating the entity classes shown in figure 8.12, you need to
change the application’s DbContext and add some Fluent API configuration to tell
EF Core about your TPH classes, as they no longer fit the By Convention approach.
This listing shows the application’s DbContext, with the configuration of the Dis-
crimination column.

public class Chapter08DbContext : DbContext
{
 //… other DbSet<T> properties removed
 public DbSet<Payment> Payments { get; set; }

 public DbSet<SoldIt> SoldThings { get; set; }

 public Chapter08DbContext(
 DbContextOptions<Chapter08DbContext> options)
 : base(options)
 { }

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 //… other configurations removed
 modelBuilder.Entity<Payment>()
 .HasDiscriminator(b => b.PType)
 .HasValue<PaymentCash>(PTypes.Cash)
 .HasValue<PaymentCard>(PTypes.Card);
 }
}

Listing 8.24 Changed application’s DbContext with Fluent API configuration added

Defines the property through
which you can access all the
payments, both PaymentCash
and PaymentCard

List of sold items,
with a required
link to Payment

The HasDiscriminator method
identifies the entity as a TPH and
then selects the property PType as
the discriminator for the different
types. In this case, it’s an enum,
which you set to be bytes in size.

Sets the discriminator value
for the PaymentCash type

Sets the discriminator value
for the PaymentCard type

NOTE This example uses an abstract class as the base class, which I think is
more useful, but it could just as well keep the original PaymentCash, with the
PaymentCard inheriting from it. An abstract base class makes it easier to alter
the common TPH properties.

ACCESSING TPH ENTITIES

Now that you’ve configured a TPH set of classes, let’s cover any differences in CRUD
operations. Most EF database access commands are the same, but a few changes access
the TPH parts of the entities. EF Core does a nice job (as EF6.x did) of handling TPH.

First, the creation of TPH entities is straightforward. You create an instance of the
specific type you need. The following code snippet creates a PaymentCash type entity
to go with a sale:

var sold = new SoldIt()
{

WhatSold = "A hat",
Payment = new PaymentCash {Amount = 12}

};
context.Add(sold);
context.SaveChanges();

261Alternative ways of mapping entities to database tables

B
the
key

T

The c
inherits

Conta
cl
Then EF Core saves the correct version of data for that type and sets the discriminator
so that it knows the TPH class type of the instance. When you read back the SoldIt
entity you just saved, with an Include to load the Payment navigational property,
the type of the loaded Payment instance will be the correct type (PaymentCash or
PaymentCard), depending on what was used when you wrote it to the database. Also,
in this example the Payment’s property PType, which you set as the discriminator, tells
you the type of payment: Cash or Card.

 When you query TPH data, the EF Core OfType<T> method allows you to filter the
data to find a specific class. The query context.Payments.OfType<PaymentCard>()
would return only the payments that used a card, for example. You can also filter TPH
classes in Includes. See this article for more information: http://mng.bz/QmBj.

8.9.3 Table per Type (TPT): Each class has its own table

The EF Core 5 release added the table per type (TPT) option, which allows each
entity class inherited from a base class to have its own table. This option is the oppo-
site of the table per hierarchy (TPH) approach covered in section 8.9.2. TPT is a good
solution if each class in the inherited hierarchy has lots of different information; TPH
is better when each inherited class has a large common part and only a small amount
of per-class data.

 As an example, you will build a TPT solution for two types of containers: shipping
containers used on bulk carrier ships and plastic containers such as bottles, jars, and
boxes. Both types of containers have an overall height, length, and depth, but other-
wise, they are different. The following listing shows the three entity classes, with the base
Container abstract class and then the ShippingContainer and PlasticContainer.

public abstract class Container
{
 [Key]
 public int ContainerId { get; set; }

 public int HeightMm { get; set; }
 public int WidthMm { get; set; }
 public int DepthMm { get; set; }
}

public class ShippingContainer : Container
{
 public int ThicknessMm { get; set; }
 public string DoorType { get; set; }
 public int StackingMax { get; set; }
 public bool Refrigerated { get; set; }
}

public class PlasticContainer : Container
{

Listing 8.25 The three classes used in the TPT example

The Container class is marked
as abstract because it won’t
be created.

ecomes
 primary
 for each
PT table

Common part of each
container is the overall
height, width, and depth

lass
 the
iner
ass.

These properties
are unique to a
shipping container.

http://mng.bz/QmBj

262 CHAPTER 8 Configuring relationships

 public int CapacityMl { get; set; }
 public Shapes Shape { get; set; }
 public string ColorARGB { get; set; }
}

Next, you need to configure your application’s DbContext, which has two parts: (a)
adding a DbSet<Container> property, which you will use to access all the containers,
and (b) setting the other container types, ShippingContainer and PlasticContainer,
to map to their own tables. The following listing shows these two parts.

public class Chapter08DbContext : DbContext
{
 public Chapter08DbContext(
 DbContextOptions<Chapter08DbContext> options)
 : base(options)
 { }

 //… other DbSet<T> removed for clarity
 public DbSet<Container> Containers { get; set; }

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 //… other configrations removed for clarity

 modelBuilder.Entity<ShippingContainer>()
 .ToTable(nameof(ShippingContainer));
 modelBuilder.Entity<PlasticContainer>()
 .ToTable(nameof(PlasticContainer));
 }

The updates to the application’s DbContext to set up the TPT containersListing 8.26

These properties are
unique to a plastic
container.

This single DbSet is
used to access all the
different containers.

These Fluent API methods
map each container to a
different table.

The result of the update to the application’s DbContext is three tables:

 A Containers table, via the DbSet, that contains the common data for each entry
 A ShippingContainer table containing the Container and ShippingContainer

properties
 A PlasticContainer table containing the Container and PlasticContainer

properties

You add a ShippingContainer and PlasticContainer in the normal way: by using the
context.Add method. But the magic comes when you query the DbSet<Container> Con-

tainers in the application’s DbContext, because it returns all the containers using the
correct class type, ShippingContainer or PlasticContainer, for each entity returned.

You have a few options for loading one type of the TPT classes. Here are three
approaches, with the most efficient at the end:

 Read all query—context.Containers.ToList()

This option reads in all the TPT types, and each entry in the list will be of the
correct type (ShippingContainer or PlasticContainer) for the type it returns.
This option is useful only if you want to list a summary of all the containers.

263Alternative ways of mapping entities to database tables
 OfType query—context.Containers.OfType<ShippingContainer>().ToList()

This option reads in only the entries that are of the type ShippingContainer.

 Set query—context.Set<ShippingContainer>().ToList()

This option returns only the ShippingContainer type (just like the OfType
query), but the SQL is slightly more efficient than the OfType query.

8.9.4 Table splitting: Mapping multiple entity classes to the same table

The next feature, called table splitting, allows you to map multiple entities to the same
table. This feature is useful if you have a large amount of data to store for one entity,
but your normal queries to this entity need only a few columns. Table splitting is like
building a Select query into an entity class; the query will be quicker because you’re
loading only a subsection of the whole entity’s data. It can also make updates quicker
by splitting the table across two or more classes.

 This example has two entity classes, BookSummary and BookDetail, both of which
map to a database table called Books. Figure 8.13 shows the result of configuring
these two entity classes as a table split.

Here’s the configuration code.

The BookSummary entity class maps
to the Books table and defines the first
three columns of that table.

public class BookSummary
{

public int BookSummaryId
{ get; set; }

public string Title
{ get; set; }

public string AuthorString
{ get; set; }

public BookDetail Details
{ get; set; }

}

CREATE TABLE [Books] (
[BookSummaryId] int NOT NULL IDENTITY,
[Title] nvarchar(max) NULL,
[AuthorsString] nvarchar(max) NULL,

[Description] nvarchar(max) NULL,
[Price] decimal(18, 2) NOT NULL,

CONSTRAINT [PK Book]
PRIMARY KEY ([BookId])

);

public class BookDetail
{

public int BookDetailId
{ get; set; }

public string Description
{ get; set; }

public decimal Price
{ get; set; }

}

The BookDetail entity class is included in
the BookSummary entity class and defines
two more columns in the Books table.

Figure 8.13 The result of using the table-splitting feature in EF Core to map two entity classes,
BookSummary and BookDetail, to one table, Books. You do this because a book needs a lot of
information, but most queries need only the BookSummary part. The effect is to build a preselected
set of columns for faster querying.

264 CHAPTER 8 Configuring relationships

p
B

public class SplitOwnDbContext : DbContext
{
 //… other code removed

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<BookSummary>()
 .HasOne(e => e.Details)
 .WithOne()
 .HasForeignKey<BookDetail>
 (e => e.BookDetailId);
 modelBuilder.Entity<BookSummary>()
 .ToTable("Books");

 modelBuilder.Entity<BookDetail>()
 .ToTable("Books");
 }
}

After you’ve configured the two entities as a table split, you can query the BookSummary
entity on its own and get the summary parts. To get the BookDetails part, you can
either query the BookSummary entity and load the Details relationship property at the
same time (say, with an Include method) or read only the BookDetails part straight
from the database.

NOTE In part 3 of this book, I build a much more complex Book App, using
real book data from Manning Publications. I use table splitting to separate
the large descriptions used in the detailed book view from the main part of
the Book data. Any updates of, say, the Book’s PublishedOn property are
much quicker because I don’t have to read in all the descriptions.

Let me make a few points before leaving this topic:

 You can update an individual entity class in a table split individually; you don’t
have to load all the entities involved in a table split to do an update.

 You’ve seen a table split to two entity classes, but you can table-split any number
of entity classes.

 If you have concurrency tokens (see section 10.6.2), they must be in all the
entity classes mapped to the same table to make sure that the concurrent token
values are not out of data when only one of the entity classes mapped to the
table is updated.

8.9.5 Property bag: Using a dictionary as an entity class

EF Core 5 added a feature called a property bag that uses a Dictionary<string,
object> type to map to the database. A property bag is used to implement the direct
many-to-many relationship feature, where the linking table had to be created at

Configuring a table split betweenListing 8.27 BookSummary and BookDetail

Defines the two books as having a
relationship in the same way that
you’d set up a one-to-one relationshipIn this case, the

HasForeignKey
method must
reference the

rimary key in the
ookDetail entity.

You must map both
entity classes to the
Books table to trigger
the table splitting.

265Alternative ways of mapping entities to database tables

cont
speci

the
p

Share
type,

the
b

m

configuration time. You can also use a property bag, but it is useful only in specific
areas, such as creating a property-bag entity in a table whose structure is defined by
external data.

NOTE A property bag uses two features that aren’t described elsewhere in
this book. The first feature is shared entity types, where the same type can be
mapped to multiple tables. The second feature uses a C# indexer property in
an entity class to access data, such as public object this[string key] … .

As an example, you map a property bag to a table whose name and columns are
defined by external data rather than by the structure of a class. For this example, the
table is defined in a TableSpec class, which is assumed to have been read in on
startup, maybe from an appsettings.json file. The following listing shows the applica-
tion’s DbContext with the necessary code to configure and access a table via a property-
bag entity.

public class PropertyBagsDbContext : DbContext
{
 private readonly TableSpec _tableSpec;

 public PropertyBagsDbContext(
 DbContextOptions<PropertyBagsDbContext> options,
 TableSpec tableSpec)
 : base(options)
 {
 _tableSpec = tableSpec;
 }

 public DbSet<Dictionary<string, object>> MyTable
 => Set<Dictionary<string, object>>(_tableSpec.Name);

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 modelBuilder.SharedTypeEntity
 <Dictionary<string, object>>(
 _tableSpec.Name, b =>
 {
 foreach (var prop in _tableSpec.Properties)
 {
 var propConfig = b.IndexerProperty(
 prop.PropType, prop.Name);
 if (prop.AddRequired)
 propConfig.IsRequired();
 }
 }).Model.AddAnnotation("Table", _tableSpec.Name);
 }
}

Using a property-bagListing 8.28 Dictionary to define a table on startup

You pass
in a class

aining the
fication of
 table and
roperties.

The DbSet called
MyTable links to
the SharedType
entity built in
OnModelCreating.

Defines a
dType entity
which allows
same type to
e mapped to
ultiple tables

You give this shared
entity type a name so
that you can refer to it.

Adds each
property in turn
from the tableSpec

Adds an index
property to find the

primary key based
on its name

Sets the property to not
being null (needed only on
nullable types such as string)

Now you map to the table
you want to access.

266 CHAPTER 8 Configuring relationships

S

pro
us

dic
app

To be clear, the data in the TableSpec class must be the same every time because EF
Core caches the configuration. The property-bag entity’s configuration is fixed for the
whole time the application is running. To access the property-bag entity, you use the
MyTable property shown in the next listing. This listing shows adding a new entry via a
dictionary and then reading it back, including accessing the property bag’s properties
in a LINQ query.

var propBag = new Dictionary<string, object>
{
 ["Title"] = "My book",
 ["Price"] = 123.0
};
context.MyTable.Add(propBag);
context.SaveChanges();

var readInPropBag = context.MyTable
 .Single(x => (int)x["Id"] == 1);

var title = readInPropBag["Title"];

Adding and querying a property bagListing 8.29

The property bag is of type
Dictionary<string, object>.

ets the
various
perties
ing the
normal
tionary
roaches

For a shared type, such as a
property bag, you must
provide the DbSet to Add to.

The property-bag entry is
saved in the normal way.

To read back, you use the DbSet
mapped to the property-bag entity.

To refer to a property/column, you need
to use an indexer. You may need to cast
the object to the right type.

You access the result by using
normal dictionary access methods.

This listing is a specific example in which a property bag is a good solution, but you
can configure a property bag manually. Here is some more information on the prop-
erty bag:

 A property bag’s property names follow By Convention naming. The primary
key is "Id", for example. But you can override this setting with Fluent API com-
mands as usual.

 You can have multiple property bags. The SharedTypeEntity Fluent API method
allows you to map the same type to different tables.

 A property bag can have relationships to other classes or property bags. You use
the HasOne/HasMany Fluent API methods, but you can’t define navigational
properties in a property bag.

 You don’t have to set every property in the dictionary when you add a property-
bag entity. Any properties/columns not set will be set to the type’s default value.

Summary
 If you follow the By Convention naming rules for foreign keys, EF Core can find

and configure most normal relationships.
 Two Data Annotations provide a solution to a couple of specific issues related to

foreign keys with names that don’t fit the By Convention naming rules.
 The Fluent API is the most comprehensive way to configure relationships.

Some features, such as setting the action on deletion of the dependent entity,
are available only via the Fluent API.

267Summary
 You can automate some of the configuration of your entity classes by adding
code that is run in the DbContext’s OnModelCreating method.

 EF Core enables you to control updates to navigational properties, including
stopping, adding, or removing entries in collection navigational properties.

 EF Core provides many ways to map entity classes to a database table. The main
ones are owned types, table per hierarchy, table per type, table splitting, and
property bags.

For readers who are familiar with EF6:

 The basic process of configuring relationships in EF Core is the same as in
EF6.x, but the Fluent API commands have changed significantly.

 EF6.x adds foreign keys if you forget to add them yourself, but they aren’t acces-
sible via normal EF6.x commands. EF Core allows you to access them via
shadow properties.

 The EF Core 5 release added a similar feature as EF6.x’s many-to-many
relationship, with EF Core now automatically creating the linking table (see
section 3.4.4), but EF Core’s implementation is different from how EF6.x imple-
ments this feature.

 EF Core has introduced new features, such as access to shadow properties, alter-
nate keys, and backing fields.

 EF Core’s owned types provide features you would have found in EF6.x’s com-
plex types. Extra features include storing owned types in their own table.

 EF Core’s TPH, TPT, and table-splitting feature are similar to the correspond-
ing features in EF6.x, but owned types and property bags aren’t in EF6.x.

Handling
database migrations
This chapter covers ways of changing the structure of a database, referred to as
migrating a database. The structure of the database is called the database schema; it
consists of the tables, columns, constraints, and so on that make up a database. Cre-
ating and updating a database schema can seem to be simple because EF Core pro-
vides a method called Migrate to do it all for you: you create your entity classes and
add a bit of configuration, and EF Core builds you a nice, shiny database.

 The problem is that EF Core’s Migrate method hides a whole series of database
migration issues that aren’t immediately obvious. Renaming a property in an entity
class, for example, by default causes that property’s database column to be deleted,

This chapter covers
 Different ways to create commands to update

a database’s structure

 Three starting points from which you create
database structure changes

 How to detect and fix database structure changes
that would lose data

 How the characteristics of your application affect
the way you apply a database change
268

269Understanding the complexities of changing your application’s database
along with any data it had! So in this chapter, in addition to detailing how to build and
apply database migrations, I cover the key issues that you must consider when updat-
ing a database. No one wants to be the person who breaks your “live” database.

 The EF Core documentation on migrations is excellent (see http://mng.bz/
XdR6), so this chapter doesn’t try to duplicate that information. Instead. it delves
into the options and issues related to migrating a database, along with their pros
and cons. You have many ways to create and apply database migrating, and this
chapter covers the various options. The chapter also contains examples of handling
the more complex issues, such as properly handing migrations that could lose data
and applying a migration to a database while the application is still running. This
knowledge will help you select the right approach to creating a migration and success-
fully apply it to a database.

9.1 How this chapter is organized
This chapter starts with section 9.2, which introduces the topic of databases that need
migrating and the important issue of ensuring that no data is lost while migrating a
database. After that section, two parts cover creating and applying migrations:

 Part 1, creating a database migration, starts at section 9.3. This part covers the
three approaches to creating database migrations or creating your EF Core
classes and configuration to match an existing database.

 Part 2, applying a migration to a database, starts at section 9.8. This part covers
the ways you can apply a migration to a production database, including the
complexities of updating a database while the application is still running.

These parts cover lots of approaches for you to consider. Each part has a table that lists
the pros, cons, and limitations of each given approach, which should help you make
the right choice for your project.

Understanding the comple9.2 xities of changing your
application’s database
This section talks about the issues involved in migrating a database, especially the
database that your live application is using. The topics covered in this section are gen-
eral to all relational databases and any software system. There are many ways to orga-
nize your database and application deployment, each with trade-offs of complexity,
scalability, availability, and development/operations (DevOps) effort.

 Combining the information in this chapter with your knowledge of your applica-
tion, you can decide which approach to use to create and migrate your databases. Hav-
ing a thought-through plan or policy for creating and applying migrations will make
the migration process safer and quicker.

http://mng.bz/XdR6
http://mng.bz/XdR6
http://mng.bz/XdR6

270 CHAPTER 9 Handling database migrations
A view of what databases need updating9.2.1

Before I describe how to update a database’s schema, let’s look at the databases that
can be involved in an application being developed. Figure 9.1 shows a possible arrange-
ment of a multiperson development team, with development, testing, preproduction,
and production.

Not all development projects have all these stages, and some have more or different
stages. Also, this figure assumes that only one database is being used in production,
but you may have multiple copies of the same database. You may also have developers
sharing a single development database, but that approach has some limitations; see
the following note. The permutations are endless. This chapter refers to the develop-
ment and production databases, but be aware that database schema updates may be
needed on other databases.

NOTE Using a single shared database in the development environment can
work, but it has limitations. A developer might apply a migration to the data-
base before they merge the code into the main branch, for example, which
could cause problems. Section 9.2.2 introduces the topic of migrations that
might cause problems.

Development of new

features and bug fixing

Each developer has

their own database.

It’s their job to keep

the database up to date

as changes come in.

Development

Checks new releases

Test department

makes sure that a

new release works.

Testing

Preproduction

deployment testing

Dev 1

Testing at the production

level. A copy of the

production data is

upgraded to check that

the migration works.

Preproduction

Live system with

active users

Go live! The database

changes, and the new

software is deployed.

Production

UsersDevOpsTesters

Dev 2

Dev N

angeDb ch

dataClone

angeDb ch

D
b

ch
an

gebD
change

changeDb

Figure 9.1 Various databases can be used in an application’s development, all of which will need
database schema changes applied to them. The terms development, testing, preproduction, and
production refer to different parts of the development, testing, and deployment of an application,
and any associated database schema changes.

271Part 1: Introducing the three approaches to creating a migration

9.2.2

9.3

Handling a migration that can lose data

It’s helpful to characterize migrations in two groups: a nonbreaking change or a data-
loss breaking change. A nonbreaking change is one that doesn’t remove tables or col-
umns that have useful data in them, and a data-loss breaking change removes those
tables or columns. So if you don’t want to lose important data, you need to add an

extra copy stage to a data-loss breaking change migration so that the data is preserved.
Fortunately, in applications that are being developed, many migrations are the

nonbreaking-change type because you are adding new tables and columns to your
database. But at times, you want to restructure your database such that you need to
move columns in one table to another, possibly new table. Section 9.5 gives two exam-
ples of data-loss breaking changes and how to fix them:

 Renaming a property (section 9.5.1)
 Moving columns from one table to another (section 9.5.2)

NOTE Section 9.8 discusses another type of breaking change: an application
breaking change, which refers to a migration that would cause errors in the
currently running application. This change matters if you are trying to migrate
a database while the current application is running.

Part 1: Introducing the three approaches to
creating a migration
Section 9.2 applies to any form of database migration, but from now, on the focus is
on EF Core. This focus is important because the job isn’t only to change the data-
base; it’s also to ensure that the changed database matches the entity classes and the
EF Core configuration held by the application’s DbContext. If you use EF Core’s
migration tools, it’s a given that the database will match the application’s DbContext,
but as you will see, that match isn’t guaranteed in many other approaches to migrat-
ing a database.

You have three main ways to come up with an updated database that matches your
application’s DbContext. Each approach has a different starting point, which Arthur
Vickers (engineering manager of the EF Core team) calls the source of truth:

 Using EF Core’s migration features—This approach considers the entity classes,
and the EF Core configuration is the source of truth. This approach to han-
dling migrations is the easiest one, but complex issues such as handling data-
loss breaking changes require you to hand-edit migrations.

 Using SQL scripts to build migrations—In this approach, the source of truth is the
SQL commands used to build/migrate the database. You have complete control
of your database schema and can include features that EF Core doesn’t config-
ure, such as column-level constraints. But the big challenge is matching your
SQL changes to EF Core’s internal model.

 Using EF Core’s reverse-engineering tool—In this approach, the database is the
source of truth. You re-create the entity classes and the application’s DbContext

272 CHAPTER 9 Handling database migrations
with all the required configurations. You’d use this approach mainly to build an
EF Core application around an existing database.

Figure 9.2 gives you an overview of the five ways to migrate a database and their key
attributes. Each section discussing a migration starts with a table summarizing the
approach and including my views about when I think the approach is useful.

9.4 Creating a migration by using EF Core’s add
migration command
EF Core’s migration tools are the standard way to create and update a database from
EF Core. This approach is easiest because it automatically builds the correct SQL com-
mands to update the database, saving you from digging into databases and the SQL
language to create and change the application’s database.

 You start by studying the standard migration produced by EF Core migration tools
with no extra editing by you. A standard migration can handle most situations and
forms the basis for altering the migration if you need to. Typically, you would need to
edit a migration to handle things such as data-loss breaking changes (section 9.5)
after you review what the standard can do.

 You create a standard migration by using EF Core’s migration tools—specifically,
the add migration command. This command uses the entity classes and the applica-
tion’s DbContext, with its configuration code being the source of truth. But the add
migration commands also needs to know the previous state of EF Core’s model of the
database to decide what needs changing. It does this by looking at a class created by
the last run of the EF Core migration tools, which contain a snapshot of EF Core’s
model of the database. For the first migration, that class won’t exist, so the migration

Standard
EF Core
Migration

Hand-
modified
EF Core
Migration

SQL
database
compare

tool

Hand-
coded SQL
migration

Produced by
tool (EF Core)

Produced by
tool+human input

Produced by
tool (Compare) log+human input

Ease of use

Match EF?

Data safe?

Reverse-
engineer a

existing
database

Always

No, but see next →

Should be

Yes (human input)

Should be

Yes (human input)

Relies on developer

Yes (human input)

Always

n/a

Produced by
tool (EF Core)

Your EF Core code is
the source of truth.

Your SQL code is the
source of truth.

Database is the
source of truth.

Produced by

Figure 9.2 A simple summary of the five ways to migrate a database and make sure that the
database matches EF Core’s internal model of the database

273Creating a migration by using EF Core’s add migration command
tools assume that the database has an empty schema—that is, has no tables, indexes,
and so on. So when you run the EF Core’s add migration command, it compares the
snapshot class with your current entity classes and the application’s DbContext with its
configuration code. From that data, it can work out what has changed; then it builds
two classes containing the commands to add the changes to the database (figure 9.3).

Don’t build your entity classes the same way you build normal classes
EF Core is great at making your database look like normal classes, but you shouldn’t
build your entity classes quite the same way that you would your normal classes.
In normal classes, for example, a good approach to stopping duplication is using

MyDbContext
Class

Properties

Entities :DbSet<Entity>

Methods

void OnModelCreating(...

Entity
Class

Properties

...

Entity
Class

Properties

...

Entity
Class

Properties

...

Entity
Entity

Entity
Class

Properties

...

Entity
Class

Properties

...

1.The process builds a model of the expected
database by inspecting the application’s
DbContext, the associated entity classes,
and any configuration settings.

3. and 2, the commandUsing the two models, 1

generates code in three files:
• The <MyContextName>ModelSnapshot.cs

the datafile holds the model of base and
is updated as each migration is added.

• The other two files contain the code
c migration yourelating to the specifi

have just added. They contain the code
migration.to execute the

4. ed igratio ,These files are written to a directory, normally call M ns
in the assembly that the application’s DbContext is in.

2. The command then looks at the
<MyContextName>ModelSnapshot.cs
file to form a model of the database at
the time the last migration was done
(empty model if no migrations).

The process kicked off by the Add-Migration MyMigrate command

…Migrations

1234567890_Initial.cs

1234567890_Initial.Designer.cs

MyDbContextModelSnapshot.cs

Etc. …

File: MyDbContextModelSnapshot.cs

class MyDbContextModelSnapshot
ModelSnapshot

{

}

Fi e: 2345678901_MyMigrate.Designer.csl

class partial MyMigrate
{

}

File: 2345678901_MyMigrate.cs

class partial MyMigrate : Migrate
{

void Up(...) { ...}
void Down(...) { ...}

}

void OnModelCreating(...

Figure 9.3 Running the add migration command to create a new EF Core migration. The command compares
two models of the database. One model comes from our current application, with its DbContext, entity classes,
and EF Core configuration; the other is from the <MyContextName>ModelSnapshot.cs file (which is empty if this
mirgration is your first one). By comparing these two models, EF Core can create code that will update the
database schema to match EF Core’s current database model.

274 CHAPTER 9 Handling database migrations

Before you delve into the add migration command, table 9.1 summarizes using a stan-
dard migration to update your database’s schema. Each section on a migration
approach has a table similar to table 9.1 so that you can compare the features and lim-
itations of each approach.

(continued)

properties that access other properties, known as expression body definitions. Here’s
an example:

public string FullName => $”{FirstName} {LastName}”;

That technique works for a normal class, but if you use it for an entity class, a query
that filters or sorts on the FullName property would fail. In this case, you would need
to provide a real property linked to a database column (possibly using the new, per-
sisted computed column; see chapter 10) to make sure that EF Core can sort/filter
on that data.

Also, you should think carefully about what properties and relational links you put in
an entity class. Refactoring a normal class is easy, but refactoring an entity class
requires a migration, possibly including a data-copying stage too.

Remember that your entity classes, with their navigational properties, define the data-
base’s structure. Just because EF Core makes it easy to define these things doesn’t
mean that you shouldn’t think about the database structure and its performance.

Table 9.1 A summary of the good, the bad, and the limitations of a standard migration created by the
add migration command

Notes

Good parts Builds a correct migration automatically
 Handles seeding of the databas
 Doesn’t require knowledge of SQL
 Includes a remove migration feature (see section 9.4.4)

Bad parts Only works if your code is the source of truth

Limitations Standard EF Core migrations cannot handle breaking changes (but see section 9.5).
 Standard EF Core migrations are database-specific (but see section 9.5.4).

Tips Watch out for error messages when you run the add migration command. If EF Core
detects a change that could lose data, it outputs an error message but still creates the
migration files. You must alter the migration script; otherwise, you will lose data (see sec-
tion 9.5.2).

My verdict This approach is an easy way to handle migrations, and it works well in many cases. Con-
sider this approach first if your application code is driving the database design.

TIP I recommend an EF Core Community Standup video that covers some
EF Core 5’s features and the philosophy behind EF Core’s migration features;
see http://mng.bz/yYmq.

http://mng.bz/yYmq

275Creating a migration by using EF Core’s add migration command

The i
requ

metho
return
instan

Db

Requirements before running any EF Core migration command9.4.1

To run any of the EF Core migration tools’ commands, you need to install the
required code and set up your application in a certain way. There are two versions of
the EF Core migration tools: the dotnet-ef command-line interface (CLI) tools and
Visual Studio’s Package Manager Console (PMC) version.

 To install the CLI tools, you need to install them on your development com-
puter via the appropriate command prompt. The following command will install
the dotnet-ef tools globally so that you can use them in any directory:

dotnet tool install --global dotnet-ef

To use Visual Studio’s PMC feature, you must include the NuGet package Microsoft
.EntityFrameworkCore.Tools in your main application, and the correct EF Core data-
base provider NuGet package, such as Microsoft.EntityFrameworkCore.SqlServer,
in the project that holds the application’s DbContext you want to migrate.

 These tools must be able to create an instance of the DbContext you want to
migrate. If your startup project is an ASP.NET Core web host or .NET Core generic
host, the tools can use it to get an instance of a DbContext set up in the startup class.

 If you aren’t using ASP.NET Core, you can add a class that implements the
IDesignTimeDbContextFactory<TContext> interface. This class must be in the same
project as the DbContext you want to migrate. The following listing shows an example
taken from the Part2 branch of the associated GitHub repo.

public class DesignTimeContextFactory
 : IDesignTimeDbContextFactory<EfCoreContext>
{
 private const string connectionString =
 "Server=(localdb)\\mssqllocaldb;Database=..."

 public EfCoreContext CreateDbContext(string[] args)
 {
 var optionsBuilder =
 new DbContextOptionsBuilder<EfCoreContext>();
 optionsBuilder.UseSqlServer(connectionString);

 return new EfCoreContext(optionsBuilder.Options);
 }
}

9.4.2

Listing 9.1 A class that provides an instance of the DbContext to the migration tools

EF Core tools use this class to obtain
an instance of the DbContext.

This interface defines a
way that the EF Core tools
find and create this class.

You need to provide a
connection string to
your local database.

nterface
ires this
d, which
s a valid
ce of the
Context.

You use the normal
commands to set up
the database provider
you are using.

Returns the DbContext for
the EF Core tools to use

Running the add migration command

To create an EF Core migration, you need to run the add migration command from a
command line (CLI tools) or in Visual Studio’s PMC window. The two ways to migrate
a database, CLI tools and PMC, have different names and parameters. The following

276 CHAPTER 9 Handling database migrations

P
Proj

Note
the fo

the
list shows an add migration command that I used to create a migration in the Book
App. Note that the CLI version was run in the directory of the BookApp ASP.NET
Core project:

 CLI—dotnet ef migrations add Ch09Migrate -p ../DataLayer
 PMC—Add-Migration Ch09Migrate -Project DataLayer

NOTE There are lots of commands, with multiple parameters, and it would
take many pages to reproduce the EF Core documentation. Therefore, I
direct you to EF Core’s command-line reference at http://mng.bz/MXEn.

Seeding your database via an EF Core migration9.4.3

EF Core’s migrations can contain data that will be added to the database, a process
known as seeding the database. A good use of this feature is adding constants to
your database, such as your product types and customer types for an e-commerce
site. I should say that seeded data can be changed, so the data isn’t a constant, but
you can change it only via a migration, so it’s best to use it for data that doesn’t
change (much).

NOTE As well as adding the seed data when a migration is applied, the
context.Database.EnsureCreated() method (usually used in unit testing)
seeds the created database. See chapter 17 for more on unit testing.

You add seed data via Fluent API configuration, using the HasData method. Listing 9.2
gives an example of ways you can link seed data via its primary and foreign keys. This
example has seed data that is more complex than I usually have, but I’m providing it
to show you the various ways that you can set up seed data. The classes used in this
example are

 A Project entity class with a ProjectManager of type User
 The User entity class, which holds the user’s Name and address
 The Address class, an owned type (see section 8.9.1) that holds the address part

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Project>().HasData(
 new { ProjectId = 1, ProjectName = "Project1"},
 new { ProjectId = 2, ProjectName = "Project2"});
 modelBuilder.Entity<User>().HasData(
 new { UserId = 1, Name = "Jill", ProjectId = 1 },
 new { UserId = 2, Name = "Jack", ProjectId = 2 });
 modelBuilder.Entity<User>()
 .OwnsOne(x => x.Address).HasData(

Listing 9.2 An example of setting up seed data via the HasData Fluent API method

Seeding is configured
via the Fluent API.

Adds two default projects.
Note that you must
provide the primary key.

Each
roject and a
ectManager.
 that you set
reign key of

 project they
are on.

The User class has
an owned type that
holds the User’s
address.

http://mng.bz/MXEn

277Creating a migration by using EF Core’s add migration command
 new {UserId = 1, Street = "Street1", City = "city1"},
 new {UserId = 2, Street = "Street2", City = "city2"});
}

As you can see from listing 9.2, you must define the primary key, even if is usually gen-
erated by the database, so that you can define relationships by setting foreign keys to
the appropriate primary key. And if you change the primary key, the previous seeded
entry is removed. Also, if you keep the original primary key but change the data in
that entry, the migration will update that entry.

NOTE The directory Chapter09Listings\SeedExample in the Test project of the
associated GitHub repo contains an example of what happens when you change
your seed data between migrations. The second migration contains code to
delete, update, and insert seed data due to changes in the HasData parts.

9.4.4 Handling EF Core migrations with multiple developers

When multiple developers are working on a project that uses EF Core’s migration fea-
ture to update the database schema, you might bump into software merges in which
one developer’s migration is in conflict with your migration. This section gives you
some advice on what to do. I do assume that you are using source control and that you
have your own development database to try out a migration locally.

 First, if your migration has no conflicts with a migration that you just merged into
your software, you shouldn’t have a source control conflict, because EF Core’s migra-
tions are designed to be team-friendly (unlike EF6 migration code). You might get
migrations applied in a slightly different order; perhaps you created your migration
yesterday, and someone’s else’s migration was produced today and applied to the
main database. That situation shouldn’t cause a problem if there are no merge con-
flicts, because EF Core can handle out-of-order migrations.

 You will know if you have a migration merge conflict because your source con-
trol system will show a conflict in the migration snapshot file, which has the name
<DbContextClassName>ModelSnapShot. If this conflict happens, here’s the recom-
mended way to fix it:

1 Abort the source control merge that contained a migration change that con-
flicted with your migration.

2 Remove the migration you created by using either of the following commands
(Note: Keep the entity classes and configuration changes; you will need them
later):
a CLI—dotnet ef migrations remove
b PMC—Remove-Migration

3 Merge the incoming migration you abandoned in step 1. A merge conflict
should no longer appear in the migration snapshot file.

4 Use the add migration command to re-create your migration.

Provide the user’s addresses. Note that you use the
UserId to define which user you are adding data to.

278 CHAPTER 9 Handling database migrations
That migration conflict resolution process works in most cases, but it can get complex.
My recommendation for projects in which migration conflicts can happen are

 Merge the main/production branch into your local version before you create a
migration.

 Have only one migration in a source control merge into your main/production
branch, because undoing two migrations is hard work.

 Tell your development team members if you think that your migration might
affect their work.

Using a custom migration tabl9.4.5 e to allow multiple DbContexts
to one database

EF Core creates a table if you apply an EF Core migration to a database. EF Core uses
this table to find out what migrations have been applied to the database so that it
knows what migration should be applied to the database you are migrating. By default,
that table is called __EFMigrationsHistory, but you can change the name via an option
method called MigrationsHistoryTable.

 There aren’t many reasons for changing the migration history table, but sharing a
database across multiple EF Core DbContexts is one of them. Here are two examples:

 Saving money by combining databases—You are building an ASP.NET Core appli-
cation with individual user accounts that needs an accounts database. Your appli-
cation’s DbContext also needs a database. By using a custom migration table on
your application’s DbContext would allow both contexts to use the same database.

 Using a separate DbContext for each business group—In part 3 of this book, I
want to make the project easier to extend as it gets bigger. Therefore, I have
separate DbContexts: one for the book-display code and another for the order-
processing code.

Both examples work, but using EF Core’s migration system with either takes a bit
more effort. The first migration example—saving money by combining databases—is
easier because the two databases you are combining don’t share any tables, views, and
so on. But because both databases use EF Core’s migration system, they need a differ-
ent migration history table. ASP.NET Core’s individual user account database uses the
default name for the migration history table, so you need to change the name of your
application’s DbContext. The next listing shows how to do that when you are register-
ing your application’s DbContext in ASP.NET Core’s startup class.

services.AddDbContext<EfCoreContext>(
 options => options.UseSqlServer(connection,
 dbOptions =>

Listing 9.3 Changing the name of the migration history table for your DbContext

Registers your
application’s DbContext as
a service in ASP.NET Core

The second parameter allows
you to configure at the

database provider level.
The MigrationsHistoryTable

method allows you to
change the migration table

name and optionally the
table’s schema.

dbOptions.MigrationsHistoryTable("NewHistoryName")));

279Creating a migration by using EF Core’s add migration command
Next, of course, you must migrate each of the DbContexts—in this case, the ASP.NET
Core’s individual user account context and your application’s DbContext. Otherwise,
your job is done.

 For the second example—having a separate DbContext for each business group—
you need a different migration history table name for each DbContext so that each
migration is separate. You should also specify separate directories for the migration
classes for each DbContext, which you can do via an option in the add migration
command. That command will stop any clashes of class names if you use the same
migration name in both DbContexts.

NOTE You can also place the migration classes in a separate project if you
want to. You need to tell the add migration command which project to place
the migration in. Then you use the MigrationsAssembly method when you
set up the database options. See http://mng.bz/aonB.

This example, however, has another problem for you to deal with: each DbContext
needs to access the table called Books, which would duplicate the migration of that
table. The Books table is shared because both DbContexts must be able to read it (to
show the books and create an order for books, respectively).

 You have several options to fix this problem, but the best is to use the Exclude-
FromMigrations Fluent API command, which stops that entity class from being included
in a migration. In the BookDbContext/OrderDbContext example, you could remove the
migration of the Book entity class in the OrderDbContext, as shown in this code snippet:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Book>()
 .ToTable("Books",
 t => t.ExcludeFromMigrations());
}

If the Book entity class is mapped to a view, not to a table (see section 7.9.3), the migra-
tion tools will not include that view in a migration. For this example, that approach is
a good one, as we want the BookDbContext to have read/write access, but the Order-
DbContext should only have read access.

My approach to creating migrations
My approach to building migrations relies on having unit tests that can check things
against a database. I realize that some developers don’t like that approach, but I’ve
found that not being able to unit-test my code against a real database requires me
to build/apply a migration and then run the application to test my changes. Using unit
tests against a real database makes me develop faster, and each unit test I write
improves the coverage of the application I am working on.

Normally, I build a comprehensive set of unit tests across the whole application,
other than the final UI/WebAPI side. Many of my unit tests use the database because

http://mng.bz/aonB

280 CHAPTER 9 Handling database migrations
Editing an EF Core mi9.5 gration to handle complex
situations
EF Core migration tools are powerful and well thought out, but they can’t handle
every possible database migration, such as a data-loss breaking change. The EF Core
team knows this, so it provided multiple ways to alter a migration class by hand. Let’s
look at the types of migrations that a standard migration can’t handle without help:

 Data-loss breaking changes, such as moving columns from one table to a new table
 Adding SQL features that EF Core doesn’t create, such as adding user-defined func-

tions, SQL stored procedures, views, and so on
 Altering a migration to work for multiple database types, such as handling both SQL

Server and PostgreSQL

You can fix these problems by editing the standard migration class created via the add
migration command. To do this, you need to edit the migration class whose filename
ends with the migration name and has a type of .cs, such as …_InitialMigration.cs. In
the following sections, you learn the different types of edits that can improve or fix
your migrations, but table 9.2 provides a summary of the pros and cons of hand-editing
a migration to achieve the required migration.

(continued)

it’s the quickest way to set up the test data; EF Core makes setting up a test database
easy. Sure, for complex business logic I use a repository pattern (see section 4.2),
which I can stubb out, but for straightforward queries and updates, I can use test
databases. As a result, I can implement a new feature in stages and check as I go
by running my unit tests.

This approach does require the databases in unit tests to be up to date with the
current EF Code Model; the schema must match your current entity classes and
DbContext configuration. Many years of experience (and some suggestions from the
EF Core team) have honed my approach, which I share with you in chapter 17. This
approach allows me to build a complex feature in smaller steps, with the unit-test
databases always in step with EF Core’s current Model. Only after all the code is writ-
ten and the unit tests pass do I finally create a migration.

Table 9.2 A summary of the good, the bad, and the limitations of a migration created by the add
migration command edited by you to handle situations that the standard migration can’t handle on
its own

Notes

Good parts You start with most of the migration build via the add migration command.
 You can customize the migration.
 You can add SQL extra features, such as stored procedures.

Bad parts You need to know more about the database structure.
 Some edits require SQL skills.

281Editing an EF Core migration to handle complex situations

d

T
to
Us

sho
so y
Adding and removing MigrationBuilder methods inside9.5.1
the migration class

Let’s start with a simple example of fixing a migration that contains a data-loss break-
ing change. This example looks at what happens if you change the name of a property
in an entity class, which causes a data-loss breaking change. This problem can be fixed
by removing two commands and replacing them with MigrationBuilder’s Rename-
Column method inside the migration class.

 This example comes from chapter 7, where you changed the CustomerId property
in the Order entity class to UserId to automate adding a Query Filter (see section 7.15.4).
The standard migration sees this operation as being the removal of the CustomerId
property and the addition of a new property called UserId, which would cause any
existing values in the CustomerId column to be lost. To fix this problem, make the fol-
lowing changes in the migration class generated by the standard migration generated
in chapter 7:

 Remove the AddColumn command that adds the new UserId column.
 Remove the DropColumn command that removes the existing CustomerId column.
 Add a RenameColumn command to rename the CustomerId column to UserId.

The following listing shows the start of the altered migration class, the name of which
is taken from the migration name, Chapter07. The methods that need to be removed
are commented out, and the new RenameColumn method is added.

public partial class Chapter07 : Migration
{
 protected override void Up(MigrationBuilder migrationBuilder)
 {

 //migrationBuilder.AddColumn<Guid>(
 // name: "UserId",
 // table: "Orders",

Your edits aren’t checked by EF Core, so you could get a mismatch between the updatedLimitations
database and your entity classes and application’s DbContext.

Same as for standard migrations (see table 9.1)Tips

This approach is great for small alterations, but making big changes can be hard work,My verdict
as you are often mixing C# commands with SQL. If you expect to be editing lots of your
migrations to add SQL features, you should consider an SQL script approach (see sec-
tion 9.6.2) as an alternative.

The updated migration class with old commands replacedListing 9.4

Table 9.2 A summary of the good, the bad, and the limitations of a migration created by the add
migration command edited by you to handle situations that the standard migration can’t handle on
its own (continued)

Notes

Migration class created by the add
migration command that has been edite

There are two methods in a
migration class. Up applied the
migration, and another method

called Down removed this migration.

he command
 add the new
erId column
uld not run,
ou comment

it out.

282 CHAPTER 9 Handling database migrations

n
co
 // type: "uniqueidentifier",
 // nullable: false,
 // defaultValue:
 // new Guid("00000000-0000-0000-0000-000000000000"));

 //migrationBuilder.DropColumn(
 // name: "CustomerId",
 // table: "Orders");

 migrationBuilder.RenameColumn(
 name: "CustomerId",
 table: "Orders",
 newName: "UserId");

 //… rest of the migration code left out
 }
}

That code will change the Up migration from one that loses data to one that preserves
the data held in the old CustomerId column. A migration class created by the add
migration command also contains a Down method. This method undoes the migra-
tion if the Up migration has been applied to a database (see the remove command in
section 9.4.4). Therefore, it is best practice to edit the Down method with the correct
commands to undo the migration. The Down part that goes with listing 9.4 would also
be edited do the reverse from the Up part. You would remove the AddColumn/Drop-
Column commands in the Down part and replace them with RenameColumn, but now the
rename is from UserId back to CustomerId.

NOTE I haven’t shown you the altered Down method, but you can find this
migration class in the Migrations folder of the DataLayer project in the
GitHub repo, branch Part2.

9.5.2 Adding SQL commands to a migration

There can be two main reasons for adding SQL commands to a migration: to handle a
data-loss breaking change and to add or alter parts of the SQL database that EF Core
doesn’t control, such as adding views or SQL stored procedures.

 As an example of adding SQL commands to a migration, you are going to handle
a data-loss breaking change. In this case, you are going to start with a database with a
User entity class that contains each user’s Name and their address in the properties
Street and City. As the project progresses, you decide that you want to copy the
address part to another table and have the User entity class reference it via a naviga-
tional property. Figure 9.4 shows the before and after states of the database’s schema
and the content of the tables.

 The best way to handle this situation with EF Core’s migration is to add some SQL
commands to copy over the data, but the process isn’t trivial. Changing the migration
requires adding SQL code.

The command
to remove

the existing
CustomerId

column should
ot run, so you
mment it out.

The correct approach
is to rename the
CustomerId column
to UserId.

283Editing an EF Core migration to handle complex situations
NOTE You can see the whole migration in the associated GitHub repo at
http://mng.bz/goME.

First, you change your User entity class to remove the address and link to the new
Address entity class to the DbContext. Then you create a new migration by using the
add migration command, which will warn you that it may result in the loss of data. At
this point, you are ready to edit the migration.

 The second step is adding a series of SQL commands, using the MigrationBuilder
method Sql, such as migrationBuilder.Sql("ALTER TABLE…”). The following listing
shows you the SQL commands without the migrationBuilder.Sql so that they are
easier to see.

ALTER TABLE [Addresses]
 ADD [UserId] [int] NOT NULL

INSERT INTO [Addresses] ([UserId],[Street],[City])
 SELECT [UserId],[Street],[City] FROM [Users]

UPDATE [Users] SET [AddressId] = (
 SELECT [AddressId]
 FROM [Addresses]
 WHERE [Addresses].[UserId] = [Users].[Userid])

ALTER TABLE [Addresses]
 DROP COLUMN [UserId]

The SQL Server commands to copy over the addresses to a new tableListing 9.5

Users

UserIdPK

Name
Street
City

Before—User’s address in same table After—User’s address in separate table

CityStreetUserid

Jack CityJack Street123

Jill CityJill Street456

Name

Jack

Jill

Userid AddressId

1123

2456

Name

Jack

Jill

AddressId

1

2

Street

Jack Street

Jill Street

City

Jack City

Jill City

Users

UserIdPK

AddressIdFK1

Addresses

AddressIdPK

Street
City

Figure 9.4 The original (before) database schema and data, with one table called Users. The new (after)
database schema has a new table, Addresses, and the address data in the original Users table has been
moved to the Addresses table. Also, the Users table address columns, Street and City, have been removed,
and a new foreign key, AddressId, has been added to link to the User’s addresses.

Adds a temporary column to allow the correct
foreign key to be set in the Users table

Copies over all the address
data, with the User’s primary
key, to the addresses table

Sets the foreign key in the
Users table back to the
Addresses table

Uses the temporary
UserId column to make
sure that the right foreign
keys are set up

Removes the temporary
UserId column in the
Addresses table, as it’s
not needed anymore

http://mng.bz/goME

284 CHAPTER 9 Handling database migrations

The
the n

th
name

is s
You add these SQL commands to the migration by using the migrationBuilder.Sql
method for each SQL command, placing them after the Addresses table is created
but before the foreign key is set up. Also, the MigrationBuilder methods that drop
(remove) the address properties from the Users table must be moved to after the
SQL code has run; otherwise, the data will have gone before your SQL can copy that
data over.

NOTE Section 9.8.1 covers a way to run C# code before and after a specific
migration has been applied to a database. That approach is another way to
copy data, but the SQL approach often performs better.

Adding your own custom migration commands9.5.3

If you often add certain types of SQL commands to a migration, you can build some
templating code to make your edits easier to write. Building templates, such as adding
an SQL View to the database, is a good idea if you use an SQL feature often, because
the cost of creating the template is less effort than handcoding the SQL feature multi-
ple times. You have two ways to create a template:

 Create extension methods that take the MigrationBuilder class in and build
commands with MigrationBuilder’s Sql method. These extension methods
tend to be database-specific.

 A more complex but more versatile approach is to extend the Migration-
Builder class to add your own commands. This approach allows you to access
methods to build commands that work for many database providers.

In this section, I discuss only the first approach. The second is an advanced version
that is well described in the EF Core documentation at http://mng.bz/xGBe.

 As an example, you are going to create an extension method that will allow you to
create SQL Views more easily. The extension method takes in the class that will be
mapped to the View so that it can find the properties to map to the columns (assum-
ing that you are using only properties and By Convention column naming). The fol-
lowing listing shows the extension method that will create a view within a migration.

public static class AddViewExtensions
{
 public static void AddViewViaSql<TView>(
 this MigrationBuilder migrationBuilder,
 string viewName,
 string tableName,
 string whereSql)
 where TView : class
 {

Listing 9.6 Extension method to add/alter an SQL view in an EF Core migration

An extension
method must be
in a static class.

The method needs the class
that is mapped to the view so
that it can get its properties.

The MigrationBuilder
provides access to the
migration methods—in
this case, the Sql method.

method needs
ame to use for
e view and the
 of the table it
electing from.

Views have a Where clause that
filters the results returned.

Ensures that the
TView type is a class

http://mng.bz/xGBe

285Editing an EF Core migration to handle complex situations

Thi
an

S
us
 if (!migrationBuilder.IsSqlServer())
 throw new NotImplementedException(“warning…”)

 var selectNamesString = string.Join(", ",
 typeof(TView).GetProperties()
 .Select(x => x.Name));

 var viewSql =
 $"CREATE OR ALTER VIEW {viewName} AS " +
 $"SELECT {selectNamesString} FROM {tableName} " +
 $"WHERE {whereSql}";

 migrationBuilder.Sql(viewSql);
 }
}

You would use this technique in a migration by adding it to the Up method (and a DROP
VIEW command in the Down method to remove it). Here is a code snippet that creates a
view for the MyView class, which has the properties MyString and MyDateTime:

migrationBuilder.AddViewViaSql<MyView>(
 "EntityFilterView", "Entities",
 "MyDateTime >= '2020-1-1'");

The resulting SQL looks like this snippet:

CREATE OR ALTER VIEW EntityFilterView AS
SELECT MyString, MyDateTime
FROM Entities
WHERE MyDateTime >= '2020-1-1'

9.5.4 Altering a migration to work for multiple database types

EF Core migrations are database-provider-specific—that is, if you build a migration for
SQL Server, it almost certainly won’t work for a PostgreSQL database. You don’t often
need migrations for multiple database types, however. In fact, I don’t recommend using
multiple database types with the same EF Core code, as subtle differences between data-
base types can catch you out (see chapter 16). But if you need to support migrations
for two or more types of databases, the recommended way is to build separate migra-
tions for each database provider. If you want to use an SQLite database for a Linux
version of your application and an SQL Server database for a Windows version of your
application, for example, you would need to execute the following steps.

 The first step is creating a specific DbContext for each database type. The easiest
way is to create a main application’s DbContext and inherit it in your other database
types. The following listing shows two applications’ DbContexts, with the second one
inheriting the first one.

s method throws
 exception if the

database isn’t
erver because it

es an SQL Server
view format.

Gets the names of the
properties in the class
mapped to the view and
uses them as column names

Creates the
SQL command to
create/update a view

Uses MigrationBuilder’s
method to apply the created
SQL to the database

286 CHAPTER 9 Handling database migrations

public class MySqlServerDbContext : DbContext
{
 public DbSet<Book> Books { get; set; }
 // … other DbSets left out

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 //… your Fluent API code goes here
 }
}

public class MySqliteDbContext : MySqlServerDbContext
{

}

Listing 9.7 Two DbContexts that have the same entity classes and configuration

Inherits the normal
DbContext class

Adds all the DbSet properties
and Fluent APIs, which are
used in both database types

The MySqliteDbContext
inherits the Sql Server
DbContext class instead
of the normal
DbContext.

The MySqliteDbContext inherits the
DbSet properties and Fluent APIs
from the Sql Server DbContext.

The next step is creating a way for the migration tools to access each DbContext
with the database provider defined. The cleanest way is to create an IDesignTimeDb-

ContextFactory<TContext> class, as described in section 9.4.1. Alternatively, you
can override the OnConfiguring method in each DbContext to define the database
provider.

At this point, you can create a migration for each database type by using the Add-

Migration command (see section 9.4.2). The important point is that each migration
must be in a separate project so that when you create a migration, it can access the
correct migration classes for the type of database to which the DbContext is linked.
You tell EF Core where the migration classes can be found by using the Migrations-

Assembly method when you create the database option. The following code snippet
shows the AddDbContext method used to register an application’s DbContext with its
database provider and the migrations for that database in a project called Database

.SqlServer:

services.AddDbContext<MySqlServerDbContext>(
options => options.UseSqlServer(connection,

x => x.MigrationsAssembly("Database.SqlServer")));

Alternatively, you have one migration and add if/then code inside the migration to
change what the migration does based on the database provider. This approach isn’t
recommended because it’s harder to maintain. If you want more information on this
approach, I suggest looking at the EF Core documentation, which covers both
approaches (http://mng.bz/pV08).

NOTE Cosmos DB and NoSQL databases in general don’t use EF Core migra-
tions because they don’t have a fixed schema, like SQL databases, and they’re
normally migrated by means of some form of upgrade script. Migrating a

http://mng.bz/pV08

287Using SQL scripts to build migrations

9.6

9.6.1

Cosmos DB database accessed via EF Core does have some issues, which I dis-
cuss in chapter 16.

Using SQL scripts to build migrations
The next way to manage your database schema change is to produce SQL change scripts
and then apply them to any of your databases. Change scripts contain SQL commands
that update the schema of your database. This approach to handling database schema
updates is more traditional and gives you much better control of the database features
and the schema update. You need good knowledge of SQL commands to write and
understand these migration scripts, but tools can generate these migration scripts for
you by comparing databases.

As with the migrations that EF Core can create, your aim is to create a migration
that will alter the schema of your database to match the EF Core’s internal model of
the database. In this section, you will consider two approaches:

 Using SQL database comparison tools to produce migration from the current
database schema to the desired database schema

 Handcoding a change script to migrate the database

Although option 1 should produce an exact match to EF Core’s internal model of
the database, option 2 relies on the developer to write the correct SQL to match
what EF Core needs. If the developer makes a mistake (which I can testify is easy to
do), your application may fail with an exception; worse, it may silently lose data. So
at the end of this section, I describe a tool I have created that compares a database’s
schema with EF Core’s current model of the database and tells you whether there
are any differences.

Using SQL database comparison tools to produce migration

One approach to creating an SQL change script is to compare two databases: your
original database and a new database created by EF Core after you’ve updated the EF
Core configuration. Tools can compare two databases and show the differences in
their schemas. Many of these comparison tools can also create a script that will change
your original database to the same schema as the database you want to move to. So if
you can create a database with the schema you want, a comparison tool can create the
SQL change script needed to update a database to the required database. SQL com-
parison tools make creating SQL change scripts quite easy, but like everything, they
have their own quirks. Before you look at the details, table 9.3 gives you an overview of
this approach.

Several open source and commercial comparison tools are available for many data-
base server types; they can compare database schemas and output SQL change scripts.
This example uses the SQL Server Object Explorer built into Visual Studio (any ver-
sion), which you can find in the Data Storage and Processing workload of the Visual
Studio installer. You can get the tool directly by choosing Tools > SQL Server > New
Schema Comparison.

288 CHAPTER 9 Handling database migrations
NOTE You can find a step-by-step guide to using SQL Server Object Explorer
at http://mng.bz/OEDR.

Figure 9.5 shows how to compare the database in chapter 2 with the changes in chap-
ter 4, where you add Order and LineItem entity classes. An SQL comparison tool
relies on having two databases:

 The first database is the current state of the database, known as the Target data-
base. You want to update to the new schema, which is shown as Chapter02Db in
figure 9.5. This database is most likely your production database or some other
database that matches the target schema.

 The second database, known as the Source database, must have a schema to
which you want to update your database, shown as Chapter04Db.Test in fig-
ure 9.5. This database is most likely in your development environment. One
nice feature I use to get a database like this one is EF Core’s EnsureCreated
method. This method, usually used in unit testing, creates a database based on
the current entity classes and EF Core configuration.

By setting two databases as the Source and Target databases in the compare SQL
schema tool, you can compare the two database schemas and then produce an
SQL change script that transitions the schema of the Target database to the schema of
the Source database.

 This process initially tells you the differences; then you have an option to create an
SQL change script that will migrate a database from the initial database schema to the
required database schema. This option produces an SQL change script that will
migrate a database from the initial database schema, Chapter02Db in figure 9.5, to the
schema of the target database, Chapter04Db.Test in figure 9.5. I cover how to apply a
change script in section 9.8.4.

Table 9.3 A summary of the good, the bad, and the limitations of using an SQL database comparison
tool to build SQL change scripts to migrate a database

Notes

Good parts Tools build the correct SQL migration script for you.

Bad parts You need some understanding of databases and SQL.
 SQL comparison tools often output every setting under the sun to make sure that they

get everything right, which makes the SQL code output hard to understand.
 Not all SQL comparison tools produce a migration remove script.

Limitations Tools do not handle breaking changes, so they need human input.

Tips I use this approach only for complex/large migrations, and I strip out any extra settings
to make the code easier to work with.

My verdict This approach is useful and especially good for people who aren’t comfortable with the
SQL language. It’s also useful for people who have written their own SQL migration code
and want to check that their code is correct.

http://mng.bz/OEDR

289Using SQL scripts to build migrations
Handcoding SQL change scripts to migrate the database9.6.2

Another approach is to create the SQL commands needed for a migration yourself.
This option is attractive to developers who want to define the database in ways that EF
Core can’t. You can use this approach to set more-rigorous CHECK constraints on col-
umns, add stored procedures or user-defined functions, and so on via SQL scripts.

 The only disadvantage for a software developer is that you need to know enough
SQL to write and edit the SQL change scripts. This requirement might put off some
developers, but it’s not as bad as you think, because you can look at the SQL EF Core
outputs to create a database and then tweak that SQL with your changes. Table 9.4
gives you an overview of this approach.

 The job of creating an SQL change script is made easier by the migration script-
dbcontext command, which outputs the SQL commands that EF Core would use to
create a new database (equivalent to calling the context.Database.EnsureCreated
method). The following listing shows a small part of the SQL produced by the Ensure-
Created method, with the focus on the Review table and its indexes.

Etc...

1. T Che hapter02 database already
exists, with its tables.

4. Y ver Object Explorerou then use the SQL Ser
inside Visual Studio to compare the two
databases and output an SQL change script.

2. You add the two new entity classes,
Order and LineItem, and add them
to the application’s DbContext.

3. You then create a new database by
using EF Core’s EnsureCreated method.

Review

Properties

...

Author

Properties

...

Etc...

Review

Author

Properties

...

Book
Class

Properties

...

CR ATE TABLEE
[LineItemId] INT

NOT NULL,INT[BookId]
[BookPrice] NOT NULL,

TINYINT[LineNum] NOT NULL,
SMALLINT[NumBooks] NOT NULL.

…E sureDeleted();n

…E sureCreated();n

Chapter02Db

Compare

Chapter04Db.Test

Book

Properties

...

Book

Properties

...

LineItem

Properties

...

Order
Class

Properties

...

Figure 9.5 The process of building an SQL change script by comparing two databases. The important point is that
the second database, Chapter04Db.Test, is created by EF Core, so you know that it matches the current EF Core
model. In this example, you use the SQL Server Object Explorer feature of Visual Studio to compare the two
databases and build an SQL change script that will migrate the Chapter02 database to the correct level for the
software changes added in chapter 4.

290 CHAPTER 9 Handling database migrations

the
colu

pri
k
t
,

-- other tables left out
CREATE TABLE [Review] (
 [ReviewId] int NOT NULL IDENTITY,
 [VoterName] nvarchar(100) NULL,
 [NumStars] int NOT NULL,
 [Comment] nvarchar(max) NULL,
 [BookId] int NOT NULL,
 CONSTRAINT [PK_Review] PRIMARY KEY ([ReviewId]),
 CONSTRAINT [FK_Review_Books_BookId]
 FOREIGN KEY ([BookId])
 REFERENCES [Books] ([BookId]) ON DELETE CASCADE

-- other SQL indexes left out
CREATE INDEX [IX_Review_BookId] ON [Review] ([BookId]);

Because you know what entity classes of EF Core configurations you have changed,
you can find the appropriate part of the SQL that should reflect your changes. This
information should help you write your SQL command, and you’re more likely to
write SQL change scripts that match what EF Core expects.

 As with EF Core’s migrations, you create a series of SQL change scripts that need
to be applied to your database in order. To aid this process, you should name your

Table 9.4 A summary of the good, the bad, and the limitations of handcoding the SQL change scripts
to migrate a database

Notes

Good parts You have total control of the database structure, including parts that EF Core won’t
add, such as user-defined functions and column constraints.

Bad parts You must understand SQL commands such as CREATE TABLE.
 You must work out what the changes are yourself (but see the Tip row).
 There’s no automatic migration remove script.
 This approach is not guaranteed to produce a correct migration (but see CompareEfSql

in section 9.6.3).

Limitations None

Tips You can use the Script-DbContext migration command to get the actual SQL that EF
Core would output and then look for the differences in the SQL from the previous data-
base schema, which makes writing the SQL migrations much easier.

My verdict This approach is for someone who knows SQL and wants complete control of the data-
base. It certainly makes you think about the best settings for your database, which can
improve performance.

Listing 9.8 Part of SQL generated by EnsureCreated when creating a database

Creates the Review table, with
all its columns and constraints

Says that the database will
provide a unique value when
a new row is created

Says that
ReviewId
mn is the
mary key

Says that the BookId
column is a foreign key lin
to the Books table and tha
if the Books row is deleted
the linked Review row will
be deleted too

Says that there should be an index of the
BookId foreign key to improve performance

291Using SQL scripts to build migrations
scripts with something that defines the order, such as a number or a sortable date.
Here are example SQL script names that I used for a client project:

Script001 - Create DatabaseRegions.sql
Script002 - Create Tenant table.sql
Script003 - TenantAddress table.sql
Script004 - AccountingCalenders table.sql

As well as being applied to the database in order, script names should be applied only
once; I cover how in section 9.8.

Checking that your SQL change scripts matches EF Core’s9.6.3
database model

I have used handcoded SQL change scripts in several projects, both in EF6 and EF Core,
and the main concern is making sure that my modifications to the database match EF
Core’s model of the database. So I created a tool, which I refer to as EfSchemaCompare,
that compares EF Core’s model of the database with the schema of an actual database.
Although EfSchemaCompare has some limitations, it provides good feedback on dif-
ferences between a migrated database and EF Core’s model of the database.

NOTE I cover EF Core’s model of the database, accessed by the Model prop-
erty in your application’s DbContext, in chapter 11.

Figure 9.6 shows how the EfSchemaCompare tool compares a database that has been
updated by your SQL change scripts against EF Core’s database model.

 The EfSchemaCompare tool is available in my EfCore.SchemaCompare library
(see http://mng.bz/Yq2B). With this tool, I create unit tests that check my development

Should I be writing a remove migrations for my SQL change scripts?
EF Core’s migrations creates both the Up migration method and a Down migration
method. The Down method, which is known as a reverting migration, contains code to
undo the Up migration. Some developers who move to SQL change scripts worry
about not having a remove migration feature.

The fact is that although it’s great to have a way to remove a migration, you aren’t
likely to use it much. EF Core can automatically produce a migration that reverts its
migration, but when it comes to SQL change scripts, building a Down script isn’t auto-
matic, so if you want a Down script, you have to write that SQL.

Therefore, I create a remove migration only if I need it, so any remove migration is
another new SQL change script that reverts the last migration. But be warned: I do
this only as a result of intensive testing of my migrations well before production,
because having to write a Down migration script because your production system is
down due to a bad migration is a bit stressful!

http://mng.bz/Yq2B

292 CHAPTER 9 Handling database migrations
database—and, more important, my production database—to see whether the EF Core’s
database model has drifted away from the actual database schema.

9.7 Using EF Core’s reverse-engineering tool
In some cases, you already have a database that you want to access via EF Core code.
For this purpose, you need to apply the opposite of migrations and allow EF Core to
produce your entity classes and application’s DbContext by using your existing data-
base as the template. This process is known as reverse engineering a database. This
approach says that the database is the source of truth. You use EF Core’s reverse-
engineering tool, also known as scaffolding, to re-create the entity classes and the
application’s DbContext with all the required configurations. Table 9.5 gives you an
overview of this approach, and figure 9.7 shows the process.

Table 9.5 A summary of the good, the bad, and the limitations of reverse-engineering a database as a
way to access an existing database or continually update your entity classes and application DbContext
to match a changed database

Notes

Good parts The tool builds the EF Core code/classes from an existing database.
 The tool allows you to make the database the source of truth, and your EF Core code

and classes are created and updated as the database schema changes.

Bad parts Your entity classes can’t be edited easily, such as to change the way that the
collections navigational properties are implemented. But see section 9.7.2 for a
solution to this issue.

 The tool always adds navigational links at both ends of the relationship (see
section 8.2).

EfSchemaCompare

tool

or

Schema

EF Model

Your application The EfSchemeCompare tool lets the
developer know whether their changes
to the EF Core classes/configuration
match the database produced by their
SQL changes scripts.

Co text.Modeln

ffernnnnewRevitityEnntityMyEProperties

...

OtherEntity

Properties

...

MyEntity
Class

Properties

...

Script002.sql

Apply scripts

(such as

DbUp and

Redgate tools)

Sc ipt001.sqlr

CR ATE TABLEE
[MyEntityId]
CINSTRAINT

PRIMARY KEY …
…

AppliedTable

Script1…,

1/2/17

Figure 9.6 The EfSchemaCompare tool compares EF Core’s model of the database, which it forms by looking
at the entity classes and the application’s DbContext configuration, with the database schema of a database
that has been updated via your SQL change scripts. The tool outputs human-readable error messages if it finds
a difference.

293Using EF Core’s reverse-engineering tool

You use this approach mainly when you want to build an EF Core application around
an existing database, but I also describe a way to manage migrations. To start, let’s
look at how to run the reverse-engineering tool. You have two options:

 Run EF Core’s reverse-engineering tool via a command line.
 Use the EF Core Power Tools Visual Studio extension.

NoneLimitations

When you are going to repeatedly reverse engineer a database, I recommend using theTips
Visual Studio EF Core Power Tools extension, as it remembers the setting from the last
time you used the reverse-engineering feature.

My verdict If you have an existing database that you need to access via EF Core, reverse engineer-
ing is going to save you a lot of time.

Table 9.5 A summary of the good, the bad, and the limitations of reverse-engineering a database as a
way to access an existing database or continually update your entity classes and application DbContext
to match a changed database (continued)

Notes

TryMigrateDbContext
Class

Properties

Entities :DbSet<Table1>

Methods

void OnConfiguring(...)

void OnModelCreating(...

SQL Server database

Table 3
Class

Properties

...

Table 2
Class

Properties

...

1. Y mmaou type a reverse-engineering co nd.
Here is the Visual Studio Package Manager
Console’s Scaffold-DbContext command:

The first parameter is the connection string
to the database you want to reverse engineer.

The second parameter is the name of the
EF Core database provider that will be
accessing this database.

You use the optional -OutputDir option to
define a directory that you want the created
classes placed in.

2. The command inspects the database schema
and builds an internal model of the database.

3. It uses this model to create the entity
s DbContext.classes and the application’

Table 3

Table 2
Class

Properties

...

Table 1
Class

Properties

...

void OnConfiguring(...)

void OnModelCreating(...

able1T able2T able3T

Scaffold-DbContext
"Server=...;Database=TryMigrateDb;..."
Microsoft.EntityFrameworkCore.SqlServer
-OutputDir Scaffold

Figure 9.7 Typical use of EF Core’s reverse-engineering command, which inspects the database found via the
database connection string and then generates the entity classes and the application’s DbContext to match the
database. The command uses the foreign-key database relationships to build a fully defined relationship between
the entity classes

294 CHAPTER 9 Handling database migrations
Running EF Core’s re9.7.1 verse-engineering command

You can reverse engineer a database from a command line (CLI tools) or Visual Stu-
dio’s PMC window. CLI and PMC have different names and parameters. The following
list shows the scaffold command to reverse engineer the BookApp database. Note
that commands are run in the directory of the BookApp ASP.NET Core project and
that the database connection string is in the appsettings.json file in that project:

 CLI—dotnet ef dbcontext scaffold name=DefaultConnection Microsoft
.EntityFrameworkCore.SqlServer

 PMC—Scaffold-DbContext -Connection name=DefaultConnection -Provider
Microsoft.EntityFrameworkCore.SqlServer

NOTE There are lots of commands, with multiple parameters, and it would
take many pages to reproduce the EF Core’s documentation. Therefore, I
direct you to EF Core’s command-line reference at http://mng.bz/MXEn.

Installing and running EF Core9.7.2 Power Tools reverse-engineering
command

The EF Core Power Tools Visual Studio extension was created and maintained by Erik
Ejlskov Jensen, known as @ErikEJ in GitHub and on Twitter. This tool uses EF Core’s
reverse-engineering service but provides a visual frontend to make it easier to use.
This extension is helpful because the reverse-engineering code often needs lots of
parameters, including long connection strings. Erik’s tool also adds some features,
such as the ability to customize the templates that produce the code.

 First, you need to install the EF Core Power Tools Visual Studio extension. You can
find the EF Core Power Tools at http://mng.bz/Gx0v. If you aren’t familiar with
installing Visual Studio extensions, see http://mng.bz/zxBB.

 After you have installed the extension, right-click a project in Visual Studio’s Solu-
tion Explorer. You should see a command called EF Core Power Tools, with a Reverse
Engineering subcommand. Please read the EF Core Power Tools wiki in its GitHub
repo (https://github.com/ErikEJ/EFCorePowerTools/wiki).

Updating your entity classes and DbContext when9.7.3
the database changes

One way to handle database changes is to migrate your database and then run the
reverse-engineering tool to re-create your entity classes and application’s DbContext.
That way, you know that the database schema and EF Core’s model are in step.

 Using EF Core’s reverse-engineering tool directly works, but you must remember
all the settings for each run. The EF Core project has a feature on backlog (issue
#831) that would try to preserve the current class and alter only the properties and
relationships that changed. That sort of feature would be great, but it would be com-
plex to implement, so it hasn’t been considered for a while. Fortunately, EF Core
Power Tools extension is a decent substitute.

http://mng.bz/MXEn
http://mng.bz/Gx0v
http://mng.bz/zxBB
https://github.com/ErikEJ/EFCorePowerTools/wiki

295Part 2: Applying your migrations to a database

9.8

EF Core Power Tools has been designed to make updating the entity classes and
application’s DbContext easy, with nice features such as remembering your last run by
adding a file to your project. I talked to Erik Ejlskov; he said he uses an SQL Server
database project (.sqlproj) to keep the SQL Server schema under source control, and
the resulting SQL Server .dacpac files to update the database and EF Core Power
Tools to update the code.

For me, the downside of reverse engineering to handle migrations is that I can’t
easily change the design entity classes, such as to follow a DDD style (see chapter 13).
But you could use reverse engineering once to get the entity classes and DbContext
and then swap over to use the EF Core code as the source of truth. Then you can edit
the entity classes to the style you want, but after that, you would need to swap migrat-
ing your database via EF Core’s migrations or SQL change scripts.

NOTE Some of my experiments with reverse engineering show that EF Core’s
OnDelete configuration settings aren’t quite what I expect; see EF Core issue
#21252. When I asked Erik about this situation, his answer was along these
lines: the database ON DELETE setting is right, and that’s the important part.

Part 2: Applying your migrations to a database
Up to this point, you have been considering different ways to migrate a database. In
this section, you consider how to apply your migration to a database. The way that you
create a migration influences how you can apply it. If you created your migrations by
using SQL change scripts, for example, you can’t apply them by using EF Core’s
Migrate method. Here is a list of the techniques you will be evaluating in the rest of
this chapter:

 Calling EF Core’s Database.Migrate method from your main application
 Executing EF Core’s Database.Migrate method from a standalone application

designed only to migrate the database
 Applying an EF Core migration via an SQL change script and applying it to a

database
 Applying SQL change scripts by using a migration tool

The other issue that affects how you migrate your database is the environment you are
working in—specifically, the characteristics of the application that accesses the data-
base being migrated, with special focus on your production system. The first charac-
teristic is whether you are running multiple instances of the application, such as
multiple instances of an ASP.NET Core, which is known as scaled-out in Microsoft
Azure. This characteristic is important because all the ways of applying a migration to
a database rely on only one application’s trying to change the database’s schema. Hav-
ing multiple instances running, therefore, rules out some of the simpler migration
update techniques, such as running a migration when the application starts because all
the multiple instances will try to run at the same time (but see @zejji’s solution to this
limitation in a note in section 9.8.1).

296 CHAPTER 9 Handling database migrations
 The second characteristic is whether the migration is applied while the current
application is running. This situation happens if you have applications that need to be
up all the time, such as email systems and sites that people want to access at any time,
such as GitHub and Amazon. I refer to these types of applications as continuous-
service applications.

 Every migration applied to a database of a continuous-service application must not
be an application-breaking change; the migrated database must still work with the cur-
rently running application code. If you add a non-nullable column with no default
SQL value, for example, when the old application creates a new row, the database will
reject it, as the old application didn’t provide a value to fill in the new column. This
application-breaking change must be split into a series of nonbreaking changes, as
covered in section 9.9.2.

 The following sections look at four ways to apply a migration to your database, with
references to the application’s characteristics. Some of the most complex issues related
to database schema changes are covered in section 9.9.

Calling EF Core’s Database.Migrate method from9.8.1
your main application

You saw this approach for ASP.NET Core in section 5.9.2, but to recap, you add some
code that calls context.Database.Migrate before the main application starts. This
approach is by far the easiest way to apply a migration, but it has a big limitation: you
should not run multiple instances of the Migrate method at the same time. If your appli-
cation has multiple instances running at the same time—the many app characteristic—
you cannot use this approach. Table 9.6 provides an overview of this approach.

Table 9.6 A summary of the good, the bad, and the limitations of calling EF Core’s Database.Migrate
method from your main application

Notes

Good parts This approach is relatively easy to implement.
 It ensures that the database is up to date before your application runs.

Bad parts You must not run two or more Migrate methods in parallel.
 There is a small period when your application isn’t responding; see the note after this table.
 If the migration has an error, your application won’t be available.
 It can be hard to diagnose startup errors.

Limitations This approach does not work if multiple instances of the application are running (but see
@zejji's solution to this limitation after this note).

Tips For ASP.NET Core applications, I still recommend applying the migration in your CI/CD
pipeline, even if you expect to run only one instance of the web app (see section 9.8.2),
because your app won’t be deployed if the migration fails, and you will be ready to scale
out if you need to.

My verdict If you can guarantee that only one instance of your application is starting up at any one
time, this approach is a simple solution to migrating your database. Unfortunately, that
situation isn’t typical for websites and local applications.

297Part 2: Applying your migrations to a database
NOTE This approach assumes that you are deploying your application with-
out using any continuously running features, such as Azure Web App slots
and swapping. In that case, the old application will be stopped before the new
application starts. During that (brief) time, any accesses to the application
will fail, possibly losing the data that they were editing.

The BookApp in the associated GitHub repo uses this approach, which means that
you can run the application on your development machine, and it will create the data-
base for you automatically (if you have localdb installed), which shows how useful it is.
But for applications that you need to scale out, this approach isn’t going to work.

NOTE The GitHub user @zejji posted an approach that ensures that the
Migrate method is called only once in an application that has multiple instances
running at the same time. This approach overcomes one of the problems of
calling the Migrate method on startup; see http://mng.bz/VGw0.

FINDING WHAT MIGRATIONS THE DATABASE.MIGRATE METHOD WILL APPLY TO THE DATABASE

When you use the context.Database.Migrate method to migrate a database, you
may want to run some C# code if a certain migration is applied. I used this technique
to fill in a new property/column added in a certain migration. You can find out
what migrations are going to be applied to the database by calling the GetPending-
Migrations method before you call the Migrate method and the method called Get-
AppliedMigrations to get the migrations that have been applied to the database.

 Both methods return a set of strings of the filenames that hold the migration.
BookApp, for example, has a migration class called InitialMigration, which is in a
file called something like 20200507081623_InitialMigration. The following listing shows
how you might detect that the InitialMigration had been applied so that you can
run your C# code on the migrated database.

context.Database.Migrate();
if (context.CheckIfMigrationWasApplied(nameof(InitialMigration)))
{
 //... run your C# code for this specific migration
}

//Extension method to detect a specific migration was applied
public static bool CheckIfMigrationWasApplied(
 this DbContext context, string className)
{
 return context.Database.GetAppliedMigrations()
 .Any(x => x.EndsWith(className));
}

Listing 9.9 Detecting what migrations have been applied to the database

You call the migration method to apply
any missing migrations to the database.

You use the extension method to find
whether the InitialMigration was

added to the database.

Code that must
run after the Initial-
Migration has run

Simple extension method to
detect a specific migration
from the class name

The GetAppliedMigrations
method returns a filename
for each migration applied
to the database.

All the filenames end with the class
name, so we return true if any
filename ends with className.

http://mng.bz/VGw0

298 CHAPTER 9 Handling database migrations
I have used this approach to good effect, but be warned that if your C# code takes
too long in a ASP.NET Core application, your web server may time out the applica-
tion, in which case your extra C# migration update code would be stopped in the
middle of its work.

Executing EF Core’s Da9.8.2 tabase.Migrate method from
a standalone application

Instead of running the migration as part of your startup code, you can create a stand-
alone application to apply a migration to your databases. You could add a console
application project to your solution, for example, using your application’s DbContext
to call the context.Database.Migrate method when it’s run, possibly taking the data-
base connection string as a parameter. Another option is calling the CLI command
dotnet ef database update, which in EF Core 5 can take a connection string. This
approach can be applied when the application is running or when it is stopped. This
section assumes that the application is stopped. In section 9.9, I cover the approach to
use while the application is running. Table 9.7 gives you an overview of this approach.

If no applications are accessing the database, perhaps because they have all stopped,
there are no issues involved in applying your migration to the database. This approach
is what I call a down for maintenance migration; see figure 9.8 for details.

9.8.3 Applying an EF Core’s migration via an SQL change script

In some cases, you want to use EF Core’s migrations, but you want to check the migra-
tions or apply them via SQL change scripts. You can get EF Core to create SQL change
scripts, but watch out for a few things if you take this approach. The default SQL
change script produced by EF Core, for example, contains only the script to update the
database, with no check of whether a migration has already been applied. The reason is
that developers normally apply SQL change scripts via some sort of deployment system

Table 9.7 A summary of the good, the bad, and the limitations of executing EF Core’s
Database.Migrate method from a standalone application

Notes

Good parts If the migration fails, you get good feedback from the migration.
 This approach overcomes the problem that the Migrate method isn’t thread safe.

Bad parts Your application is down while the migration is applied. (But see section 9.9 for an
example of migrating a database while the application is running.)

NoneLimitations

This option is a good one if you have multiple instances of your application. In yourMy verdict
CI/CD pipeline, for example, you could stop the current applications, run one of EF
Core’s Migrate commands (such as dotnet ef database update), and then
upload and start your new application.

299Part 2: Applying your migrations to a database
that handles the job of working out what migrations need to be applied to the data-
base being migrated. Table 9.8 gives you an overview of this approach.

NOTE There is also a way to output a script that checks whether the migra-
tion has been applied, which is covered at the end of this section.

The basic command to turn the latest migration into an SQL script is

 CLI—dotnet ef migrations script
 PMC—Script-Migration

These two commands output the SQL for the last migration with no check of whether
that migration has been applied to the database. But when you add the idempotent
parameter to these commands, the SQL code that they produce contains checks of
the migration history table and applies only migrations that haven’t been applied to
the database.

NOTE There are lots of commands, with multiple parameters, and it would
take many pages to reproduce the EF Core’s documentation. Therefore, I
direct you to EF Core’s command-line reference at http://mng.bz/MXEn.

Since the EF Core 5 release, the SQL script created by the Script-Migration com-
mand has applied a migration within an SQL transaction. The whole of the migration
will be applied to the database unless there is an error, in which case none of the
migration will be applied.

WARNING SQLite has some limitations on applying a migration in one trans-
action because some of the migration commands use transactions themselves,
which means that a migration that fails may have applied part of the changes.

Table 9.8 A summary of the good, the bad, and the limitations of applying an EF Core’s migration via
an SQL change scripts

Notes

Good parts EF Core will build your migrations for you and then give you the migration as SQL.
 The SQL scripts generated by EF Core update the migration history table.

Bad parts You need an application to apply the migrations to your databases.

NoneLimitations

Tips Be aware that the individual migrations don’t check whether the migration has been
applied to the database. This approach assumes that some other application is keep-
ing track of the migrations.

 If you need a migration that checks whether it has already been applied to the data-
base, you need to add the idempotent parameter to the command.

My verdict If you want to check/sign off a migration or use a more comprehensive app/database
deployment system, such as Octopus Deploy or a RedGate product, this approach is the
way to go.

http://mng.bz/MXEn

300 CHAPTER 9 Handling database migrations

Applying SQL change scripts by using a migration tool9.8.4

If you have gone for the SQL-change-scripts approach, it’s likely that you already know
how you will apply these change scripts to the database. You will need to use a migra-
tion tool such as DbUp (open source) or free or commercial tools such as RedGate’s
flyaway. Typically, these migration tools have their own version of EF Core migration
history table. (DbUp calls this table SchemaVersions.)

 How you implement the migration depends on the migration tool you use. DbUp,
for example, is a NuGet package, so you can use it the same way as EF Core’s Migrate
method: call it on startup or as a separate application in your CI/CD pipeline, and so
on. Other migration tools may not be callable from NET Core but use some form of
command line or deployment pipeline integration. Table 9.9 gives you an overview of
this approach.

9.9

Table 9.9 A summary of the good, the bad, and the limitations of applying SQL change scripts by using
a migration tool

Notes

Good parts The tool works in all situations.
 It works well with deployment systems.

Bad parts You must manage the scripts yourself and make sure that their names define the
order in which they will be applied.

NoneLimitations

When I used this approach, I did a unit test to see whether a migrated test databaseTips
matched EF Core’s internal model by using my EfSchemaCompare tool (see section 9.6.3).

I used SQL change scripts and DbUp in a couple of client projects, and they worked well.My verdict
With some of the improvements in EF Core, I might be tempted back to using EF Core
migrations.

Migrating a database while the application is running
Section 9.8 started a definition of two characteristics of the application that is access-
ing the database, and one of them was whether an application always needs to be avail-
able (a continuous-service application). Migrating a database while the application is
running requires some extra work, which is covered in this section.

To start, let’s compare the two types of applications: one that can be stopped for a
migration or software update and one that must continue to provide a service while
it’s being updated (figure 9.8).

The rest of this section discusses how to migrate a database on a continuous-service
application. There are two situations:

 The migration doesn’t contain any changes that would cause the currently run-
ning application (referred to as the original app) to fail.

 The migration contains changes that would cause the original app to fail
(application-breaking changes).

301Migrating a database while the application is running
Things to consider when stopping an application for a database update
You need to consider what will happen if you stop an application abruptly. That event
could cause users to lose irretrievable data, or a user of an e-commerce site could
lose their order. For this reason, you should consider a warning or soft stop.

I had this problem on an e-commerce system I built some years ago and developed
a “down for maintenance” approach. This approach provided an onscreen warning to
users, indicating that the site would close in a certain number of minutes. During the
closing, I showed a “This site is down for maintenance” page and stopped users from
accessing any pages. You can read about this project at http://mng.bz/mXkN, but be
warned: I built it in 2016 with ASP.NET MVC.

Another way to softly stop your application is to provide read-only access to the data-
base. You disable every method that could update the database. The application is
still reading the database, so you can’t change the existing database structures, but
you can add new tables and safely copy data into them. After you’ve loaded the new
application, you can apply another database schema update to remove the database
parts that are no longer needed.

“Down for aintenance” approachm Continuous service approach

At some point the service is not
available, and users will be rejected.

Even during a migration the
service is still available.

DB

Only ONE application
accesses the database.

STOP old, START new

T
im

e

DB

SWAP old for new

T
im

e

BOTH applications access the
database at the same time.

Figure 9.8 The example on the left is what happens if you replace the old
application with a new application—in this case, also including a database
migration. In this scenario, there is a period of time, known as down time,
when neither the old or the new application is running, so there is a possibility
of a user’s request being lost or rejected. The example on the right has an
existing application providing a service, and a new version of the application
is run up, ready to take over. When the new application starts, it applies a
migration to the database. When the new application is ready, a “swap”
occurs, and it seamlessly takes over the service.

http://mng.bz/mXkN

302 CHAPTER 9 Handling database migrations
Handling a migration that doesn’t contain9.9.1
an application-breaking change

When I’m working on a new application with a new database, I tend to grow the data-
base schema as the project progresses, perhaps by adding new tables that the previous
versions of the software don’t know about. These types of additions normally don’t
create migration, which breaks the application that is running in production. With a
little bit of extra work, you can often make migrations that can be easily applied to
a continuous-service application. Here are some issues to consider:

 If you’re adding a new scalar property to an existing table, the old application
won’t set it. That’s OK, because SQL will give it a default value. But what default
do you want the property to have? You can control that setting by setting an
SQL default value for the column (see chapter 10) or make it nullable. That
way, the existing application running in production won’t fail if you create a
new row.

 If you’re adding a new foreign-key column to an existing table, you need to
make that foreign key nullable and have the correct cascade-delete settings.
That approach allows the old application to add a new row to that table without
the foreign-key constraint’s reporting an error.

TIP Testing a (supposedly) nonbreaking database change that alters col-
umns in existing tables is highly recommended, especially if you’re going to a
production database.

Some of these issues, such as making a column nullable when it would normally be
non-nullable, might require a second migration to change the nullability of the data-
base columns when your new application is in place. This situation leads to the multiple-
step migration approach for dealing with application breaking changes.

Handling application-breaking changes when you9.9.2
can’t stop the app

Applying an application breaking migration to a continuous-service application is one
of the most complicated migrations there is. In fact, a couple of developers I talked to
who work on continuous-service applications try hard to avoid an application-breaking
migration. As I said in section 9.9.1, nonbreaking changes are the norm, so you might
consider a “down for maintenance” approach for the (rare?) application-breaking
changes. But if you really do need to apply an application-breaking change to your
continuous-service application, read on.

 As an example, you are going to consider to handle a database migration that
moves columns from an Users table to a new Addresses table. In the original migra-
tion in section 9.5.2, this “move columns” issue was done by one migration, but it
worked only because the original application was stopped, and after the migration fin-
ished, the new application ran.

303Migrating a database while the application is running
 For a continuous-service application, the move-columns task must be broken into a
series of stages so that each migration doesn’t break the two applications that are run-
ning at the same time. As a result, we end up with three migrations:

 ADD—The first migration is applied while App1 is currently running and adds
new database features that the new interim application (App2) needs to run.

 COPY—The second migration is applied after App1 has stopped and before
App3, the target application, has started. This migration copies the data in its
final format.

 SUBTRACT—The last migration is a clean-up, which runs only when App2 has
stopped and App3 has taken over. At this point, it can remove the old tables and
columns that are now redundant.

The ADD and then SUBTRACT migrations, with maybe a COPY in the middle, represent
the common approach to applying breaking changes to continuous-service applica-
tions. At no time should the database be incorrect for two applications that are run-
ning. In this example, you have five stages, as shown in figure 9.9.

Here is a detailed breakdown of these stages:

 Stage 1—This stage is the starting point, with the original application, App1,
running.

App1

nOriginal applicatio

SQL View

GetUserWithAddress

UserId

Name

Street

City

AddressId

AddressId

Street

City

Users Address

UserId

Name

Street

City

Users

UserId

Name

AddressId

Users

AddressId

Street

City

Address

Copy

data

Remove old

columns

App2

ationInterim applic

App3

Target application

Stage 1

Starting point
Stage 2

First migration,
then run App2

Stage 3

Stop App1, run
copy migration

Stage 4

Start App3
Stage 5

Stop App2,
run cleanup migration

Figure 9.9 The five stages of turning an application-breaking migration so that the database isn’t out of step
with the two applications that are running at the time. The first migration changes the database so that App2
can work with App1; the next changes the database so that App3 can work with App2; and the final migration
cleans up the database.

304 CHAPTER 9 Handling database migrations
 Stage 2—This stage is the most complex one. It does the following:
a Runs a migration that creates a new Addresses table and links it to the cur-

rent user.
b Adds an SQL View that returns a User with their address from either the old

Users’ Street/City columns or from the new Address table.
c The interim application, App2, uses the SQL View to read the User, but if it

needs to add or update a User’s address, it will use the new Address table.
 Stage 3—App1 is stopped, so there is no possibility that new addresses will be

added to the Users table. At this point, the second migration runs and copies
any address data in the Users table to the new Addresses table.

 Stage 4—At this point, the target application, App3, can be run; it gets a User’s
address only from the new Addresses table.

 Stage 5—App2 is stopped, so nothing is accessing the address part of the old
User’s table. This stage is when the last migration runs, cleaning up the data-
base by removing the Street and City columns from the Users table, deleting
the SQL View needed by App2, and fixing the User/Address relationship as
required.

I could list all the code and migrations for this example, but to save space, I emulated
this multistage migration in an unit test called Ch09_FiveStepsMigration, which you
can find at http://mng.bz/0m2N. That way, you can see and run the whole process.

Summary
 The easiest way to create a migration is via EF Core’s migration feature, but if

you have a migration that removes or moves columns, you need to hand-edit
before the migration will work.

 You can build SQL change scripts by using a database comparison tool or by
hand. This approach gives you complete control of the database. But you need
to check that your SQL change scripts create a database that matches EF Core’s
internal model of the database.

 If you have an existing database, you can use EF Core’s scaffold command or
the more visual EF Core Power Tools Visual Studio extension to create the
entity classes and the application’s DbContext with all its configurations.

 Updating a production database is a serious undertaking, especially if data could
be lost in the process. How you apply migration to a production system depends
on the type of migration and certain characteristics of your application.

 There are several ways to apply a migration to a database. The simplest approach
has significant limitations, but the complex approaches can handle all migra-
tion requirements.

 Applying migration to a database while the application is running requires extra
work, especially if the migration changes the database schema to the point that
the current application will fail.

http://mng.bz/0m2N

305Summary
For readers who are familiar with EF6:

 EF Core’s migration feature is significantly changed and improved, but anyone
who has done EF6 migrations shouldn’t have a problem swapping to EF Core’s
migration system.

 There’s no automatic migration in EF Core; you control when a migration
happens.

 It’s easier to combine EF Core’s migrations in a multiperson team.

Configuring advanced
features and handling

concurrency conflicts
This chapter discusses several advanced configuration features that interact directly
with your SQL database, such as using SQL user-defined functions (UDFs) and com-
puted columns. These features allow you to move some of your calculations or set-
tings into the SQL database. Although you won’t use these features every day, they
can be useful in specific circumstances.

 The second half of this chapter is about handling multiple, near-simultaneous
updates of the same piece of data in the database; these updates can cause prob-
lems known as concurrency conflicts. You’ll learn how to configure one property/
column or a whole entity/table to catch concurrency conflicts, as well as how to
capture and then write code to correct the concurrency conflict.

This chapter covers
 Using an SQL user-defined function in EF Core

queries

 Configuring columns to have default values or
computed values

 Configuring SQL column properties on databases
not created by EF Core

 Handling concurrency conflicts
306

307DbFunction: Using user-defined functions (UDFs) with EF Core
DbFunction: Using user-d10.1 efined functions (UDFs)
with EF Core
SQL has a feature called UDFs that allows you to write SQL code that will be run in
the database server. UDFs are useful because you can move a calculation from your
software into the database, which can be more efficient because it can access the data-
base directly. UDFs can return a single result, which is referred to as scalar-valued func-
tion, and one that can return multiple data in a result, known as a table-valued function.
EF Core supports both types of UDFs.

DEFINITION An SQL user-defined function (UDF) is a routine that accepts
parameters, performs an SQL action (such as a complex calculation), and
returns the result of that action as a value. The return value can be a scalar
(single) value or a table. UDFs differ from SQL stored procedures (StoredProc)
in that UDFs can only query a database, whereas a StoredProc can change the
database.

UDFs are useful, especially when you want to improve the performance of an EF Core
query. I found some SQL (see https://stackoverflow.com/a/194887/1434764) that is
quicker than EF Core at creating a comma-delimited string of authors’ names. So
instead of having to convert the whole of the Book App’s book list query to SQL, I
could replace only the part that returns the authors’ names as a comma-delimited
string. The steps for using a UDF in EF Core are as follows:

 Configuration:

1 Define a method that has the correct name, input parameters, and output type
that matches the definition of your UDF. This method acts as a reference to
your UDF.

2 Declare the method in the application’s DbContext or (optionally) in a sepa-
rate class if it’s a scalar UDF.

3 Add the EF Core configuration commands to map your static UDF reference
method to a call to your UDF code in the database.

 Database setup:

4 Manually add your UDF code to the database by using some form of SQL
command.

 Use:

5 Now you can use the static UDF reference in a query. EF Core will convert that
method to a call to your UDF code in the database.

With that process in mind, let’s detail the three stages: configuration, database setup,
and use.

NOTE The configuration and database-setup stages can be applied in any
order, but both must be applied before you can use your UDF in a query.

https://stackoverflow.com/a/194887/1434764

308 CHAPTER 10 Configuring advanced features and handling concurrency conflicts
10.1.1 Configuring a scalar-valued UDF

The configuration for a scalar-valued UDF consists of defining a method to represent
your UDF and then registering that method with EF Core at configuration time. For
this example, you’re going to produce a UDF called AverageVotes that works out the
average review votes for a book. AverageVotes takes in the primary key of the book
you want to calculate for and returns a nullable double value—null if no reviews exist
or the average value of the review votes if there are reviews.

 You can define the UDF representation as a static or nonstatic method. Nonstatic
definitions need to be defined in your application’s DBContext; the static version can
be placed in a separate class. I tend to use static definitions because I don’t want to
clutter the application’s DBContext class with extra code. Figure 10.1 shows the static
method that will represent the AverageVotes UDF in your software, with rules for
forming this method.

NOTE The UDF representation method is used to define the signature of the
UDF in the database: it will never be called as a NET method.

You can register your static UDF representation method with EF Core by using either
of the following:

 DbFunction attribute
 Fluent API

You can use the DbFunction attribute if you place the method representing the UDF
inside your application’s DbContext. In the example shown in the following listing,
the DbFunction attribute and the static method are in bold.

By default, the name of the method
is used as the name of the UDF
(but you can set a different UDF
name via configuration).

This is the return value of your UDF. You need to
pick the correct .NET type to match the SQL type
your UDF returns. Remember too that SQL types
can be NULL under some circumstances.

This method won’t ever be
called, but you need to return
the correct type so it compiles.

The number, type, and order (but not the names)
of the method parameters must match the
parameters of your UDF.

public static double?
AverageVotes (int bookId)

{
return null;

}

Figure 10.1 An example static method that will represent your UDF inside your EF Core code.
The callouts highlight the parts that EF Core will use to map any calls to your UDF code and
the rules that you need to follow when building your own method to map to your UDF.

309DbFunction: Using user-defined functions (UDFs) with EF Core
public class Chapter08EfCoreContext : DbContext
{
 public DbSet<Book> Books { get; set; }
 //… other code removed for clarity

 public Chapter08EfCoreContext(
 DbContextOptions<Chapter08EfCoreContext> options)
 : base(options) {}

 [DbFunction]
 public static double? AverageVotes(int id)
 {
 return null;
 }

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 //… no Fluent API needed
 }
}

The other approach is to use the Fluent API to register the method as a UDF repre-
sentation. The advantage of this approach is that you can place the method in any
class, which makes sense if you have a lot of UDFs. This listing shows the Fluent API
approach for the same method, AverageVotes, but it’s defined in a class called MyUdf-
Methods, as shown in figure 10.1.

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 //… other configuration removed for clarity

 modelBuilder.HasDbFunction(
 () => MyUdfMethods.AverageVotes(default(int)))
 .HasSchema("dbo");
}

After you’ve used either of these configuration approaches, EF Core knows how to
access your UDF in a query.

Using aListing 10.1 DbFunction attribute with a static method inside DbContext

Registering your static method representing your UDF using Fluent APIListing 10.2

The DbFunction attribute
defines the method as being a
representation of your UDF.

The return value, the
method name, and the
number, type, and order
of the method parameters
must match your UDF code.

The method is never
called, but you need
the right type for the
code to compile.

If you use the DbFunction attribute,
you don’t need any Fluent API to
register the static method.

Fluent API is placed inside the
OnModelCreating method inside
your application’s DbContext.

HasDbFunction will
register your method
as the way to access
your UDF.

Adds a call to your static
method representation of
your UDF code

You can add options. Here,
you add HasSchema (not
needed in this case); other
options include HasName.

310 CHAPTER 10 Configuring advanced features and handling concurrency conflicts

Fro
wil

10.1.2 Configuring a table-valued UDF

EF Core 5 has added support for table-valued UDFs, which allow you to return multi-
ple values in the same way that querying a table returns multiple values. The differ-
ence from querying a normal table is that the table-valued UDF can execute SQL code
inside the database, using the parameters you provide to the UDF.

 The table UDF example returns three values: the Book’s Title, the number of
Reviews, and the average Review Votes for the Book. This example needs a class to be
defined that will accept the three values coming back from the table-valued UDF, as
shown in the following code snippet:

public class TableFunctionOutput
{
 public string Title { get; set; }
 public int ReviewsCount { get; set; }
 public double? AverageVotes { get; set; }
}

Unlike a scalar UDF, a table UDF can be defined in only one way—within your appli-
cation’s DbContext—because it needs access to a method inside the DbContext class
called FromExpression (called CreateQuery before EF Core 5). What you are doing is
defining the name and signature of the table-valued UDF: the name, the return type,
and the parameters’ type all must match your UTF. The following listing shows how
you define the signature of your table UDF.

public class Chapter10EfCoreContext : DbContext
{
 public DbSet<Book> Books { get; set; }
 //… other code removed for clarity

 public Chapter10EfCoreContext(
 DbContextOptions<Chapter10EfCoreContext> options)
 : base(options) {}

 public IQueryable<TableFunctionOutput>
 GetBookTitleAndReviewsFiltered(int minReviews)
 {
 return FromExpression(() =>
 GetBookTitleAndReviewsFiltered(minReviews));
 }

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {

 modelBuilder.Entity<TableFunctionOutput>()
 .HasNoKey();

Defining a table-valued UDF within your application’s DbContextListing 10.3

The return value, the
method name, and the
parameters type must
match your UDF code.

The
mExpression
l provide the

IQueryable
result.

You place the signature
of the method within
the FromExpression
parameter.

You must configure the
TableFunctionOutput
class as not having a
primary key.

311DbFunction: Using user-defined functions (UDFs) with EF Core

U
E
m
t
d

 modelBuilder.HasDbFunction(() =>
 GetBookTitleAndReviewsFiltered(default(int)));
 //… other configurations left out
 }
}

It might seem strange that you call the method within itself, but remember that you
are only defining the signature of your UDF. EF Core will replace the inner method
call with a call to your UDF when you use it in a query.

10.1.3 Adding your UDF code to the database

Before you can use the UDF you’ve configured, you need to get your UDF code into
the database. A UDF normally is a set of SQL commands that run on the database, so
you need to add your UDF code to the database manually before you call the UDF.

 The first way is by adding a UDF by using EF Core’s migration feature. To do this,
you use the migrationBuilder.Sql method described in section 9.5.2. In chapter 15,
I use two UDFs to improve the performance of the Book App; I added those UDFs to
the database by editing a migration and then added code to create the two UDFs.

 Another approach is to add a UDF by using EF Core’s ExecuteSqlRaw or Execute-
SqlInterpolated method, covered in section 11.5. This approach is more applica-
ble to unit testing than to production use where you aren’t using migrations to
create your database, in which case you must add the UDFs manually. The following
listing uses EF Core’s ExecuteSqlRaw command to add the SQL code that defines
the AverageVotes UDF.

public const string UdfAverageVotes =
 nameof(MyUdfMethods.AverageVotes);

context.Database.ExecuteSqlRaw(
 $"CREATE FUNCTION {UdfAverageVotes} (@bookId int)" +
 @" RETURNS float
 AS
 BEGIN
 DECLARE @result AS float
 SELECT @result = AVG(CAST([NumStars] AS float))
 FROM dbo.Review AS r
 WHERE @bookId = r.BookId
 RETURN @result
 END");

This code should be executed before your EF Core queries call the UDF. As I said,
chapter 9 gives more details on how to do this properly in a production environment.

NOTE I have not listed the table UDF SQL code in this chapter. You can find
the method called AddUdfToDatabase in the repo at http://mng.bz/pJQz.

Adding your UDF to the database via theListing 10.4 ExecuteSqlRaw method

You register
your UDF
method by using
the Fluent API.

Captures the name of the static
method that represents your UDF
and uses it as the name of the
UDF you add to the database

ses EF Core’s
xecuteSqlRaw
ethod to add

he UDF to the
atabase

The SQL code
that follows adds
a UDF to an SQL
server database.

http://mng.bz/pJQz

312 CHAPTER 10 Configuring advanced features and handling concurrency conflicts
10.1.4 Using a registered UDF in your database queries

Having registered the UDF as mapped to your method and added your UDFs to the
database, you’re ready to use UDFs in a database query. You can use this method as a
return variable or as part of the query filter or sorting. The following listing has a query
that includes a call to a scalar-values UDF that returns information about a book,
including the average review votes.

var bookAndVotes = context.Books.Select(x => new Dto
{
 BookId = x.BookId,
 Title = x.Title,
 AveVotes = MyUdfMethods.AverageVotes(x.BookId)
}).ToList();

This listing produces the following SQL code to run on the database, with the UDF
call in bold:

SELECT [b].[BookId], [b].[Title],
[dbo].AverageVotes([b].[BookId]) AS [AveVotes]
FROM [Books] AS [b]

NOTE EF Core can calculate the average without using a UDF via the LINQ
command x.Reviews.Average(q => (double?)q.NumStars). The calculation
of the average votes is a running theme in this book, so you use it in the
AverageVotes UDF example too.

A table-valued UDF requires a class to return the multiple values. The following code
snippet shows a call to our GetBookTitleAndReviewsFiltered table-valued UDF:

var result = context.GetBookTitleAndReviewsFiltered(4)
 .ToList()

Scalar and table UDFs can also be used in any part of an EF Core query, as return val-
ues or for sorting or filtering. Here’s another example, in which your scalar-valued
UDF returns only books whose average review is 2.5 or better:

var books = context.Books
 .Where(x =>
 MyUdfMethods.AverageVotes(x.BookId) >= 2.5)
 .ToList();

Using a scalar-valued UDF in a EF Core queryListing 10.5

A normal EF Core
query on the
Books table

Calls your scalar
valued UDF by using its
representing method

313Computed column: A dynamically calculated column value
Computed column: A dynamically calculated10.2
column value
Another useful SQL-side feature is a computed column (also known as a generated col-
umn). The main reason for using computed columns is to move some of the calcula-
tion—such as some string concatenations—into the database to improve performance.
Another good use of computed columns is to return a useful value based on other col-
umns in the row. An SQL computed column containing [TotalPrice] AS (NumBook *
BookPrice), for example, would return the total price for that order, making your C#
code easier to write.

EF6 You can use computed columns in EF6.x, but EF6.x can’t create them
for you, so you have to add them via a direct SQL command. EF Core now
provides a configuration method to define computed columns so that when
EF Core creates or migrates a database, it’ll add the computed column.

A computed column is a column in a table whose value is calculated by using other col-
umns in the same row and/or an SQL built-in function. You can also call systems or
UDFs (see section 10.1) with columns as parameters, which gives you a wide range of
features.

 There are two versions of SQL computed columns:

 One that does the calculation every time the column is read. I refer to this type
as a dynamic computed column in this section.

 One that does the calculation only when the entity is updated. This type is a
called persisted computed column or stored generated column. Not all databases sup-
port persisted computed columns.

As an example of both types of SQL computed columns, you’ll use a dynamic com-
puted column to get only the year of the person’s birth from a backing field that holds
the date of birth. This example mimics the code in section 7.14.3 that hides the exact
birth date, but now the date-to-year code is done in the SQL database.

 The second example of SQL computed columns is a persisted computed column
that fixes the problem of not using lambda properties in entity classes (see section 9.3).
In that example, you had a FullName property, which was formed by combining the
FirstName and LastName properties, but you couldn’t use a lambda property, as EF
Core can’t filter/order on a lambda property. When you use a persisted computed
column, however, the computed column is updated whenever the row is updated,
and you can use the FullName column in any filter, order, search, and similar opera-
tion. You declare the properties in the normal way in the class, as shown in the fol-
lowing listing, but because the computed columns are read-only, you make the
setter private.

314 CHAPTER 10 Configuring advanced features and handling concurrency conflicts

This
is a c

You
priva
as it
only

to
co

public class Person
{
 public int PersonId { get; set; }
 public int YearOfBirth { get; private set; }

 [MaxLength(50)]
 public string FirstName { get; set; }
 [MaxLength(50)]
 public string LastName { get; set; }
 [MaxLength(101)]
 public string FullName { get; private set; }

 //other properties/methods left out…
}

Then you need to configure the two computed columns and the index. The only way
to configure columns is to use the Fluent API. This listing shows the various configura-
tions for the Person entity class.

public class PersonConfig : IEntityTypeConfiguration<Person>
{
 public void Configure
 (EntityTypeBuilder<Person> entity)
 {
 entity.Property<DateTime>("_dateOfBirth")
 .HasColumnName("DateOfBirth");

 entity.Property(p => p.YearOfBirth)
 .HasComputedColumnSql(
 "DatePart(yyyy, [DateOfBirth])");

 entity.Property(p => p.FullName)
 .HasComputedColumnSql(
 "[FirstName] + ' ' + [LastName]",
 stored:true);

 entity.HasIndex(x => x.FullName);
 }

Figure 10.2 shows what happens when you update the Person table. EF Core knows
that the table contains a computed column, so it reads the value back after an add
or update.

Listing 10.6 Person entity class with two computed column properties

Configuring two computed columns, one persistent, and an indexListing 10.7

 property
omputed
column.
 give it a
te setter,
’s a read-
property.

Because you want to add an
index to the FullName, you
need make it and its parts
fewer than 450 characters.

Configures the backing field, with
the column name DateOfBirth

Configures the property
as a computed column and
provides the SQL code that
the database server will run

Makes this computed
column a persisted
computed column

Adds an index
 the FullName
lumn because

you want to
filter/sort on
that column

}

NOTE To focus this figure on a single computed column, I show only the
YearOfBirth column value, but in reality, the YearOfBirth and FullName col-
umn values are fed back because the Person entity class has two computed
columns.

315Setting a default value for a database column

10.3

1.When you add or update a Person entity,
EF Core knows that the FullName and
YearOfBirth properties are a computed
column, so it reads back that column.

2. Because this is an update to this row, the
FullName persistent computed column is
run and the value returned. And because
the YearOfBirth column is a computed
column, it returns the year from the
DateOfBirth column.

entity.FirstName = "Person";
context.SaveChanges();

SET NOCOUNT ON;
UPDATE [Persons]

SET [FirstName] = @p0
WHERE [PersonId] = @p1;
SELECT [FullName],[YearOfBirth]
FROM [Persons]
WHERE @@ROWCOUNT = 1

AND [PersonId] = @p1;

SQL commands created by EF CoreC# code

Figure 10.2 Because EF Core knows that FullName and YearOfBirth are computed columns,
it’ll read back the values in these two columns into the entity that took part in an addition
or update to the row. The FullName will have changed because this operation is an update
to the row, and the YearOfBirth column is always recalculated, so it is also returned.

The dynamic computed column is recalculated on each read: for simple calculations,
the compute time will be minimal, but if you call a UDF that accesses the database, the
time taken to read the data from the database can increase. Using a persisted com-
puted column overcomes this problem. Both types of computed columns can have an
index in some database types, but each database type has limitations and restrictions.
SQL Server doesn’t allow an index on computed columns whose value came from a
date function, for example.

Setting a default value for a database column
When you first create a .NET type, it has a default value: 0 for an int, null for a
string, and so on. Sometimes, it’s useful to set a different default value for a prop-
erty. If you asked someone their favorite color, but they didn’t reply, you could pro-
vide the default string not given instead of the normal null value. You could set the
default value in .NET by using the C# 6.0 autoproperty initializer feature with code
such as this:

public string Answer { get; set; } = "not given";

But with EF Core, you have two other ways to set a default value. First, you can config-
ure EF Core to set up a default value within the database by using the HasDefault-

Value Fluent API method. This method changes the SQL code used to create the
table in the database and adds an SQL DEFAULT command containing your default
value for that column if no value is provided. Generally, this approach is useful if rows
are added to your database via raw SQL commands, as raw SQL often relies on the
SQL DEFAULT command for columns that the SQL INSERT doesn’t provide values for.

316 CHAPTER 10 Configuring advanced features and handling concurrency conflicts
 The second approach is to create your own code that will create a default value for
a column if no value is provided. This approach requires you to write a class that inherits
the ValueGenerator class, which will calculate a default value. Then you have to config-
ure the property or properties to use your ValueGenerator class via the Configure Flu-
ent API method. This approach is useful when you have a common format for certain
type of values, such as creating a unique string for a user’s order of books.

 Before exploring each approach, let’s define a few things that EF Core’s default
value-setting methods have in common:

 Defaults can be applied to properties, backing fields, and shadow properties.
We’ll use the generic term column to cover all three types, because they all end
up being applied to a column in the database.

 Default values (int, string, DateTime, GUID, and so on) apply only to scalar
(nonrelational) columns.

 EF Core will provide a default value only if the property contains the CLR
default value appropriate to its type. If a property of type int has the value 0,
for example, it’s a candidate for some form of provided default value, but if the
property’s value isn’t 0, that nonzero value will be used.

 EF Core’s default value methods work at the entity-instance level, not the class
level. The defaults won’t be applied until you’ve called SaveChanges or (in the
case of the value generator) when you use the Add command to add the entity.

To be clear: default values happen only on new rows added to the database, not to
updates. You can configure EF Core to add a default value in three ways:

 Using the HasDefaultValue method to add a constant value for a column
 Using the HasDefaultValueSql method to add an SQL command for a column
 Using the HasValueGenerator method to assign a value generator to a property

EF6 These three methods for setting a default value are new to EF Core.
EF6.x has no equivalent commands.

10.3.1 Using the HasDefaultValue method to add a constant value
for a column

The first approach tells EF Core to add the SQL DEFAULT command to a column when
it creates a database migration, providing a simple constant to be set on a column if a
new row is created and the property mapped to that column has a default value. You
can add the SQL DEFAULT command to a column only via a Fluent API method called
HasDefaultValue. The following code sets a default date of 1 January 2000 to the col-
umn DateOfBirth in the SQL table called People.

protected override void OnModelCreating
 (ModelBuilder modelBuilder)
{

Listing 10.8 Configuring a property to have a default value set inside the SQL database

You must configure the
setting of a default value via
Fluent API commands.

317Setting a default value for a database column

 modelBuilder.Entity<DefaultTest>()
 .Property("DateOfBirth")
 .HasDefaultValue(new DateTime(2000,1,1));
 //… other configurations left out

You add an SQL DEFAULT
to a column via the
HasDefaultValue method.

}

If the SQL code that EF Core produces is asked to create/migrate an SQL Server data-
base, it looks like the following SQL snippet, with the default constraint in bold:

CREATE TABLE [Defaults] (
[Id] int NOT NULL IDENTITY,
-- other columns left out
[DateOfBirth] datetime2 NOT NULL

DEFAULT '2000-01-01T00:00:00.000',
CONSTRAINT [PK_Defaults] PRIMARY KEY ([Id])

);

If the column in a new entity has the CLR default value, EF Core doesn’t provide a
value for that column in the SQL INSERT, which means that the database server will
apply the default constraint of the column definition to provide a value to insert into
the new row.

NOTE If you are working with a database not created by EF Core, you still
need to register the configuration because EF Core must not set that col-
umn if the value in the related property contains the CLR default value for
that type.

10.3.2 Using the HasDefaultValueSql method to add an SQL command
for a column

Providing a constant default value at the database level doesn’t add a lot over setting a
default value in your code unless your application, or another application, uses direct
SQL commands to create a new row. What is more useful is gaining access to some
of SQL’s system functions that return the current date/time, which the HasDefault-

ValueSql method allows you to do.
In some situations, it’s useful to get the time when a row is added to the database.

In such a case, instead of providing a constant in the SQL DEFAULT command, you
can provide an SQL function that will provide a dynamic value when the row is added
to the database. SQL Server, for example, has two functions—getdate and getutc-

date—that provide the current local datatime and the UTC datatime, respectively.
You can use these functions to automatically capture the exact time when the row
was inserted. The configuration of the column is the same as the constant example
in listing 10.8 except that the string used calls the SQL getutcdate function, as
shown in this code snippet:

protected override void
OnModelCreating(ModelBuilder modelBuilder)

{

318 CHAPTER 10 Configuring advanced features and handling concurrency conflicts
 modelBuilder.Entity<DefaultTest>()
 .Property(x => x.CreatedOn)
 .HasDefaultValueSql("getutcdate()");
 …
}

If you want to use this column to track when the row was added, you need to make
sure that the .NET property isn’t set by code (remains at the default value). You do
this by using a property with a private setter. The following code snippet shows a prop-
erty with a private setter and creates a simple tracking value that automatically tells
you when the row was first inserted into the database:

public DateTime CreatedOn {get; private set;}

This feature is a useful one. In addition to accessing system functions such as getutc-
date, you can place your own SQL UDFs in a default constraint. There’s a limit to the
SQL commands that you can place—you can’t reference another column in the
default constraint, for example—but the HasDefaultValue Fluent API method can
provide useful features compared with setting a default in your code.

10.3.3 Using the HasValueGenerator method to assign a value generator
to a property

The third approach to adding a default value is executed not in the database, but
inside your EF Core code. EF Core allows the class that inherits from the class Value-
Generator or ValueGenerator<T> to be configured as a value generator for a property
or backing field. This class will be asked for a default value if both of the following
statements are true:

 The entity’s State is set to Added; the entity is deemed to be a new entity to be
added to the database.

 The property hasn’t already been set; its value is at the .NET type’s default value.

EF Core has a value generator that will provide unique GUID values for primary
keys, for example. But for our example, the following listing shows a simple value
generator that creates a unique string by using the Name property in the entity, the
current date as a string, and a unique string from a GUID to create a value for the prop-
erty OrderId.

public class OrderIdValueGenerator
 : ValueGenerator<string> //
{
 public override bool
 GeneratesTemporaryValues => false;

 public override string Next
 (EntityEntry entry)

Listing 10.9 A value generator that produces a unique string for the OrderId

The value generator needs
to inherit from EF Core’s
ValueGenerator<T>.

Set this to false if you want your
value to be written to the database.

This method is called when you Add
the entity to the DbContext.

319Sequences: Providing numbers in a strict order

Th
gives
the e
value

creatin
You
 {
 var name = entry.
 Property(nameof(DefaultTest.Name))
 .CurrentValue;
 var ticks = DateTime.UtcNow.ToString("s");
 var guidString = Guid.NewGuid().ToString();
 var orderId = $"{name}-{ticks}-{guidString}";
 return orderId;
 }
}

The following code configures the use of a value generator:

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<DefaultTest>()
 .Property(p => p.OrderId)
 .HasValueGenerator((p, e) =>
 new OrderIdValueGenerator());
 …
}

Note that the value generator’s Next method is called when you Add the entity via con-
text.Add(newEntity) but before the data is written to the database. Any database-
provided values, such as the primary key using SQL IDENTITY, won’t be set when the
Next method is called.

NOTE You can use a NextAsync version if you need to implement an async
version, such as using an async method to access the database while generat-
ing the default. In that case, you need to use the AddAsync method when add-
ing the entity to the database.

The value generator is a specialized feature with limited applications, but one that’s
worth knowing about. Chapter 11 shows you how to intercept writes to the database to
add tracking or other information, which is more work but provides more capabilities
than the value generator.

10.4 Sequences: Providing numbers in a strict order
Sequences in a database enable you to produce numbers in strict order with no gaps,
such as 1,2,3,4. Key values created by the SQL IDENTITY command aren’t guaranteed
to be in sequence; they might be like this: 1,2,10,11. Sequences are useful when you
want a guaranteed known sequence, such as for an order number for purchases.

 The way that sequences are implemented differs among database servers, but in
general, a sequence is assigned not to a specific table or column, but to a schema.
Every time a column wants a value from the sequence, it asks for that value. EF Core

e parameter
you access to
ntity that the
 generator is
g a value for.
can access its

properties.

Selects the property called
“Name” and gets its current value

Provides the
date in sortable
format

Provides a
unique string

The orderId combines
these three parts to

create a unique orderId
containing useful info.

The method must return a value
of the Type you have defined at T in
the inherited ValueGenerator<T>.

320 CHAPTER 10 Configuring advanced features and handling concurrency conflicts
can set up a sequence and then, by using the HasDefaultValueSql method, set the
value of a column to the next value in the sequence.

 The following listing shows an Order entity class with an OrderNo that uses a
sequence. The HasDefaultValueSql SQL fragment is for an SQL Server database and
will be different for other database servers. This example adds an SQL sequence to a
migration or to a database created via the context.Database.EnsureCreated()
method and obtains the next value in the sequence by setting a default value on the
OrderNo column.

class MyContext : DbContext
{
 public DbSet<Order> Orders { get; set; }

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 modelBuilder.HasSequence<int>(
 "OrderNumbers", "shared")
 .StartsAt(1000)
 .IncrementsBy(5);

 modelBuilder.Entity<Order>()
 .Property(o => o.OrderNo)
 .HasDefaultValueSql(
 "NEXT VALUE FOR shared.OrderNumbers");
 }
}

public class Order
{
 public int OrderId { get; set; }
 public int OrderNo { get; set; }
}

EF6 This feature is new in EF Core, with no corresponding feature in EF6.

10.5 Marking database-generated properties
When working with an existing database, you may need to tell EF Core about specific
columns that are handled differently from what EF Core expects. If your existing data-
base has a computed column that you didn’t set up by using EF Core’s Fluent API (see
section 10.2), EF Core needs to be told that the column is computed so that it handles
the column properly.

 I should say straightaway that marking columns in this way isn’t the norm, because
EF can work out the column attributes itself based on the configuration commands
you provided. You don’t need any of the features in this section if you use EF Core to
do the following:

The DbContext with the Fluent API configuration and theListing 10.10 Order class

Creates an SQL sequence
OrderNumber in the
schema "shared." If no
schema is provided, it uses
the default schema.

(Optional) Allows you to control
the sequence’s start and
increments. The default is to
start at 1 and increment by 1.

A column can access the
sequence number via a
default constraint. Each
time the NEXT VALUE
command is called, the
sequence is incremented.

321Marking database-generated properties
 Create or migrate the database via EF Core.
 Reverse-engineer your database, as described in chapter 9. (EF Core reads your

database schema and generates your entity classes and application DbContext.)

You might use these features if you want to use EF Core with an existing database with-
out reverse engineering. In that case, you need to tell EF Core about columns that
don’t conform to its normal conventions. The following sections teach you how to
mark three different types of columns:

 Columns that change on inserting a new row or updating a row
 Columns that change on inserting a new row
 “Normal” columns—that is, columns that are changed only by EF Core

EF6 EF6 has the same Data Annotation for setting the database-generated
properties, but EF Core provides Fluent API versions too.

10.5.1 Marking a column that’s generated on an addition or update

EF Core needs to know whether a column’s value is generated by the database, such as
a computed column, if for no other reason than it’s read-only. EF Core can’t “guess”
that the database sets a column’s value, so you need to mark it as such. You can use
Data Annotations or the Fluent API.

 The Data Annotation for an add-or-update column is shown in the following code
snippet. Here, EF Core is using the existing DatabaseGeneratedOption.Computed set-
ting. The setting is called Computed because that’s the most likely reason for a column
to be changed on add or update:

public class PersonWithAddUpdateAttibutes
{
 …

 [DatabaseGenerated(DatabaseGeneratedOption.Computed)]
 public int YearOfBirth { get; set; }
}

This code snippet uses the Fluent API to set the add-or-update setting for the column:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Person>()
 .Property(p => p.YearOfBirth)
 .ValueGeneratedOnAddOrUpdate();
 …
}

322 CHAPTER 10 Configuring advanced features and handling concurrency conflicts

10.5.2 Marking a column’s value as set on insert of a new row

You can tell EF Core that a column in the database will receive a value via the database
whenever a new row is inserted to the database. Two common situations are

 Via an SQL DEFAULT command, which provides a default value if no value is
given in the INSERT command.

 By means of some form of key generation, of which SQL’s IDENTITY command
is the primary method. In these cases, the database creates a unique value to
place in the column when a new row is inserted.

If a column has the SQL DEFAULT command on it, it will set the value if EF Core cre-
ates a new row and no value was provided with a value. In that case, EF Core must read
back the value that the SQL DEFAULT command set for the column; otherwise, the data
inside your entity class will not match the database.

The other situation in which EF Core needs to read back the value of a column is
for a primary-key column when the database provides the key value, because EF Core
won’t know that the key was generated by SQL’s IDENTITY command. This situation is
most likely the reason why the annotation’s DatabaseGeneratedOption is called
Identity, as shown in the following code snippet:

public class MyClass
{

public int MyClassId { get; set;}
…
[DatabaseGenerated(DatabaseGeneratedOption.Identity)]
public int SecondaryKey { get; set;}

}

The second example does the same thing but uses the Fluent API. For this example,
you have a column with a default constraint. The following snippet of Fluent API code
sets this constraint:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{

modelBuilder.Entity<Person>()
.Property("DateOfBirth")
.ValueGeneratedOnAdd();

…
}

10.5.3 Marking a column/property as “normal”

All scalar properties that aren’t keys, don’t have an SQL default value, and aren’t com-
puted columns are normal—that is, only you set the value of the property. In rare
cases, you may want to set a property to be normal, and EF Core provides ways to do
that. The one case in which this approach might be useful is for a primary key that
uses a GUID; in that case, your software supplies the value.

323Handling simultaneous updates: Concurrency conflicts

DEFINITION A GUID is a globally unique identifier, a 128-bit integer that can be
used safely anywhere. It makes a good key value in a few cases. In one case,
the software wants to define the key, normally because some other part of the
software needs the key before the row is inserted. In another case, you have
replicated databases with inserts into both or all databases, which makes creat-
ing a unique key more difficult.

My tests show that if you use a GUID as a primary key, EF Core will automatically cre-
ate a GUID value if you don’t supply one (EF Core provides a value generator for
GUID primary keys). Also, if the database provider is for SQL Server, EF Core uses a
value generator called SequentialGuidValueGenerator, which is optimized for use in
Microsoft SQL server clustered keys and indexes. You can turn this value generator
with a Data Annotation:

public class MyClass
{

[DatabaseGenerated(DatabaseGeneratedOption.None)]
public Guid MyClassId { get; set;}
…

}

You can also use the following Fluent API configuration:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{

modelBuilder.Entity<MyClass>()
.Property("MyClassId")
.ValueGeneratedNever();

…
}

10.6 Handling simultaneous updates: Concurrency conflicts
Concurrency conflicts represent a big topic, so let me start by explaining what simulta-
neous updates look like before explaining why they can be problems and how you
can handle them. Figure 10.3 shows an example of simultaneous updates to the
PublishedOn column in a database. This update happens because of two separate
pieces of code running in parallel, which read the column and then update it.

By default, EF Core uses an Optimistic Concurrency pattern. In figure 10.3, the
first update is lost because it’s overwritten by the second. Although this situation is
often acceptable, in some cases, overwriting someone else’s update is a problem. The
following sections explain unacceptable overwrites, known as concurrency conflicts, and
show how EF Core enables you to detect and fix such conflicts.

10.6.1 Why do concurrency conflicts matter?

If you think about it, a setting can be overwritten anyway. You could set the publica-
tion date of a book to 1/1/2020, and tomorrow you could change it to 1/1/2040, so
why are concurrency conflicts such a big deal?

324 CHAPTER 10 Configuring advanced features and handling concurrency conflicts
In some cases, concurrent conflicts do matter. In financial transactions, for example,
you can imagine that the purity and auditing of data are going to be important, so you
might want to guard against concurrency changes. Another concurrent conflict exists in
the example in section 8.7, where you calculated the average book review votes. In that
case, if two people added reviews at the same time, that recalculation would be incor-
rect, so you need to detect and fix that conflict if that example is going to be robust.

 Other human-level concurrent conflicts can occur. Instead of two tasks clashing on
updates, two users looking at screens can clash, with the same default result: the sec-
ond person to click the Submit button overwrites the update that the first person
thought they had done. (Section 10.6.4 covers the details.)

 Sometimes, you get around concurrency conflicts by design, by creating applica-
tions in such a way that dangerous concurrent updates can’t happen. For an e-commerce
website that I designed, for example, I had an order-processing system that used back-
ground tasks, which could’ve caused concurrent conflicts. I got around this potential
problem by designing the order processing to remove the possibility of concurrent
updates:

 I split the customer order information into an immutable order part that never
changed. This part contained data such as what was ordered and where it should
be sent. After that order was created, it was never changed or deleted.

 For the changing part of the order, which was the order status as it moved
through the system, I created a separate table to which I added each new order
status as it occurred, with the date and time. (This approach is known as event

1.The first thread reads the book. The original
PublishedOn was / /50, and it changes to / /205 .1 1 1 1 1

2. / /2050. ItThe second thread reads the book and gets the original PublishedOn, which is 1 1

then changes the PublishedOn date to / /2052, which overwrites the first task’s update.1 1

1. Reads book. Published on = 1/1/2050

2. Update date to 1/1/2051

3. SaveChanges This update is overwritten.

1. Reads book. Published on = 1/1/2050

2. Update date to 1/1/2052

3. SaveChanges

Time

Optimistic concurrency
means the last write wins.

Figure 10.3 Two pieces of code (say, in a web application) running in parallel that make
near-simultaneous updates of the same column (in this case, the publication date of the
same book). By default, EF Core allows the second write to win, and the first write is lost.
This situation is called optimistic concurrency, but the “last write win” rule may not be useful
in all cases.

325Handling simultaneous updates: Concurrency conflicts
sourcing.) Then I could get the latest order status by sorting by date/time order
and picking the status with the newest date and time. This result would be out
of date if another status was added after I read the status, of course, but concur-
rency handling would detect this addition.

This design approach meant that I never updated or deleted any order data, so con-
current conflicts couldn’t happen. It did make handling a customer change to an
order a bit more complicated, but orders were safe from concurrent-conflict issues.

 But when concurrent conflicts are issues, and you can’t design around them, EF Core
provides two ways of detecting a concurrent update and, when the update is detected, a
way of getting at all the relevant data so you can implement code to fix the issue.

10.6.2 EF Core’s concurrency conflict–handling features

EF Core’s concurrency conflict-handling features can detect a concurrency update in
two ways, activated by adding one of the following to an entity class:

 A concurrency token to mark a specific property/column in your entity class as
one to check for a concurrency conflict

 A timestamp (also known as a rowversion), which marks a whole entity class/row
as one to check for a concurrency conflict

EF6 Concurrency-handling features are the same as in EF6.x but reimple-
mented in EF Core.

In both cases, when SaveChanges is called, EF Core produces database server code to
check for updates of any entities that contain concurrency tokens or timestamps. If
that code detects that the concurrency tokens or timestamps have changed since it
read the entity, it throws a DbUpdateConcurrencyException exception. At that point,
you can use EF Core’s features to inspect the differing versions of the data and apply
your custom code to decide which of the concurrent updates wins. Next, you’ll learn
how to set up the two approaches—a concurrency token and a timestamp—and how
EF Core detects the change.

DETECTING A CONCURRENT CHANGE VIA CONCURRENCY TOKEN

The concurrency-token approach allows you to configure one or more properties as
concurrency tokens. This approach tells EF Core to check whether the current data-
base value is the same as the value found when the tracked entity was loaded as part of
the SQL UPDATE command sent to the database. That way, the update will fail if the
loaded value and the current database value are different. Figure 10.4 shows an exam-
ple of marking the PublishedOn property as a concurrency token, after which a con-
currency conflict occurs.

 To set up this example, you add the ConcurrencyCheck Data Annotation to the
PublishedOn property in our ConcurrencyBook entity class, shown in the following
listing. EF Core finds this Data Annotation during configuration and marks the prop-
erty as a concurrency token.

326 CHAPTER 10 Configuring advanced features and handling concurrency conflicts
public class ConcurrencyBook
{
 public int ConcurrencyBookId { get; set; }
 public string Title { get; set; }

 [ConcurrencyCheck]
 public DateTime PublishedOn { get; set; }

 public ConcurrencyAuthor Author { get; set; }
}

In this case, you’ve used the ConcurrencyCheck Data Annotation to define the prop-
erty as a concurrency token, which has the benefit of making it clear to anyone look-
ing at the code that the PublishedOn property has special handling. Alternatively, you
can define a concurrency token via the Fluent API, as shown in the next listing.

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{

TheListing 10.11 ConcurrencyBook entity class, with a PublishedOn property

Setting a property as a concurrency token by using the Fluent APIListing 10.12

1. The first thread reads the book. The original
PublishedOn was / /50, and it changes to / /205 .1 1 1 1 1

2. The second thread reads the book
and gets the original PublishedOn,
which is / /2050. It then changes1 1

the PublishedOn date to / /2052.1 1

3. SaveChanges produces an UPDATE command that
checks that the PublishedOn column value is still
1 1/ /2050. This fails because the PublishedOn
column in the database has changed, so EF Core
throws a DbUpdateConcurrencyException.

1. Reads book. Published on = 1/1/2050

2. Update date to 1/1/2051

3. SaveChanges

1. Reads book. Published on = 1/1/2050

2. Update date to 1/1/2052

3. SaveChanges

Time

Concurrency token
applied to the

PublishedOn property

Exception thrown

Figure 10.4 Two pieces of code—say, in a web application—running in parallel that make a near-
simultaneous update of the PublishedOn column. Because you’ve marked the PublishedOn
property as a concurrency token, EF Core uses a modified SQL UPDATE command that performs
the update only if the database’s PublishedOn column is the same as it was when it read in the
Book entity. If it isn’t the same, the UPDATE fails, and SaveChanges throws a
DbUpdateConcurrencyException.

Tells EF Core that the PublishedOn
property is a concurrency token,
which means that EF Core will
check whether it has changed
when you update it

The OnModelCreating method is
where you place the configuration
of the concurrency detection.

327Handling simultaneous updates: Concurrency conflicts
 modelBuilder.Entity<ConcurrencyBook>()
 .Property(p => p.PublishedOn)
 .IsConcurrencyToken();

 //… other configuration removed
}

After either listing 10.11 or 10.12 is added, figure 10.4 shows that when SaveChanges
is called, instead of overwriting the first update, it detects that another task has
updated the PublishedOn column and throws an exception.

 Listing 10.13 simulates a concurrent update by running an SQL command that
changes the PublishedOn column between the EF Core code that reads and then
updates the book. The SQL command represents another thread of the web application,
or another application that has access to the same database, updating the PublishedOn
column. In this case, a DbUpdateConcurrencyException exception is thrown when
SaveChanges is called in the last line.

var firstBook = context.Books.First();

context.Database.ExecuteSqlRaw(
 "UPDATE dbo.Books SET PublishedOn = GETDATE()"+
 " WHERE ConcurrencyBookId = @p0",
 firstBook.ConcurrencyBookId);
firstBook.Title = Guid.NewGuid().ToString();
context.SaveChanges();

The important thing to note is that only the property marked as a concurrency token
is checked. If your SQL-simulated update changed, say, the Title property, which isn’t
marked as a concurrency token, no exception would be thrown.

 You can see this effect in the SQL that EF Core produces to update the Title in
the next listing. The SQL WHERE clause contains not only the primary key of the book
to update, but also the PublishedOn column.

SET NOCOUNT ON;
UPDATE [Books] SET [Title] = @p0
WHERE [ConcurrencyBookId] = @p1
 AND [PublishedOn] = @p2;
SELECT @@ROWCOUNT;

When EF Core runs this SQL command, the WHERE clause finds a valid row to update
only if the PublishedOn column hasn’t changed from the value EF Core read in from
the database. Then EF Core checks the number of rows that have been updated by the

Simulating a concurrent update of the PublishedOn columnListing 10.13

SQL code to updateListing 10.14 Book where PublishedOn is a concurrency token

Defines the PublishedOn property
as a concurrency token, which
means that EF Core checks
whether it has changed when
writing out an update

Loads the first book in the
database as a tracked entity

Simulates another
thread/application,
changing the PublishedOn
column of the same book

Changes the title in the book to
cause EF Core to update the bookThis SaveChanges throws a

DbUpdateConcurrencyException.

The test fails if the PublishedOn
column has changed, which
stops the update.

Returns the number of rows
updated by this SQL command

328 CHAPTER 10 Configuring advanced features and handling concurrency conflicts

SQL command. If the number of rows updated is zero, EF Core raises DbUpdate-
ConcurrencyException to say that a concurrency conflict exists; it can catch a concur-
rency conflict caused by another task by changing the PublishedOn column or
deleting the row when this task does an update.

 The good thing about using a concurrency token is that it works on any database
because it uses basic commands. The next way of detecting concurrency changes
relies on a database server-side feature.

DETECTING A CONCURRENT CHANGE VIA TIMESTAMP

The second way to check for concurrency conflicts is to use what EF Core calls a time-
stamp. A timestamp works differently from a concurrency token, as it uses a unique
value provided by the database server that changes whenever a row is inserted or
updated. The whole entity, rather than specific properties or columns, is protected
against concurrency changes.

 Figure 10.5 shows that when a row with a property/column marked as a timestamp
is inserted or updated, the database server produces a new, unique value for that col-
umn, which has the effect of detecting an update to an entity/row whenever Save-
Changes is called.

 The timestamp database type is database-type-specific: SQL Server’s concurrency
type is ROWVERSION, which maps to byte[] in .NET; PostgreSQL has a column called

1.When the first task calls SaveChanges, the UPDATE
command causes the database server to set the
ChangeCheck column to a new, unique value.

2. The second thread reads the
Author and gets the original
ChangeCheck of .111

3. SaveChanges produces an UPDATE command that
checks that the ChangeCheck column value is
still . This fails because the first task’s UPDATE111

has changed the ChangeCheck value, so EF Core
throws a DbUpdateConcurrencyException.

1. Reads Author. ChangeCheck = 111

2. Update Name to “Author1”

3. SaveChanges

1. Reads book. ChangeCheck = 111

2. Update Name to “Author2”

3. SaveChanges

Time

Timestamp causes
ChangeCheck property

to get new value on
add or update.

Exception thrown

Figure 10.5 Configuring a property as a timestamp means that the corresponding column in the
table must be set to a database server type that will be set to a new, unique value every time an
SQL INSERT or UPDATE command is applied to the row. (If you use EF Core to create your
database, the database provider will ensure the use of the correct column type.) Then, when EF
Core does an update, it checks that the timestamp column has the same value as when the entity
was read in. If the value is different, EF Core will throw an exception.

329Handling simultaneous updates: Concurrency conflicts
xmin that is an unsigned 32-bit number; and Cosmos DB has a JSON property called
_etag, which is a string containing a unique value. EF Core can use any of these types
via the appropriate database provider. For the examples of using a timestamp, I’m
going to use SQL Server’s timestamp; other databases will work in a similar way, but
with a different .NET type.

 The following listing adds a ChangeCheck property, which watches for any updates
to the whole entity, to an entity class called ConcurrencyAuthor. In this case, the
ChangeCheck property has a Timestamp Data Annotation, which tells EF Core to
mark it as a special column that the database will update with a unique value. In the
case of SQL Server, the database provider will set the column as an SQL Server
rowversion; other databases have different approaches to implementing the Time-
Stamp column.

public class ConcurrencyAuthor
{
 public int ConcurrencyAuthorId { get; set; }
 public string Name { get; set; }
 [Timestamp]
 public byte[] ChangeCheck { get; set; }
}

Again, you use a Data Annotation, Timestamp, to mark the ChangeCheck property as a
timestamp. This approach is my recommended way of configuring concurrency han-
dling, because it makes obvious to anyone looking at the code that there’s special con-
currency handling of this entity. Alternatively, you can use the Fluent API to configure
a timestamp, as shown in the following listing.

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<ConcurrencyAuthor>()
 .Property(p => p.ChangeCheck)
 .IsRowVersion();
}

Both configurations create a column in a table that the database server will change
automatically whenever there’s an INSERT or UPDATE to that table. For SQL Server data-
base, the column type is set to ROWVERSION, as shown in the following listing. Other data-
base servers can use different approaches, but they all provide a new, unique value on
an INSERT or UPDATE.

TheListing 10.15 ConcurrencyAuthor class, with the ChangeCheck property

Configuring a timestamp by using the Fluent APIListing 10.16

Marks the ChangeCheck property
as a timestamp, causing the
database server to mark it as an
SQL ROWVERSION. EF Core checks
this property when updating to
see whether it has changed.

OnModelCreating is where
you place the configuration
of the concurrency detection.

Defines an extra property called
ChangeCheck that will be changed
every time the row is created/updated.
EF Core checks whether this property
has changed when it does an update.

330 CHAPTER 10 Configuring advanced features and handling concurrency conflicts

CREATE TABLE [dbo].[Authors] (
 [ConcurrencyAuthorId] INT IDENTITY (1, 1),
 [ChangeCheck] TIMESTAMP NULL,
 [Name] NVARCHAR (MAX) NULL
);

You simulate a concurrent change by using the code in listing 10.18, which consists of
three steps:

1 You use EF Core to read in the Authors row that you want to update.
2 You use an SQL command to update the Authors table, simulating another

task updating the same Author that you read in. EF Core doesn’t know any-
thing about this change because raw SQL bypasses EF Core’s tracking snap-
shot feature. (See section 11.5 in chapter 11 for details about EF Core’s raw
SQL commands.)

3 In the last two lines, you update the Author’s name and call SaveChanges,
which causes a DbUpdateConcurrencyException to be thrown because EF Core
found that the ChangeCheck column has changed from step 1.

var firstAuthor = context.Authors.First();
context.Database.ExecuteSqlRaw(
 "UPDATE dbo.Authors SET Name = @p0"+
 " WHERE ConcurrencyAuthorId = @p1",
 firstAuthor.Name,
 firstAuthor.ConcurrencyAuthorId);
firstAuthor.Name = "Concurrency Name";
context.SaveChanges();

This code is like the case in which you used a concurrency token. The difference is
that the timestamp detects an update of the row via the unique value in the prop-
erty/column called ChangeCheck. You can see this difference in the following listing,
which shows the SQL that EF Core produces to update the row with the check on the
timestamp property, ChangeCheck.

SET NOCOUNT ON;
UPDATE [Authors] SET [Name] = @p0
WHERE [ConcurrencyAuthorId] = @p1
 AND [ChangeCheck] = @p2;
SELECT [ChangeCheck]
FROM [Authors]

The SQL to create the Authors table, with aListing 10.17 timestamp column

Simulating a concurrent update of theListing 10.18 ConcurrentAuthor entity

The SQL code to update the author’s name, with ChangeCheck checkListing 10.19

If the table is created by EF Core,
sets the column type to TIMESTAMP
if your property is of type byte[].
This column’s value will be updated
on each INSERT or UPDATE.

Loads the first author in the
database as a tracked entity

Simulates another
thread/application updating
the entity. Nothing is changed
except the timestamp.

Changes something in the
author to cause EF Core to
do an update to the bookThrows DbUpdateConcurrencyException

Checks that the ChangeCheck
column hasn’t been changed since
you read in the book entity

Because the update will change the ChangeCheck
column, EF Core needs to read it back so that its
in-memory copy is correct.

331Handling simultaneous updates: Concurrency conflicts

In th
kno

o

In
you
WHERE @@ROWCOUNT = 1
 AND [ConcurrencyAuthorId] = @p1;

The UPDATE part checks whether the ChangeCheck column is the same value as the
copy it found when it first read the entity, and if so, it executes the update. The second
part returns the new ChangeCheck column that the database server created after
the current update, but only if the UPDATE was executed. If no value is returned for the
ChangeCheck property, EF Core knows that a concurrency conflict has happened and
throws a DbUpdateConcurrencyException.

 Your choice between the two approaches—concurrency token and timestamp—
depends on your business rules. The concurrency-token approach provides specific
protection of the property/properties you place it on and is triggered only if a prop-
erty marked as a concurrency token is changed. The timestamp approach catches any
update to that entity.

10.6.3 Handling a DbUpdateConcurrencyException

Now that you’ve seen the two ways that EF Core detects a concurrent change, you’re
ready to look at an example of catching DbUpdateConcurrencyException. The way
you write your code to fix a concurrency conflict depends on your business reasons for
capturing it. The example in listing 10.20 shows how to capture the DbUpdate-
ConcurrencyException and what data you have available for making your decisions to
fix this concurrency exception.

 Listing 10.20 shows a method that you call after you’ve updated the Book entity
with your change. This method, BookSaveChangesWithChecks, calls SaveChanges and
captures any DbUpdateConcurrencyException exception if one happens; it also uses a
method called HandleBookConcurrency, where you’ve put the logic to handle a con-
currency exception on a Book entity.

public static string BookSaveChangesWithChecks
 (ConcurrencyDbContext context)
{
 string error = null;
 try
 {
 context.SaveChanges();
 }
 catch (DbUpdateConcurrencyException ex)
 {
 var entry = ex.Entries.Single();
 error = HandleBookConcurrency(
 context, entry);
 if (error == null)
 context.SaveChanges();
 }

The method you call to save changes that trap concurrency conflictsListing 10.20

Checks whether one row was updated in the last
command. If not, the ChangeCheck value won’t
be returned, and EF Core will know that a
concurrent change has taken place.

Called after the Book
entity has been updated
in some way

Calls SaveChanges within a try...catch so that
you can catch DbUpdateConcurrencyException
if it occurs

Catches DbUpdateConcurrencyException
and puts in your code to handle it

is case, you
w that only

ne Book will
be updated.
other cases,
 might need

to handle
multiple
entities.

Calls the HandleBookConcurrency method,
which returns null if the error was handled
or an error message if it wasn’t

If the conflict was handled, you need to
call SaveChanges to update the Book.

332 CHAPTER 10 Configuring advanced features and handling concurrency conflicts
 return error;
}

The BookSaveChangesWithChecks method returns a string, which is null if successful
or an error message if it can’t handle this concurrency conflict. (In this example, you
handle an update conflict, but you return an error message on a delete conflict; see
the HandleBookConcurrency method in listing 10.21.) Note that you must call the
SaveChanges method again, but only if you’ve fixed the concurrency problem. Other-
wise, the method keeps looping around with the same exception.

 The HandleBookConcurrency method handles a Book entity update concurrency
conflict. You have at your disposal three versions of the database data, shown in
the Exception Handler box in figure 10.6. In this example, you’re looking at the
PublishedOn property, which is protected by a concurrency token. Figure 10.6 shows
the sequence of events and the value of the PublishedOn column at each stage.

Listing 10.21 shows the content of your exception hander called HandleBookConcurrency.
The code names some of the variables, starting with originalValue, otherUserValue,
and whatIWantedItToBe. These variables correspond to the three versions of the data
shown in figure 10.6.

Returns the error message
or null if there’s no error

T
im

e

1. PublishedOn = 1/1/2050??

2. Change to 1/1/2052
3. SaveChanges

1. PublishedOn = 1/1/2050
2. Change to 1/1/2051

3. SaveChanges

Exception Hander

= 1/1/2050Original value
Other user value = 1/1/2051

= 1/1/2052What I wanted

sFix value and call SaveChange

1. Someone else reads in a Book and
changes the PublishedOn value to / /2051 1 1.

2. You read in the same book and try
to update the PublishedOn to / /2052.1 1

3. You get an concurrency exception,
and your exception handler is called.

4. The exception handler decides what
to do and fixes the data. It then retries
the SaveChanges, which works.

Figure 10.6 An overlap of two people accessing the same book can be caught by using a concurrency
token in this example (but the stages would be the same if a timestamp were used). At stage 3,
a concurrency exception happens, and your exception handler is called (see listing 10.21). Your
exception handler gets a copy of the original PublishedOn date that your change read in, the
value that the other user set the PublishedOn date to, and the actual value you wanted to set
the PublishedOn date to.

333Handling simultaneous updates: Concurrency conflicts

You
get

that s
else wr

the d
af

Con
conflict
doesn’
the cas

the b
delet

return
friend

m

throug
prop

the boo
to r

Origin
so

e

happe

Ho

you

private static string HandleBookConcurrency(
 DbContext context,
 EntityEntry entry)
{
 var book = entry.Entity
 as ConcurrencyBook;
 if (book == null)
 throw new NotSupportedException(
"Don't know how to handle concurrency conflicts for " +
 entry.Metadata.Name);

 var whatTheDatabaseHasNow =
 context.Set<ConcurrencyBook>().AsNoTracking()
 .SingleOrDefault(p => p.ConcurrencyBookId
 == book.ConcurrencyBookId);
 if (whatTheDatabaseHasNow == null)
 return "Unable to save changes.The book was deleted by another

user.";

 var otherUserData =
 context.Entry(whatTheDatabaseHasNow);

 foreach (var property in entry.Metadata.GetProperties())
 {
 var theOriginalValue = entry
 .Property(property.Name).OriginalValue;
 var otherUserValue = otherUserData
 .Property(property.Name).CurrentValue;
 var whatIWantedItToBe = entry
 .Property(property.Name).CurrentValue;

 // TODO: Logic to decide which value should be written to database
 if (property.Name ==
 nameof(ConcurrencyBook.PublishedOn))
 {
 entry.Property(property.Name).CurrentValue =
 //… your code to pick which PublishedOn to use
 }

 entry.Property(property.Name).OriginalValue =
 otherUserData.Property(property.Name)
 .CurrentValue;
 }
 return null;
}

Handling a concurrent update on the bookListing 10.21

Takes in the application’s
DbContext and the Change-
Tracking entry from the
exception’s Entities property

Handles only ConcurrencyBook, so throws
an exception if the entry isn’t of type Book

 want to
the data
omeone
ote into
atabase
ter your

read.

Entity must be read as
NoTracking; otherwise,
it’ll interfere with the
same entity you’re
trying to write.

currency
 method
t handle
e where
ook was
ed, so it
s a user-
ly error
essage.

You get the EntityEntry<T>
version of the entity, which has
all the tracking information.

You go
h all the
erties in
k entity
eset the
al values
 that the
xception
doesn’t
n again.

Holds the version of the
property at the time
you did the tracked
read of the book

Holds the version of the
property as written to the
database by someone else

lds the version of
the property that
 wanted to set it

to in your update

Business logic to
handle PublishedOn:
sets to your value or
the other person’s
value, or throws
an exception

Here, you set the
OriginalValue to the
value that someone else
set it to. This code works
for concurrency tokens
or a timestamp.

You return null to say
that you handled this
concurrency issue.

The main part you need to change is the section starting with the comment // TODO.

You should put your code to handle the concurrent update there. What you put there
depends on the business rules in your application. In section 10.6.4, I show you a
worked-through example with business logic, but in listing 10.21, the focus is on the

334 CHAPTER 10 Configuring advanced features and handling concurrency conflicts
three parts of the data: the original values, the other users’ values, and what you want
the PublishedOn value to be.

 Note that your HandleBookConcurrency method also detects that a concurrency
conflict caused by the original Book entity has been deleted. In that case, when your
concurrency-handling method tries to reread the actual row in the database by using
the Book’s primary key, it won’t find that row and will return null. Your current imple-
mentation doesn’t handle that case and returns an error message to show the user.

10.6.4 The disconnected concurrent update issue

In applications such as websites, another concurrency-update scenario can occur that
encompasses the user-interaction part of the system. The examples so far have cov-
ered simultaneous code updates, but if you bring in the human factor, the problem is
more likely to occur and may be more business-relevant.

 Figure 10.7 shows employee John Doe getting a pay raise set by both John’s boss
and human resources. The time between each entity’s seeing the figure and deciding
what to do is measured in minutes instead of milliseconds, but if you don’t do anything

Reference to more complex concurrency examples
Because concurrency handling is pretty hard to understand, I have made two simpli-
fications on the descriptions in this chapter. They are as follows:

 HandleBookConcurrency shown in listing 10.21 handles only one entity.
 The BookSaveChangesWithChecks method shown in listing 10.20 assumes

that a second concurrency issue isn’t thrown when the HandleBook-
Concurrency code has corrected the first concurrency issue.

In real applications, you might need to handle multiple entities in your concurrency
handler, and you can’t assume that you won’t get another concurrency exception
when you write the corrected entity that threw the first concurrency exception. Fortu-
nately, chapter 15 provides examples of handling both of these issues.

In section 15.5, I describe a way to store values that contain preevaluated values,
such as the average votes for a book, to improve the performance of the Book App
when working with large amounts of data. These extra values have to be updated
whenever the appropriate entities are changed, but of course, multiple updates would
cause concurrency issues, so I had to solve both of these issues.

For simplification 1 (only one entity), have a look at listing 15.9, which handles mul-
tiple entities with concurrency issues and also different types of concurrency issues
within one entity class.

For simplification 2 (concurrency within a concurrency), see listing 15.8, which adds
a do / while loop around the call to SaveChanges. This loop means the code will
catch a concurrency within a concurrency; the concurrency handles are designed for
that possibility.

335Handling simultaneous updates: Concurrency conflicts
about it, you can have another concurrency conflict, potentially with the wrong salary
being set.

 Although this example looks much like the concurrency-conflicts example in sec-
tion 10.6.2, the change is in the way that a disconnected concurrency conflict is found.
To handle a disconnected update, the original value of the property you’re protecting
(in this case, the Salary) must be passed from the first stage of the disconnect to the
second stage. Then your second stage must use that original Salary in the concurrency-
conflict check during the update part of the process.

 Also, the way that a concurrency conflict is dealt with is different. Typically, in a
human-user case, the decision about what should happen is given back to the user. If
a conflict occurs, the user is shown a new screen indicating what happened and is
given a choice about what should be done. This disconnected concurrent situation
changes the code that handles DbUpdateConcurrencyException into more of a diag-
nostic role than code that fixes the problem.

 If a concurrency conflict exists, the user is shown a new screen with an error mes-
sage indicating what happened. Then the user is invited to accept the current state or
apply the update, knowing that this update will override the last user’s update.

1. John Doe’s boss gets an email saying it’s time to review
John’s salary. The boss gives him a 0% raise for good work.1

2. Human Resources gets the same email and decides
to give John Doe the standard 2.5% raise.

3. Because of the order
of updates, the boss’s
decision is silently
ignored unless you add
some disconnected
concurrency checks.

ChangeChange

ChangeChange

Stage 1

John Doe

Salary $1000/month

John Doe

Salary $ /month1100

John Doe

Salary $1000/month

John Doe

Salary $ /month1025

John’s

boss

Human

resources

Stage 1

Stage 2
Time

Stage 2

Click

Click

Figure 10.7 A concurrency problem running in human time. John Doe’s salary review is due, and
two people—John’s boss and a human resources employee—try to update his salary at the same
time. Unless you add concurrency checks, the boss’s update, which came first, is silently ignored,
which most likely isn’t the correct business outcome.

336 CHAPTER 10 Configuring advanced features and handling concurrency conflicts
Figure 10.8 shows what happens when the user clicks the Change button after setting
the new salary. As you can see, the original salary, which was displayed to the user on
the first screen, is sent back with the other data and used in the concurrency check
when the Salary is updated. (See the UpdateSalary method in listing 10.24.)

 Listing 10.22 shows the entity class used for this example, with the Salary property
set as a concurrency token. You also create a method called UpdateSalary that con-
tains the code you need to execute to update the Salary property in such a way that
DbUpdateConcurrencyException will be thrown if the Salary value has changed from
the value originally shown on the user’s screen.

public class Employee
{
 public int EmployeeId { get; set; }

 public string Name { get; set; }

 [ConcurrencyCheck]
 public int Salary { get; set; }

Entity class used to hold an employee’s salary with concurrency checkListing 10.22

1. The salary set by the other
user is shown on the screen,
while the original salary is
held too.

3. If a concurrency conflict occurs, the
method DiagnoseSalaryConflict returns
an appropriate message; either it was
updated by someone else, or it was
deleted by someone else.

For the error states, the user is shown
a new screen that offers the option to
leave the employee as is or have their
update applied.

2. You set the Salary property’s OriginalValue,
which holds the value EF Core thinks the
database contains, to the OrgSalary value
that was originally shown to the user.

var employee = context.Employees
.Find(EmployeeId);

entity.UpdateSalary(context,
OrgSalary, NewSalary);

string message = null;
try
{

context.SaveChanges();
}
catch (DbUpdateConcurrencyExp... ex)
{

var entry = ex.Entries.Single();
message = DiagnoseSalaryConflict

(context, entry);
}
return message;

Sent back:

EmployeeId: 12
OrgSalary: 1000
NewSalary: 1025

Stage 2

Change

John Doe

Salary $ /month1025

Figure 10.8 After the user has changed the salary and clicked the Change button, the new salary
and the original salary values are sent back to the web application. Then the application calls the
UpdateSalary method, shown in listing 10.24, which both updates the salary and sets the original
value expected in the database when it does the update. If a concurrency conflict is found, a new
screen with an appropriate error message is shown to the user, who can then accept the existing
database state or apply their own update to the employee.

Salary property set as a
concurrency token by the
ConcurrencyCheck attribute

337Handling simultaneous updates: Concurrency conflicts

Y
to
d
s

els

d
af

 public void UpdateSalary
 (DbContext context,
 int orgSalary, int newSalary)
 {
 Salary = newSalary;
 context.Entry(this).Property(p => p.Salary)
 .OriginalValue = orgSalary;
 }
}

After applying the UpdateSalary method to the Employee entity of the person whose
salary you want to change, you call SaveChanges within a try…catch block to update
the Employee. If SaveChanges raises DbUpdateConcurrencyException, the job of the
DiagnoseSalaryConflict method shown in the following listing isn’t to fix the conflict,
but to create an appropriate error message so that the user can decide what to do.

private string DiagnoseSalaryConflict(
 ConcurrencyDbContext context,
 EntityEntry entry)
{
 var employee = entry.Entity
 as Employee;
 if (employee == null)
 throw new NotSupportedException(
"Don't know how to handle concurrency conflicts for " +
 entry.Metadata.Name);

 var databaseEntity =
 context.Employees.AsNoTracking()
 .SingleOrDefault(p =>
 p.EmployeeId == employee.EmployeeId);

 if (databaseEntity == null)
 return
$"The Employee {employee.Name} was deleted by another user. " +
$"Click Add button to add back with salary of {employee.Salary}" +
" or Cancel to leave deleted.";

 return
$"The Employee {employee.Name}'s salary was set to " +
$"{databaseEntity.Salary} by another user. " +
$"Click Update to use your new salary of {employee.Salary}" +
$" or Cancel to leave the salary at {databaseEntity.Salary}.";
}

Returns different errors for update or delete concurrency conflictsListing 10.23

Updates the Salary in
a disconnected state

Sets the Salary to the new value

Sets the OriginalValue, which holds the data read
from the database, to the original value that was
shown to the user in the first part of the update

Called if a DbUpdateConcurrencyException
occurs. Its job isn’t to fix the problem but
to form an error message and provide
options for fixing the problem.

If the entity that failed wasn’t an
Employee, you throw an exception,
as this code can’t handle that.

ou want
 get the
ata that
omeone
e wrote
into the
atabase
ter your

read.

Must be read as NoTracking;
otherwise, it’ll interfere with the
same entity you’re trying to write.

Checks for a delete conflict: the
employee was deleted because
the user attempted to update it.

Error message to display to the user,
with two choices about how to carry on

Otherwise, the error must be an update conflict, so you return
a different error message with the two choices for this case.

Listing 10.24 shows two methods: one for the update conflict case and one for the
delete conflict. These methods are called depending on which sort of concurrency

338 CHAPTER 10 Configuring advanced features and handling concurrency conflicts

t
con

conflict was found (update or delete), and only if the user wants to apply an update
to Employee.

 The update conflict can be handled by using the same UpdateSalary method used
for the normal update, but now the orgSalary parameter is the salary value as read
back when the DbUpdateConcurrencyException was raised. The FixDeleteSalary
method is used when the concurrent user deletes the Employee and the current user
wants to add the Employee back with their new salary value.

public class Employee
{
 public int EmployeeId { get; set; }

 public string Name { get; set; }

 [ConcurrencyCheck]
 public int Salary { get; set; }

 public void UpdateSalary
 (DbContext context,
 int orgSalary, int newSalary)
 {
 Salary = newSalary;
 context.Entry(this).Property(p => p.Salary)
 .OriginalValue = orgSalary;
 }

 public static void FixDeletedSalary
 (DbContext context,
 Employee employee)
 {
 employee.EmployeeId = 0;
 context.Add(employee);
 }
}

Listing 10.24 Two methods to handle update and delete conflicts

Set as a concurrency token
by the ConcurrencyCheck
attribute

The same method used to update the Salary
can be used for the Update conflict, but this
time, it’s given the original value that was
found when the DbUpdateConcurrency-
Exception occurred.

Sets the Salary
to the new value

Sets the OriginalValue,
which is now the value that
the database contained
when the DbUpdate-
ConcurrencyException
occurred

Handles
he Delete
currency

conflict

The key must be at the CLR
default value for an Add to work.

Adds the Employee because it was
deleted from the database and
therefore must be added back

NOTE These disconnected concurrency-conflict examples use a concurrency
token, but they work equally well with a timestamp. To use a timestamp
instead of passing the Salary concurrency token used in these examples,
you’d pass the timestamp and set the timestamp’s original value before any
update.

Summary
 Using SQL user-defined functions (UDFs) with EF Core to move calculations

into the database can improve query performance.
 Configuring a column as an SQL computed column allows you to return a com-

puted value based on the other properties in the row.

339Summary
 EF Core provides two ways to set a default value for a property/column in an
entity; these techniques go beyond what setting a default value via .NET could
achieve.

 EF Core’s HasSequence method allows a known, predictable sequence provided
by the database server to be applied to a column in a table.

 When the database is created/migrated outside EF Core, you need to configure
columns that behave differently from the norm, such as telling EF Core that a
key is generated in the database.

 EF Core provides concurrency tokens and timestamps to detect concurrency
conflicts.

 When a concurrency conflict is detected, EF Core throws DbUpdateConcurrency-
Exception and then allows you to implement code to handle the conflict.

For readers who are familiar with EF6:

 The three default value methods, the HasSequence method, and the setting of a
computed column aren’t available in EF6.x.

 EF Core’s handling of a concurrency conflict is identical to the way that EF6.x
handles a concurrency conflict, but Microsoft suggests a few minor changes
in the way that the DbUpdateConcurrencyException should be handled; see
http://mng.bz/O1VE.

http://mng.bz/O1VE

Going deeper into
the DbContext
This chapter looks at the properties and methods available in the application’s
DbContext. You’ve seen a few of these properties and methods before, such as the
Add, Update, and Remove methods covered in chapter 3, but in this chapter, you’ll
dig deeper into how they work. You’ll also look at some other properties and meth-
ods that haven’t been covered in earlier chapters. You will look at each method
used to write to the database, ways to make saving data quicker, and ways to execute
SQL commands directly on your database. You’ll also look at accessing and using
your EF Core configuration information.

This chapter covers
 Seeing how your application’s DbContext detects

changes in tracked entities

 Using the change tracking method in your
DbContext to build an audit trail

 Using raw SQL commands via the DbContext’s
Database property

 Finding the entities to database mapping using
DbContext’s Model property

 Using EF Core’s database connection resiliency
340

341Understanding how EF Core tracks changes

11.1

11.2

This chapter discusses the DbContext properties for setting the State of an entity
class, including what to do if your call to SaveChanges is taking too long to run. But
we’ll start with an overview of the four properties in the DbContext class, with pointers
to coverage of their related features.

Overview of the DbContext class’s properties
Your application’s DbContext, which inherits EF Core’s DbContext class, is the key to
accessing your database. Everywhere your application wants to use EF Core, it has to use
an instance of your application’s DbContext.

This chapter focuses on the methods and data of the public properties that were
inherited from EFCore’s DbContext class. These properties provide information or
methods that allow you to better manage your entity classes and their mapping to your
database:

 ChangeTracker—Provides access to EF Core’s change tracking code. You used
the ChangeTracker property in chapter 4 to run data validation before Save-

Changes. You’ll spend quite a bit of time looking at an entity class’s State in this
chapter, including the ChangeTracker property (section 11.4).

 ContextId—A unique identifier for the instance of the DbContext. Its main
role is to be a correlation ID for logging and debugging so that you can see
what reads and writes were done from the same instance of the application’s
DbContext.

 Database—Provides access to three main groups of features:
– Transaction control, covered in section 4.7.2
– Database creation/migration, covered in chapter 9
– Raw SQL commands, covered in section 11.5

 Model—Provides access to the database model that EF Core uses when connect-
ing to or creating a database. Section 11.6.2 covers this topic.

Understanding how EF Core tracks changes
EF Core uses a property called State that’s attached to all tracked entities. The State

property holds the information about what you want to happen to that entity when
you call the application’s DbContext method, SaveChanges.

DEFINITION As you may remember from chapter 2, tracked entities are entity
instances that have been read in from the database using a query that didn’t
include the AsNoTracking method. Alternatively, after an entity instance has
been used as a parameter to EF Core methods—such as the Add, Update,
Remove, or Attach method—it becomes tracked.

This State property, an enum of type EntityState, is normally set by the change track-
ing feature inside EF Core, and in this section, you’re going to explore all the ways the
State can be set. Chapter 3 gave you a brief introduction to State but skipped many
of its features, especially those related to relationships, as well as extra commands,

342 CHAPTER 11 Going deeper into the DbContext
which this section covers. The following list, repeated from chapter 3, lists possible val-
ues of the State property, which is accessed via the EF command context.Entry
(myEntity).State:

 Added—The entity doesn’t yet exist in the database. SaveChanges will insert it.
 Unchanged—The entity exists in the database and hasn’t been modified on the

client. SaveChanges will ignore it.
 Modified—The entity exists in the database and has been modified on the client.

SaveChanges will update it.
 Deleted—The entity exists in the database but should be deleted. SaveChanges

will delete it.
 Detached—The entity you provided isn’t tracked. SaveChanges doesn’t see it.

Figure 11.1 shows the change of State of the entity instance, without any relation-
ships, as it’s added, modified, and deleted from the database. The figure is a good
overview of the values that the State of an entity can have.

When you have an entity in the Modified state, another per-property boolean flag,
IsModified, comes into play. This flag identifies which of the properties, both scalar and
navigational, have changed in the entity. This IsModified property for a scalar property
is accessed via

context.Entry(entity).Property("PropertyName").IsModified,

An entity instance starts as Detached.

After you use Add, it becomes Added.

After SaveChanges, it’s Unchanged.

If something changes, its state is Modified.

After that’s saved, it’s Unchanged again.

Removing the entity makes it Deleted.

And after SaveChanges, it’s Detached,
because it’s gone from the database.

var en new My ntity()E ;
ent "Te ;

con

con

en ity.MyString =t "N w String"e ;

con

con

con

EF Core code

Detached

Added

Unchanged

Modified

Unchanged

Deleted

Detached

= context.Entry(entity).StateEntity state

Figure 11.1 The code on the left uses all the standard ways of creating, updating, and deleting data
in a database. The right column shows the EF Core state of the entity as it moves through each of
these stages.

343Looking at commands that change an entity’s State
and the IsModified property for navigational properties is accessed via

context.Entry(entity).Navigation("PropertyName").IsModified

These two ways of setting the IsModified property provide a per property/backing
field/shadow property flag to define what has changed if the entity’s State is set to
Modified.

11.3 Looking at commands that change an entity’s State
Figure 11.1 covers a simple entity, but when relationships are involved, the State set-
tings get more complex. The following subsections present the commands that can
change the State of an entity and its relationships.

 EF Core’s approach to setting the State of an entity class has been finely tuned,
based on feedback from the previous versions of EF (EF6.x and EF Core 1.x), to set
the State of related entities to the most “natural” State setting based on certain crite-
ria, especially when you are adding/updating an entity with relationships. To give you
an example, if you use the Add method to add a new entity with relationships to the
database, EF Core will decide whether any relationship entities’ State should be set to
Added or Modified, depending on whether EF Core is tracking the entity. Generally,
this decision is the right one for most Add calls, but knowing how EF Core decides how
to set the State helps you when your needs fall outside normal use.

EF6 The setting for the State of an entity in EF Core differs from how EF6.x
would set the State when you use methods such as Add and Remove. This
chapter describes how EF Core sets the State of an entity. If you are inter-
ested in the changes from EF6.x, I recommend that you read this thread on
the EF Core Git issues site: http://mng.bz/YA8A.

To start this section on an entity’s State, table 11.1 lists the commands/actions that
change an entity’s State.

Table 11.1 All the EF Core commands/actions that can change a tracked entity’s State, showing an
example of each command/action and the final tracking State of the entity

Command/action Example Final State

Addedcontext.Add(entity);Add/AddRange

Deletedcontext.Remove(entity);Remove/RemoveRange

Changing a Modifiedentity.MyString = “hello”;property

Modifiedcontext.Update(entity);Update/UpdateRange

Unchangedcontext.Attach(entity);Attach/AttachRange

Setting State directly context.Entry(entity).State = … Given State

Setting State via context.ChangeTracker.TrackGraph(…TrackGraph Given State

https://shortener.manning.com/YA8A

344 CHAPTER 11 Going deeper into the DbContext

NOTE The SaveChange/SaveChangeAsync methods change the State of all
the tracked entity classes to Unchanged. This topic is covered in section 11.4.

The table shows what happens for a single entity class with no relationships, but most
of the commands also use a recursive search of any navigational properties to find any
reachable entity classes. Any command that does a recursive search will track each
reachable relational entity class and set its State.

You have already encountered most of these commands/actions, but a few com-
mands, such as Attach and TrackGraph, haven’t been covered so far. In this section,
you visit each command/action. If the command/action has already been described,
the section is short. New commands/actions are covered in more detail.

11.3.1 The Add command: Inserting a new row into the database

The Add/AddRange methods are used to create a new entity in the database by setting the
given entity’s State to Added. Section 3.2 covers the Add method, and section 6.2.2 has a
detailed, step-by-step look at adding an entity class with relationships. To summarize:

 The entity’s State is set to Added.
 The Add method looks at all the entities linked to the added entity.

– If a relationship isn’t currently tracked, it is tracked, and its State is set to
Added.

– If a relationship is tracked, its current State is used unless there was a require-
ment to alter/set a foreign key, in which case its State is set to Modified.

Also, the AddAsync/AddRangeAsync methods are available for entities that use a value
generator (see section 10.3.3) to set a property. If the value generator has a NextAsync

method, you must use the AddAsync/AddRangeAsync methods when that entity is added.

11.3.2 The Remove method: Deleting a row from the database

The Remove/RemoveRange methods delete the entity from the database by setting
the given entity’s State to Deleted. Section 3.5 covered the Remove method, and
section 8.8.1 covers the different delete behaviors that EF Core supports. In this sec-
tion, we are looking only at what happens to the State of the entity class you delete
and the State of any of its relationships. If the removed entity has any relationships
that are loaded/tracked, the value of the State for each relationship entities will be
one of the following:

 State == Deleted—Typical for a required dependent relationship, such as a
Review entity class linked to a Book entity class

 State == Modified—Typical for an optional dependent relationship in which
the foreign key is nullable. In this case, the optional relationship is not deleted,
but the foreign key that links to the entity that was deleted is set to null.

 State == Unchanged—Result of deleting a dependent entity class that is linked
to a principal class. Nothing changes in the principal class keys/foreign keys
when a dependent entity class is deleted.

345Looking at commands that change an entity’s State
NOTE You can get some odd State settings if you read in an entity class, add
a required dependent relationship, and then delete the entity class. For a
short time, the required dependent relationship will have a State of Added
because it’s the most logical State at that time.

But regardless of the State of relationships loaded with the entity class you deleted,
another stage takes precedence: the OnDelete behavior of the deleted entity class. If
the OnDelete behavior is set to Cascade, which is the default for a required dependent
relationship, it will delete any required dependent relationships of the deleted entity
class. Please see section 8.8.1 for a more detailed explanation.

11.3.3 Modifying an entity class by changing the data
in that entity class

One clever thing that EF Core can do is automatically detect that you changed the
data in an entity class and turn that change into an update of the database. This fea-
ture makes updates simple from the developer’s point of view, but it requires quite a
bit of work on EF Core’s part. The rules are

 For EF Core to detect a change, the entity must be tracked. Entities are tracked
if you read them in without an AsNoTracking method in the query or when
you call a Add, Update, Remove, or Attach method with an entity class as a
parameter.

 When you call SaveChanges/SaveChangesAsync, by default, EF Code executes a
method called ChangeTracker.DetectChanges, which compares the current
entity’s data with the entity’s tracking snapshot. If any properties, backing fields,
or shadow properties are different, the entity’s State is set to Modified, and the
properties, backing fields, or shadow properties are set to IsModified.

Figure 11.2 gives you an idea of how EF Core can detect a change. In this example, the
only change is to one of the properties in the first Book.

Book

No chg

Book

No chg

Book

No chg

1. Create classes and fill
2. Relational fixup
3. Tracking snapshot

Book

Book

Book

Book

Send UPDATERead in

ChangeTracker.DetectChanges

Book

Update

Compares all properties, backing
fields, and shadow properties

Figure 11.2 SaveChanges
calls ChangeTracker
.DetectChanges, which
compares each tracked entity
with its matching tracking
snapshot to detect any
differences between the two.
ChangeTracker.Detect-
Changes compares all data that
is mapped to the database. In this
example, only one property in the
first Book has been changed,
represented in the figure by one
tick and the title Update above
the Book entity class.

346 CHAPTER 11 Going deeper into the DbContext
11.3.4 Modifying an entity class by calling the Update method

Section 11.3.3 shows that EF Core can detect changes in an entity class for you. In
chapter 3, however, you encountered an external application that returned a com-
plete entity class in JSON form that had to be updated (see figure 11.3, which is
taken from figure 3.3), but that entity class wasn’t tracked. In this case, the Change-
Tracker.DetectChanges method won’t work because there is no tracking snapshot to
compare. In cases like this one, you can use the Update and UpdateRange methods.

The Update method tells EF Core to update all the properties/columns in this entity
by setting the given entity’s State to Modified and sets the IsModified property to
true on all nonrelational properties, including any foreign keys. As a result, the row
in the database will have all its columns updated.

 If the entity type using the Update call has loaded relationships, the Update
method will recursively look at each related entity class and set its State. The rules for
setting the State on a related entity class depend on whether the relationship entity’s
primary key is generated by the database and is set (its value isn’t the default value for
the key’s .NET type):

1. T externa k by title,he l system asks for a boo
with its authors, reviews, and so on.

3. Your application replaces the existing Author
data with the data from the external system.

GET: myAPI/book/search?title=...

JSON: [{BookId: 4, Title: ...

Read stage

2. The external system sends
back an author update.

con
Where.

p.T
Ne working")t

Include(....

con
Update(author);.

con

[
AuthorId":"
Name":"
"Future
BooksLink":null"

}

External systemMy RESTful API application

PUT: myAPI/authors+JSON

OK

Update stage

Figure 11.3 An example of a disconnected update, in which you replace all the database
information with the new data. The external system on the right returns the content of the Author
class in JSON format. The ASP.NET Core application on the left converts the send JSON back to
an Author entity class, and the receiving code uses EF Core’s Update command to update the
Authors table in the database. The Update command updates all the properties, backing fields,
and shadow properties in the reconstituted entity class.

347Looking at commands that change an entity’s State

 Database-generated key, not the default value—In this case, EF Core will assume
that the relationship entity is already in the database and will set the State to
Modified if a foreign key needs to be set; otherwise, the State will be Unchanged.

 Not database-generated key, or the key is the default value—In this case, EF Core
will assume that the relationship entity is new and will set its State to Added.

All that sounds quite complicated, but EF Core generally sets the State to the most
appropriate setting. If you add an existing entry to an entity class’s relationships, for
example, its State will be Updated, but if you add a new entry to an entity class’s rela-
tionships, its State will be Added.

11.3.5 The Attach method: Start tracking an existing untracked
entity class

The Attach and AttachRange methods are useful if you have an entity class with exist-
ing valid data and want it to be tracked. After you attach the entity, it’s tracked, and EF
Core assumes that its content matches the current database state. This behavior works
well for reconstituting entities with relationships that have been serialized and then
deserialized to an entity, but only if the entities are written back to the same database,
as the primary and foreign keys need to match.

WARNING Serializing and then deserializing an entity class instance that uses
shadow properties needs special handling with the Attach method. The
shadow properties aren’t part of the class, so they’ll be lost in any serializa-
tion. Therefore, you must save/restore any shadow properties, especially for-
eign keys, after the Attach method has been called.

When you Attach an entity, it becomes a normal tracked entity, without the cost of load-
ing it from the database. The Attach method does this by setting the entity’s State to
Unchanged. As with the Update method, what happens to the relationships of the
updated entity depends on whether the relationship entity’s primary key is generated by
the database and is set (its value isn’t the default value for the key’s .NET type):

 Database-generated key, and key has a default value—EF Core will assume that the
relationship entity is already in the database and will set the State to Added.

 Not a database-generated key, or the key is the not default value—EF Core will assume
that the relationship entity is new and will set its State to Unchanged.

If you are unsure whether to use Attach or Update in your code, I recommend you
read Arthur Vickers’s article “Make sure to call Update when it is needed!” (http://
mng.bz/G68O).

11.3.6 Setting the State of an entity directly

Another way to set the State of an entity is to set it manually to whatever state you
want. This direct setting of an entity’s State is useful when an entity has many rela-
tionships, and you need to specifically decide which state you want each relationship
to have. Section 11.3.7 shows a good example.

http://mng.bz/G68O
http://mng.bz/G68O
http://mng.bz/G68O

348 CHAPTER 11 Going deeper into the DbContext
 Because the entity’s State is read/write, you can set it. In the following code snip-
pet, the myEntity instance’s State is set to Added:

context.Entry(myEntity).State = EntityState.Added;

You can also set the IsModified flag on the property in an entity. The following code
snippet sets the MyString property’s IsModified flag to true, which sets the entity’s
State to Modified:

var entity = new MyEntity();
context.Entry(entity).Property("MyString").IsModified = true;

NOTE If the entity wasn’t tracked before you set the State, it’ll be tracked
afterward.

11.3.7 TrackGraph: Handling disconnected updates with relationships

The TrackGraph method is useful if you have an untracked entity with relationships,
and you need to set the correct State for each entity. The TrackGraph method will
traverse all the relational links in the entity, calling an action you supplied on each
entity it finds. This method is useful if you have a group of linked entities coming
from a disconnected situation (say, via some form of serialization), and you want to
change only part of the data you’ve loaded.

EF6 The TrackGraph method is a welcome addition to EF Core. There’s no
equivalent command in EF6.x.

Let’s expand on the simple example of a RESTful API in chapter 3, in which an
author’s Name property was updated. In that case, the external system sent back only
the Author entity data. In this example, the external system will send back the whole
book, with all its relationships, but it still wants you to update only the author’s Name
property in every Author entity class in the relationship.

 Listing 11.1 shows the code you’d need to traverse a Book entity instance, which
you’ve reconstituted from a JSON copy (not a tracked entity). The TrackGraph
method will call your lambda Action method, given as the second parameter, for
every entity, starting with the Book entity instance; then it will work through all the
relational navigational property’s entity instances it can reach.

var book = … untracked book with all relationships
context.ChangeTracker.TrackGraph(book, e =>
{
 e.Entry.State = EntityState.Unchanged;

Listing 11.1 Using TrackGraph to set each entity’s State and IsModified flags

Expects an
untracked
book with its
relationships

Calls ChangeTracker.TrackGraph, which takes an
entity instance and an Action, which, in this case,

you define via a lambda. The Action method is
called once on each entity in the graph of entities. If the method sets

the state to any value
other than Detached,
the entity will become
tracked by EF Core.

349SaveChanges and its use of ChangeTracker.DetectChanges
 if (e.Entry.Entity is Author)
 {
 e.Entry.Property("Name").IsModified = true;
 }
});
context.SaveChanges();

TrackGraph traverses the entity provided as its first parameter and any entities that are
reachable by traversing its navigation properties. The traversal is recursive, so the nav-
igation properties of any discovered entities will also be scanned. The Action method
you provide as the second parameter is called for each discovered untracked (State
== Detached) entity and can set the State that each entity should be tracked in. If the
visited entity’s State isn’t set, the entity remains in the State of Detached (that is, the
entity isn’t being tracked by EF Core). Also, TrackGraph will ignore any entities it visits
that are currently being tracked.

 Although you could still use the Update command for this purpose, doing so
would be inefficient because the command would update every table and column in
the book’s relationships instead of only the authors’ names. EF Core’s ChangeTracker
.TrackGraph method provides a better approach.

 Figure 11.4 shows the “change only the Author's Name” example with an external
system returning a serialized version of a Book entity. Using TrackGraph allows you to
target the specific entity and property you want to set the State to a new value; in this
case, you set the property called Name to IsModified in any Author entity class in the
relationships of the Book entity.

 The result of running this code is that only the Author entity instance’s State is set
to Modified, whereas the State of all the other entity types is set to Unchanged. In
addition, the IsModified flag is set only on the Author entity class’s Name property.
In this example, the difference between using an Updated method and using the
TrackGraph code reduces the number of database updates: the Updated method
would produce 20 column updates (19 of them needlessly), whereas the TrackGraph
code would change only one column.

11.4 SaveChanges and its use of ChangeTracker.DetectChanges
Section 11.3 was about setting the State of the tracked entities so that when you call
the SaveChanges (or SaveChangesAsync) method, the correct updates are applied to
the database. In this section, you look at

 How SaveChanges finds any updates by using the ChangeTracker.DetectChanges
method

 What to do if ChangeTracker.DetectChanges is taking too long
 How to use the State of each tracked entity to log any changes
 How to tap into EF Core’s StateChanged events

Here, you want to set
only the Name property
of the Author entity to
Modified, so you check
whether the entity is of
type Author.

Sets the IsModified flag
on the Name property;

also sets the State of the
entity to ModifiedCalls SaveChanges, which finds that only the Name

property of the Author entity has been marked as
changed; creates the optimal SQL to update the

Name column in the Authors table

350 CHAPTER 11 Going deeper into the DbContext
11.4.1 How SaveChanges finds all the State changes

Whereas states such as Added and Deleted are set by the EF Core commands, the
“change a property” approach (section 11.3.3) to updates relies on code to compare
each entity class with its tracking snapshot. To do so, SaveChanges calls a method
called DetectChanges that is accessed via the ChangeTracker property.

 Figure 11.5 (repeated from section 11.3.3) shows an example in which four Book
entities have been read in and one property, the PublishedOn property, was changed
in the first Book entity instance.

 This process makes updates easy for you, the developer; you update only the prop-
erty, backing field, or shadow property, and the change will be detected. But if you
have a lot of entities with lots of data, the process can become slow. Section 11.4.2
shows you a solution to use when ChangeTracker.DetectChanges is taking too long.

1. T externahe l system asks for a
book by title, with its authors,
reviews, and so on.

3. Your application uses the TrackGraph command
to update only the author’s Name property.

GET: myAPI/book/search?title=...

JSON: [{BookId: 4, Title: ...

Read stage

2. The external system sends back
the whole book, but only the
author’s Name has changed.

con
Where.
Quantum Networking")"

{
"B okId";o
"Ti

Quantum Networking","
...

"Au
BookId""

" uthorId"A
Author""
{
...

con
rackGraph(book, eT
...
//set IsModified flag on
//Author’s Name property
;)

con

External systemMy RESTful API application

PUT: myAPI/AuthorName + JSON

OK

Update stage

Figure 11.4 An external system that asks for a specific book and gets the JSON containing the book
and all its relationships. When the external system wants to update each author’s name, it sends
back all the original JSON, with the changed names, but tells your application that it needs to change
only the author’s name. Your application uses EF Core’s ChangeTracker.TrackGraph method to
set all the classes to State Unchanged but sets the IsModified flag on the Name property in
the Author entity class.

351SaveChanges and its use of ChangeTracker.DetectChanges
11.4.2 What to do if ChangeTracker.DetectChanges is taking too long

In some applications, you may have a large number of tracked entities loaded. When
you’re executing mathematical modeling or building artificial intelligence applica-
tions, for example, holding a lot of data in memory may be the only way to achieve the
level of performance that you require.

 The problem is if you have a large amount of tracked entity instances and/or your
entities have a lot of data in them. In that case, a call to SaveChanges/SaveChanges-
Async can become slow. If you are saving a lot of data, the slowness is most likely
caused by the database accesses. But if you are saving only a small amount of data, any
slowdown is likely due to the time the ChangeTracker.DetectChanges takes to com-
pare each entity class instance with its matching tracking snapshot.

 EF Core offers you a few ways to replace ChangeTracker.DetectChanges with an
alternative way to detect changes. These features work by detecting individual updates
to the data in your entity classes, cutting out any comparisons of data that hasn’t been
changed. A rather unscientific test of saving 100,000 tiny entities that had no changes
took 350 ms with the normal ChangeTracker.DetectChanges method, for example,
whereas the approach that detects changes via the class took 2 ms for the same data.

 You have four ways to replace the ChangeTracker.DetectChanges; each approach
has different features and different levels of effort to implement. Table 11.2 summa-
rizes these approaches, with their pros and cons.

Table 11.2 A comparison of the four approaches you can use to stop the ChangeTracker
.DetectChanges method from looking at an entity, thus saving time

What Pros Cons

INotifyPropertyChanged Can change only the entities
that are slow

 Handles concurrency excep-
tions

 Need to edit every property

Book

No chg

Book

No chg

Book

No chg

1. Create classes and fill
2 Relational fixup.
3. Tracking snapshot

Book

Book

Book

Book

Send UPDATERead in

ChangeTracker.DetectChanges

Book

Update

Compares all properties, backing
fields, and shadow properties

Figure 11.5 SaveChanges calls
ChangeTracker.DetectChanges,
which compares each tracked entity
with its tracking snapshot to detect
any differences between the two.
ChangeTracker.DetectChanges
compares all data that is mapped to
the database.

352 CHAPTER 11 Going deeper into the DbContext
Overall, the proxy change tracking feature is easier to code but requires you to change
all your entity classes to use proxy change tracking. But if you find a SaveChanges per-
formance issue in an existing application, changing all your entity classes might be too
much work. For this reason, I focus on the first approach, INotifyPropertyChanged,
which is easy to add to a few entity classes that have a problem, and the last approach,
proxy changed/changing tracking, which is easier but requires you to use it across the
whole application.

FIRST APPROACH: INOTIFYPROPERTYCHANGED
EF Core supports the INotifyPropertyChanged interface on an entity class to detect
whether any property has changed. This interface notifies EF Core that a property has
changed, but you have to raise a PropertyChanged event, which means the Change-
Tracker.DetectChanges method isn’t used.

 To use the INotifyPropertyChanged interface you need to create a Notification-
Entity helper class, shown in the following listing. This class provides a SetWith-
Notify method that you call when any property in your entity class changes.

public class NotificationEntity : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 protected void SetWithNotify<T>(T value, ref T field,
 [CallerMemberName] string propertyName = "")
 {
 if (!Object.Equals(field, value))
 {
 field = value;

INotifyPropertyChanged and
INotifyPropertyChanging

 Can change only the entities
that are slow

 No tracking snapshot, so uses
less memory

 Need to edit every property

Proxy change tracking
(EF Core 5 feature)
INotifyPropertyChanged

 Easy to code; add virtual to
every property

 Handles concurrency excep-
tions

 Must change all entity
types to use proxy

Proxy change tracking
(EF Core 5 feature)
INotifyPropertyChanged and
INotifyPropertyChanging

 Easy to code; add virtual to
every property

 No tracking snapshot, so uses
less memory

 Must change all entity
types to use proxy

 Have to create a new
entity class via the
CreateProxy<T> method

Listing 11.2 NotificationEntity helper class that NotifyEntity inherits

Table 11.2 A comparison of the four approaches you can use to stop the ChangeTracker
.DetectChanges method from looking at an entity, thus saving time (continued)

What Pros Cons

Automatically gets
the propertyName
by using
System.Runtime
.CompilerServices

Only if the field and the value
are different do you set the
field and raise the event.

Sets the
field to the
new value

353SaveChanges and its use of ChangeTracker.DetectChanges
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
}

The following listing shows an entity class called NotifyEntity, which inherits the
NotificationEntity shown in listing 11.2. You must call the SetWithNotify method
whenever a noncollection property changes. For collections, you have to use a
ObservableCollection to raise an event when a navigational collection property
is changed.

public class NotifyEntity : NotificationEntity
{
 private int _id;
 private string _myString;
 private NotifyOne _oneToOne;

 public int Id
 {
 get => _id;
 set => SetWithNotify(value, ref _id);
 }

 public string MyString
 {
 get => _myString;
 set => SetWithNotify(value, ref _myString);
 }

 public NotifyOne OneToOne
 {
 get => _oneToOne;
 set => SetWithNotify(value, ref _oneToOne);
 }

 public ObservableCollection<NotifyMany>
 Collection { get; }
 = new ObservableCollection<NotifyMany>();
}

After you’ve defined your entity class to use the INotifyPropertyChanged inter-
face, you must configure the tracking strategy for this entity class to Changed-
Notifications (listing 11.4). This configuration tells EF Core not to detect changes
via ChangeTracker.DetectChanges because it will be notified of any changes via

Listing 11.3 NotifyEntity using NotificationEntity class for events

Invokes the PropertyChanged event, but using ?.
to stop the method from failing when the new

entity is created and the PropertyChangedEvent-
Handler hasn’t been filled in by EF Core…... with the name

of the property

Each noncollection
property must have
a backing field.

If a noncollection
property is changed,
you need to raise a
PropertyChanged
event, which you do
via the inherited
method SetWithNotify.

Any collection navigational
property must be an
Observable collection, so
you need to predefine that
Observable collection.

You can use any Observable collection, but for performance
reasons, EF Core prefers ObservableHashSet<T>.

354 CHAPTER 11 Going deeper into the DbContext
INotifyPropertyChanged events. To configure INotifyPropertyChanged events for
one entity class, you use the Fluent API command.

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder
 .Entity<NotifyEntity>()
 .HasChangeTrackingStrategy(
 ChangeTrackingStrategy.ChangedNotifications);
}

APPROACHES 2 AND 3
I am not covering approach 2 (change and changing events), but the differences from
approach 1 are

 The NotificationEntity class must create change and changing events.
 You use a different ChangeTrackingStrategy setting, such as ChangingAnd-

ChangedNotifications.

Also not covered is approach 3 (proxy change tracking, INotifyPropertyChanged),
which works in a similar way to how lazy loading proxy works with virtual properties.
Instead, I cover the last approach (described next), which handles both INotify-
PropertyChanged and INotifyPropertyChanging. The main difference is that in
approach 3, you can create an instance of an entity class by using the normal construc-
tor approach, whereas the last approach requires you to use the CreateProxy<TEntity>
method to create an entity class.

LAST APPROACH: PROXY CHANGE TRACKING

The last approach uses proxy change tracking via the INotifyPropertyChanged and
INotifyPropertyChanging events introduced in EF Core 5. These change-tracking
events are added to the lazy-loading proxy approach with the virtual properties
described in section 2.4.4. To use this approach, you need to do five things:

 Change all your entity classes to have virtual properties.
 Use an Observable collection type for navigational collection properties.
 Change your code that creates a new instance of an entity class to use the Create-

Proxy<TEntity> method.
 Add the NuGet library Microsoft.EntityFrameworkCore.Proxies.
 Add the method UseChangeTrackingProxies when building the application’s

DbContext options.

Let’s start by looking at the structure of the entity class you need to use the proxy
change tracking approach, as shown in the following listing.

Setting the tracking strategy for one entity toListing 11.4 ChangedNotifications

355SaveChanges and its use of ChangeTracker.DetectChanges
public class ProxyMyEntity
{
 public virtual int Id { get; set; }
 public virtual string MyString { get; set; }
 public virtual ProxyOptional ProxyOptional { get; set; }

 public virtual ObservableCollection<ProxyMany>
 Many { get; set; }
 = new ObservableCollection<ProxyMany>();
}

If you read in an entity class via a query, the proxy change tracking will add its extra
code to create the INotifyPropertyChanged and INotifyPropertyChanging events
when a property is changed. But if you want to create a new entity class, you can’t use
the normal new command, such as new Book(). Instead, you must use the Create-
Proxy<TEntity> method. If you wanted to add a new version of the ProxyMyEntity
class shown in listing 11.5, for example, you would write

var entity = context.CreateProxy<ProxyMyEntity>();
entity.MyString = "hello";
context.Add(entity);
context.SaveChanges();

You must use the CreateProxy<TEntity> method (first line of the preceding code snip-
pet); otherwise, EF Core won’t be able to detect the changing event. (Don’t worry; if you
forget, EF Core throws an exception with a useful message.)

 The final part is making sure that the Microsoft.EntityFrameworkCore.Proxies
NuGet package is loaded and then updating your DbContext configuration to include
the UseChangeTrackingProxies method, as shown in the following code snippet:

var optionsBuilder =
 new DbContextOptionsBuilder<EfCoreContext>();
optionsBuilder
 .UseChangeTrackingProxies()
 .UseSqlServer(connection);
var options = optionsBuilder.Options;

using (var context = new EfCoreContext(options))

NOTE For the third approach, you can turn off the INotifyPropertyChanging
part of the proxy change tracking by setting the first parameter, useChange-
TrackingProxies, in the UseChangeTrackingProxies method to false. Then
EF Core would start using the tracking snapshot for comparison.

An example entity class set up to use proxy change trackingListing 11.5

All properties
must be virtual.

For navigational collection
properties, you need to use
an Observable collection type.

356 CHAPTER 11 Going deeper into the DbContext

11.4.3 Using the entities’ State within the SaveChanges method

So far, you’ve learned how to set the State of an entity and heard about how Change-
Tracker can be used to find out what has changed. Now you are going to use the
State data within the SaveChanges/SaveChangesAsync to do some interesting things.
Here are some of the possible uses of detecting what’s about to be changed in the
database:

 Automatically adding extra information to an entity—for instance, adding the
time when an entity was added or updated

 Writing a history audit trail to the database each time a specific entity type is
changed

 Add security checks to see whether the current user is allowed to update that
particular entity type

The basic approach is to override the SaveChanges/SaveChangesAsync methods inside
your application’s DbContext and execute a method before the base SaveChanges/
SaveChangesAsync is called. We check the States before the base SaveChanges is called
because a) the State of every tracked entity will have a value of Unchanged once
SaveChanges is called and b) you want to add/alter some of the entities before they
are written to the database. What you do with the State information is up to you, but
next is an example that logs the last time the entity was added or updated, with the
UserId of the user who did the add/update.

 The following listing provides an interface you can add to any entity class. This
defines the properties that you want filled in when the entity is added or updated, and
a method that can be used to set the properties to the right values.

public interface ICreatedUpdated
{
 DateTime WhenCreatedUtc { get; }
 Guid CreatedBy { get; }
 DateTime LastUpdatedUtc { get; }
 Guid LastUpdatedBy { get; }

 void LogChange(EntityState state, Guid userId = default);
}

Listing 11.6 The ICreatedUpdated interface defining four properties and a method

Add this interface to any entity class where you
want to log when/who it was created or updated.

Holds the datetime when
the entity was first added
to the database

Holds the UserId who
created the entity

Holds the datetime when
the entity was last updated

Holds the UserId who
last updated the entity

Called when the entity’s state is Added or
Modified State. Its job is to update the

properties based on the state.

The following listing shows an entity class called CreatedUpdatedInfo that implements
the ICreatedUpdated interface that you’ll detect when your modified SaveChanges

method is called (see listing 11.8). The LogChange method, which you’ll call in your
modified SaveChanges method, sets the various properties in the entity class.

357SaveChanges and its use of ChangeTracker.DetectChanges

Th
han

M

and
public class CreatedUpdatedInfo : ICreatedUpdated
 {
 public DateTime WhenCreatedUtc { get; private set; }
 public Guid CreatedBy { get; private set; }
 public DateTime LastUpdatedUtc { get; private set; }
 public Guid LastUpdatedBy { get; private set; }

 public void LogChange(EntityEntry entry,
 Guid userId = default)
 {
 if (entry.State != EntityState.Added &&
 entry.State != EntityState.Modified)
 return;

 var timeNow = DateTime.UtcNow;
 LastUpdatedUtc = timeNow;
 LastUpdatedBy = userId;
 if (entry.State == EntityState.Added)
 {
 WhenCreatedUtc = timeNow;
 CreatedBy = userId;
 }
 else
 {
 entry.Property(
 nameof(ICreatedUpdated.LastUpdatedUtc))
 .IsModified = true;
 entry.Property(
 nameof(ICreatedUpdated.LastUpdatedBy))
 .IsModified = true;
 }
 }
}

The next step is to override all versions of the SaveChanges method inside your appli-
cation’s DbContext and then precede the call to the base SaveChanges with a call to
your AddUpdateChecks method shown in listing 11.8. This method looks for entities
with a State of Added or Modified and inherits the ICreatedUpdated interface. If the
method finds an entity (or entities) that fits that criteria, it calls the entity’s LogChange
method to set the two properties to the correct values.

 The following listing shows your application’s DbContext, called Chapter11Db-
Context, which implements that code. (To keep the code shorter, you only override
the SaveChanges method. Normally, you’d also override the SaveChangesAsync method
with two parameters.) Notice too that the code ensures the ChangeTracker.Detect-
Changes method is only called once, because, as you have seen, that method can take
some time.

Listing 11.7 Automatically setting who and when a entity was updated

Entity class inherits ICreatedUpdated, which
means any addition/update of the entity is logged.

These properties have
private setters so that
only the LogChange
method can change them.

Its job is to update the
created and updated
properties. It is passed
the UserId if available.is method only

dles Added or
odified States. Obtains the current time so

that an add and update time
will be the same on create

It always sets the
LastUpdatedUtc
 LastUpdatedBy. If it’s an add, then you update

the WhenCreatedUtc and the
CreatedBy properties.

For performance
reasons you turned
off DetectChanges, so
you must manually
mark the properties
as modified.

358 CHAPTER 11 Going deeper into the DbContext

Add
en

ICreat
then

t

e

private void AddUpdateChecks()
{
 ChangeTracker.DetectChanges();
 foreach (var entity in ChangeTracker.Entries()
 .Where(e =>
 e.State == EntityState.Added ||
 e.State == EntityState.Modified))
 {
 var tracked = entity.Entity as ICreatedUpdated;
 tracked?.LogChange(entity);
 }
}

public override int SaveChanges(bool acceptAllChangesOnSuccess)
{
 AddUpdateChecks();
 try
 {
 ChangeTracker.AutoDetectChangesEnabled = false;
 return base.SaveChanges(acceptAllChangesOnSuccess);
 }
 finally
 {
 ChangeTracker.AutoDetectChangesEnabled = true;
 }
}

Your DbContext looks for added or modifiedListing 11.8 ICreatedUpdated entities

This private method will be called from
SaveChanges and SaveChangesAsync. It calls DetectChanges to

make sure all the updates
have been found.

It loops through all
the tracked entities
that have a State of
Added or Modified.

If the
ed/Modified
tity has the
edUpdated,
 the tracked

isn’t null.

So we call the LogChange
command. In this example we
don’t have the UserId available.

You override SaveChanges (and
SaveChangesAsync—not shown).

You call the AddUpdateChecks,
which contains a call to
ChangeTracker.DetectChanges().

Because
DetectChanges
has been called
we tell
SaveChanges no
to call it again
(for performanc
reasons).

You call the base.SaveChanges
that you overrode

Finally to turn the
AutoDetectChangesEnabled

back on

This is only one example of using ChangeTracker to take actions based on the
State of tracked entities, but it establishes the general approach. The possibilities
are endless.

NOTE In chapter 16 I have another example of detecting the State of cer-
tain entities to update a separate database when a Book or its related entities
change.

11.4.4 Catching entity class’s State changes via events

EF Core 2.1 added two events to EF Core: ChangeTracker.Tracked, which is triggered
when an entity is first tracked, and ChangeTracker.StateChanged, which is triggered
when the State of an already tracked entity is changed. This feature provides a similar
effect to calling ChangeTracker.Entries(), but by producing an event when some-
thing changes. The ChangeTracker events are useful for features such as logging
changes or triggering actions when a specific entity type’s State changes. But to start,
let’s look at the basics of these two events.

359SaveChanges and its use of ChangeTracker.DetectChanges

Hol
log of

tra
ev

The
one ev
 The Tracked event, which is simpler, is triggered when an entity class is first
tracked and tells you whether it came from a query via its FromQuery property. That
event could occur when you execute an EF Core query (without the AsNoTracking
method) or start tracking an entity class via an Add or Attach method. The following
listing is a unit test that captures a Tracked event when an entity class is Added to the
context.

var logs = new List<EntityTrackedEventArgs>();
context.ChangeTracker.Tracked += delegate(
 object sender, EntityTrackedEventArgs args)
{
 logs.Add(args);
};

//ATTEMPT
var entity = new MyEntity {MyString = "Test"};
context.Add(entity);

//VERIFY
logs.Count.ShouldEqual(1);
logs.Single().FromQuery.ShouldBeFalse();
logs.Single().Entry.Entity.ShouldEqual(entity);
logs.Single().Entry.State
 .ShouldEqual(EntityState.Added);

This listing shows you what information is available in the event data. For a Tracked
event, you get the FromQuery flag, which is true if the query was tracked during a
query. The Entry property gives you information about the entity.

 One thing to note in this example is that the context.Add(entity) method trig-
gers an Tracked event but doesn’t trigger a StateChanges event. If you want to detect
a newly added entity class, you can do so only via the Tracked event.

 The StateChanges event is similar but contains different information. The following
listing captures the StateChanges event when SaveChanges is called. The event contains
the entity’s State before SaveChanges was called in the property called OldState
and the entity’s State after SaveChanges was called in the property called NewState.

var logs = new List<EntityStateChangedEventArgs>();
context.ChangeTracker.StateChanged += delegate
 (object sender, EntityStateChangedEventArgs args)
{
 logs.Add(args);
};

Example of aListing 11.9 ChangeTracker.Tracked event and what it contains

Example of aListing 11.10 ChangeTracker.StateChanges event and what it contains

ds a
 any
cked
ents

You register your event handler to
the ChangeTracker.Tracked event.

This event handler
simply logs the
EntityTrackedEventArgs. Creates an

entity class

Adds that entity
class to context

re is
ent. The entity wasn’t

tracking during a query.

You can access the entity
that triggered the event.

You can also get the current State of that entity.

Holds a log of any StateChanged events

You register your
event handler to
the ChangeTracker
.StateChanged event.

This event handler simply logs
the EntityTrackedEventArgs.

360 CHAPTER 11 Going deeper into the DbContext

Cre
an en

c

T
is
ev

d

Sta
eve

s.
//ATTEMPT
var entity = new MyEntity { MyString = "Test" };
context.Add(entity);
context.SaveChanges();

//VERIFY
logs.Count.ShouldEqual(1);
logs.Single().OldState.ShouldEqual(EntityState.Added);
logs.Single().NewState.ShouldEqual(EntityState.Unchanged);
logs.Single().Entry.Entity.ShouldEqual(entity);

The listing shows that you get the before and after States of the entity by using the
OldState and NewState properties, respectively. Now that you have seen the two
ChangeTracker events, let’s use them for logging changes to some other form of stor-
age. But in the following listing, I show a class that will turn the two ChangeTracker
events into logs via NET’s ILogger interface.

public class ChangeTrackerEventHandler
{
 private readonly ILogger _logger;

 public ChangeTrackerEventHandler(DbContext context,
 ILogger logger)
 {
 _logger = logger;
 context.ChangeTracker.Tracked += TrackedHandler;
 context.ChangeTracker.StateChanged += StateChangeHandler;
 }

 private void TrackedHandler(object sender,
 EntityTrackedEventArgs args)
 {
 if (args.FromQuery)
 return;

 var message = $"Entity: {NameAndPk(args.Entry)}. " +
 $"Was {args.Entry.State}";
 _logger.LogInformation(message);
 }

 private void StateChangeHandler(object sender,
 EntityStateChangedEventArgs args)
 {
 var message = $"Entity: {NameAndPk(args.Entry)}. " +
 $"Was {args.OldState} and went to {args.NewState}";
 _logger.LogInformation(message);
 }
}

Class holding the code to turnListing 11.11 ChangeTracker events into logs

ates
tity
lass

Adds that entity
class to context

SaveChanges will change the State to
Unchanged after the database update.

here
 one
ent.

The State before
the change was
Added

The State after the
change is UnchangeYou get access to the entity

data via the Entry property.

This class is used in your
DbContext to log changes.

You will log
to ILogger.

Adds a Tracked
event handler

Adds a
teChanged
nt handler

Handles
Tracked events

We do not want to log
entities that are read in.

Forms a useful
message on Add
or Attach

The
StateChanged
event handler
logs any change

361SaveChanges and its use of ChangeTracker.DetectChanges

IL

t:
es()

Now add this code to the constructor of your application DbContext, as shown in the
following listing.

public class Chapter11DbContext : DbContext
{
 private ChangeTrackerEventHandler _trackerEventHandler;

 public Chapter11DbContext(
 DbContextOptions<Chapter11DbContext> options,
 ILogger logger = null)
 : base(options)
 {
 if (logger != null)
 _trackerEventHandler = new
 ChangeTrackerEventHandler(this, logger);
 }
 //… rest of code left out
}

This example is a simple one, but it does show how powerful the ChangeTracker
events are. My logged messages are rather simple (see the next listing), but you could
easily expand these messages to detail what properties have been modified, include
the UserId of the user who changed things, and so on.

Entity: MyEntity {Id: -2147482647}. Was Added
Entity: MyEntity {Id: 1}. Was Added and went to Unchanged
Entity: MyEntity {Id: 1}. Was Unchanged and went to Modified
Entity: MyEntity {Id: 1}. Was Modified and went to Unchanged

Listing 11.12 Adding the ChangeTrackerEventHandler to your application DbContext

Example output ofListing 11.13 ChangeTrackerEventHandler event logging

Your application DbContext that
you want to log changes from

You need an
instance of the
event handler
class while the
DbContext exists.You add a

ogger to the
constructor.

If an ILogger is
available, you register
the handlers.

Creates the event
handler class,
which registers the
event handlers

Code that triggered that event: context.Add(new MyEntity)
Code that
triggered that even
context.SaveChang

Code that triggered that event: entity.MyString
= “New string” + DetectChanges

Code that triggered that
event: context.SaveChanges()

11.4.5 Triggering events when SaveChanges/SaveChangesAsync
is called

EF Core 5 introduced SavingChanges, SavedChanges, and SaveChangesFailed events,
which are called before the data is saved to the database, after the data has been suc-
cessfully saved to the database, and if the save to the database failed, respectively.
These events allow you to tap into what is happening in the SaveChanges and
SaveChangesAsync methods. You could use these events to log what was written to the
database or alert someone if there was a certain exception inside SaveChanges or
SaveChangesAsync.

To use these events, you need to subscribe to the SavingChanges and Saved-

Changes events. The following listing shows you how.

362 CHAPTER 11 Going deeper into the DbContext

para
the

Db

li

context.SavingChanges +=
 delegate(object dbContext,
 SavingChangesEventArgs args)
{
 var trackedEntities =
 ((DbContext)dbContext)
 .ChangeTracker.Entries();

 //… your code goes here
};

context.SavedChanges +=
 delegate(object dbContext,
 SavedChangesEventArgs args)
{
 //… your code goes here
};

context. SaveChangesFailed+=
 delegate(object dbContext,
 SaveChangesFailedEventArgs args)
{
 //… your code goes here
};

To use these events, you need to know a few things about them:

 Like all C# events, the subscription to these events lasts only as long as the
instance of the DbContext exists.

 The events are triggered by both the SaveChanges and SaveChangesAsync
methods.

 The SavingChanges event is called before the ChangeTracker.DetectChanges
method is called, so if you want to implement the code shown in section 11.4.3
to update entities by using their State, you need to call the ChangeTracker
.DetectChanges method first. This approach isn’t a good idea, however, because
DetectChanges would be called twice, which could cause a performance issue.

Listing 11.14 How to subscribe to the SavingChanges/SavedChanges events

This event will trigger when SaveChanges is
called but before it updates the database.

The first
meter is
instance

of the
Context

that this
event is
nked to.

The SavingChangesEventArgs contains
the SaveChanges Boolean parameter
acceptAllChangesOnSuccess.

The first parameter is the instance
of the DbContext, but you need to
cast the object to use it.

This event will trigger when
SaveChanges successfully
updates the database.

The SavedChangesEventArgs
contains the count of entities
that were saved to the database.

This event will trigger when
SaveChanges has an exception
during an update to the database.

The SavingChangesEventArgs
contains the exception that
happened during the update
to the database.

11.4.6 EF Core interceptors

EF Core 3.0 introduced interceptors that enable you intercept, modify, and/or sup-
press EF Core operations, including low-level database operations, such as executing a
command, as well as higher-level operations, such as calls to SaveChanges. These inter-
ceptors have some powerful features, such as altering commands being sent to the
database.

This feature is advanced, so this section simply signposts the fact that it is available.
Also, the EF Core documentation for interceptors is good, provides lots of useful

363Using SQL commands in an EF Core application

11.5

examples, and is about 15 pages long. I refer you to the Microsoft documentation for
more information (http://mng.bz/zGJQ).

Using SQL commands in an EF Core application
EF Core has methods that allow raw SQL commands to be used, either as part of a
LINQ query or a database write, such as an SQL UPDATE. These commands are use-
ful when the query you want to perform can't be expressed with LINQ—when it calls
an SQL stored procedure, for example, or when a LINQ query results in inefficient
SQL being sent to the database.

DEFINITION An SQL stored procedure is a set of SQL commands—which may
or may not have parameters—that can be executed. These commands typi-
cally read and/or write to the database. The set of SQL commands is stored in
the database as a stored procedure and given a name. Then the stored proce-
dure can be called as part of an SQL command.

EF Core’s SQL commands are designed to detect SQL injection attacks—attacks in
which a malicious user replaces, say, a primary-key value with some SQL commands that
extract extra data from your database. EF Core provides two types of SQL commands:

 Methods ending in Raw, such as FromSqlRaw. In these commands, you provide
separate parameters, and those parameters are checked.

 Methods ending in Interpolated, such as FromSqlInterpolated. The string
parameter provided to these methods used C#6’s string interpolation with the
parameters in the string, such as $"SELECT * FROM Books WHERE BookId =

{myKey}". EF Core can check each parameter within the interpolated string type.

WARNING If you build an interpolated string outside the command—such as
var badSQL = $"SELECT … WHERE BookId = {myKey}"—and then use it in a
command like FromSqlRaw(badSQL), EF Core can’t check SQL injection
attacks. You should use FromSqlRaw with parameters or FromSqlInterpolated
with parameters embedded in a string interpolation.

You can include SQL commands in EF commands in several ways. In addition to show-
ing each group, I will use a mixture of …Raw and …Interpolated sync versions in the
examples. Every command I show has an async version other than the GetDbConnection

method. The groups of SQL commands that are covered are

 FromSqlRaw/FromSqlInterpolated sync/async methods, which allow you to
use a raw SQL command in an EF Core query

 ExecuteSqlRaw/ExecuteSqlInterpolated sync/async methods, which execute
a nonquery command

 AsSqlQuery Fluent API method, which maps an entity class to an SQL query
 Reload/ReloadAsync command, used to refresh an EF Core-loaded entity that

has been changed by an ExecuteSql… method

http://mng.bz/zGJQ

364 CHAPTER 11 Going deeper into the DbContext
 EF Core’s GetDbConnection method, which provides low-level database access
libraries to access the database directly

EF6 The commands in EF Core for SQL access are different from the way
that EF6.x provides SQL access to the database.

11.5.1 FromSqlRaw/FromSqlInterpolated: Using SQL in
an EF Core query

The FromSqlRaw/FromSqlInterpolated methods allow you to add raw SQL com-
mands to a standard EF Core query, including commands that you wouldn’t be able to
call from EF Core, such as stored procedures. Here’s an example of calling a stored
procedure that returns only books that have an average review vote of the given value.

int filterBy = 5;
var books = context.Books
 .FromSqlInterpolated(
 $"EXECUTE dbo.FilterOnReviewRank @RankFilter = {filterBy}")
 .IgnoreQueryFilters()
 .ToList();

There are a few rules about an SQL query:

 The SQL query must return data for all properties of the entity type (but there
is a way around this rule; see section 11.5.5).

 The column names in the result set must match the column names that proper-
ties are mapped to.

 The SQL query can't contain related data, but you can add the Include method
to load related navigational properties (see listing 11.16).

You can add other EF Core commands after the SQL command, such as Include,
Where, and OrderBy. The following listing shows an SQL command that filters the
results by the average star rating with an Include of the book’s Reviews and AsNo-
Tracking command added.

double minStars = 4;
var books = context.Books
 .FromSqlRaw(
 "SELECT * FROM Books b WHERE " +
 "(SELECT AVG(CAST([NumStars] AS float)) " +
 "FROM dbo.Review AS r " +

Using aListing 11.15 FromSqlInterpolated method to call an SQL stored procedure

Example of adding extra EF Core commands to the end of an SQL queryListing 11.16

You start the query in the normal way,
with the DbSet<T> you want to read. The FromSqlInterpolated

method allows you to
insert an SQL command.

Uses C#6’s string interpolation
feature to provide the parameter

You need to remove any query filters;
otherwise, the SQL won’t be valid.

The SQL calculates the
average votes and uses
it in an SQL WHERE.

365Using SQL commands in an EF Core application
 "WHERE b.BookId = r.BookId) >= {0}", minStars)
 .Include(r => r.Reviews)
 .AsNoTracking()
 .ToList();

WARNING If you’re using model-level query filters (see section 6.1.7), the
SQL you can write has limitations. ORDER BY won’t work, for example. The way
around this problem is to apply the IgnoreQueryFilters method after the
Sql command and re-create the model-level query filter in your SQL code.

11.5.2 ExecuteSqlRaw/ExecuteSqlInterpolated: Executing a nonquery
command

In addition to putting raw SQL commands in a query, you can execute nonquery
SQL commands via EF Core’s ExecuteSqlRaw/ExecuteSqlInterpolated methods.
Typical commands are SQL UPDATE and DELETE, but any nonquery SQL command
can be called. The following listing shows an SQL UPDATE command, which takes
two parameters.

var rowsAffected = context.Database
 .ExecuteSqlRaw(
 "UPDATE Books " +
 "SET Description = {0} " +
 "WHERE BookId = {1}",
 uniqueString, bookId);

The ExecuteSqlRaw method returns an integer, which is useful for checking that the
command was executed in the way you expected. In this example, you’d expect the
method to return 1 to show that it found and updated a row in the Books table that
had the primary key you provided.

11.5.3 AsSqlQuery Fluent API method: Mapping entity classes
to queries

EF Core 5 provided a way to map an entity class to an SQL query via a the AsSqlQuery
Fluent API method. This feature allows you to hide your SQL code inside the applica-
tion’s DbContext’s configuration, and developers can use this DbSet<T> property in
queries as though it were a normal entity class mapped to an entity. It’s a read-only
entity class, of course, but see the following note if you need a read/write version.

TheListing 11.17 ExecuteSqlCommand method executing an SQL UPDATE

In this case, you use the normal
sql parameter check and
substitution method— {0},
{1}, {2}, and so on.

The Include method works with
the FromSql because you are not
executing a store procedure.

You can add other EF Core
commands after the SQL
command.

The ExecuteSqlRaw is in the
context.Database property.

The ExecuteSqlRaw will execute
the SQL and return an integer,
which in this case is the number
of rows updated.

The SQL command is a string, with places
for the parameters to be inserted.

Provides two parameters
referred to in the command

366 CHAPTER 11 Going deeper into the DbContext
NOTE EF Core 5 added the ability to configure an entity class to be mapped
to both a table (for create, update, and delete) and a view (for read). See
http://mng.bz/0rY6.

As an example, you will create an entity class called BookSqlQuery that returns three
values for a Book entity class: BookId, Title, and the average votes for this Book in a
property called AverageVotes. This class is shown in the following listing.

public class BookSqlQuery
{
 [Key]
 public int BookId { get; set; }

 public string Title { get; set; }

 public double? AverageVotes { get; set; }
}

Now you need to configure this entity class to an SQL query, using the AsSqlQuery
Fluent API method, as shown in the following listing.

public class BookDbContext : DbContext
{
 //… other DbSets removed for clarity

 public DbSet<BookSqlQuery> BookSqlQueries { get; set; }

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 //… other configrations removed for clarity

 modelBuilder.Entity<BookSqlQuery>().ToSqlQuery(
 @"SELECT BookId
 ,Title
 ,(SELECT AVG(CAST([r0].[NumStars] AS float))
 FROM Review AS r0
 WHERE t.BookId = r0.BookId) AS AverageVotes
 FROM Books AS t");
 }
}

You can add LINQ commands, such as Where and OrderBy, in the normal way, but the
returned data follows the same rules as the FromSqlRaw and FromSqlInterpolated
methods (section 11.5.1).

TheListing 11.18 BookSqlQuery class to map to an SQL query

Configuring theListing 11.19 BookSqlQuery entity class to an SQL query

The primary key of
the book that is
returned

The title of the book

The average votes for this
Book based on the Review’s
NumStars property

You add a DbSet<T> for the
BookSqlQuery entity class to

make querying easy.

The ToSqlQuery
method maps the
entity class to an
SQL query.

Returns the
three values
for each Book

http://mng.bz/0rY6

367Using SQL commands in an EF Core application
11.5.4 Reload: Used after ExecuteSql commands

If you have an entity loading (tracked), and you use an ExecuteSqlRaw/Execute-
SqlInterpolated method to change the data on the database, your tracked entity is
out of date. That situation could cause you a problem later, because EF Core doesn’t
know that the values have been changed. To fix this problem, EF Core has a method
called Reload/ReloadAsync, which updates your entity by rereading the database.

 In the following listing, you load an entity, change its content via the ExecuteSql-
Command method, and then use the Reload method to make sure that the entity’s con-
tent matches what’s in the database.

var entity = context.Books.
 Single(x => x.Title == "Quantum Networking");
var uniqueString = Guid.NewGuid().ToString();

context.Database.ExecuteSqlRaw(
 "UPDATE Books " +
 "SET Description = {0} " +
 "WHERE BookId = {1}",
 uniqueString, entity.BookId);

context.Entry(entity).Reload();

At the end of this code, the entity instance will match what’s in the database.

11.5.5 GetDbConnection: Running your own SQL commands

When EF Core can’t provide the query features you want, you need to drop back to
another database access method that can. A few low-level database libraries require a
lot more code to be written but provide more-direct access to the database, so you can
do almost anything you need to do. Normally, these low-level database libraries are
database-server-specific. In this section, you use a NuGet library called Dapper (see
https://github.com/StackExchange/Dapper). Dapper is a simple object mapper for
.NET, sometimes known as a micro-ORM. Dapper is simple but fast. It uses the ADO.NET
library to access the database and adds autocopying of columns to class properties.

 The following listing uses Dapper to read specific columns into a nonentity class
called RawSqlDto that has properties called BookId, Title, and AverageVotes, so you
can load only the columns you want. In this example, you use Dapper to query the
same database that your application’s DbContext is linked to. The Dapper query
returns a single RawSqlDto class with data in the three properties for the Books row,
where the BookId column (the primary key) has a value of 4.

Using theListing 11.20 Reload method to refresh the content of an existing entity

Loads a Book entity
in the normal way

Uses ExecuteSqlRaw to
change the Description
column of that same
Book entity

When calling the Reload method, EF
Core rereads that entity to make sure
that the local copy is up to date.

https://github.com/StackExchange/Dapper

368 CHAPTER 11 Going deeper into the DbContext

var connection = context.Database.GetDbConnection();
string query = "SELECT b.BookId, b.Title, " +
 "(SELECT AVG(CAST([NumStars] AS float)) " +
 "FROM dbo.Review AS r " +
 "WHERE b.BookId = r.BookId) AS AverageVotes " +
 "FROM Books b " +
 "WHERE b.BookId = @bookId";

var bookDto = connection
 .Query<RawSqlDto>(query, new
 {
 bookId = 4
 })
 .Single();

11.6

Listing 11.21 Obtaining a DbConnection from EF Core to run a Dapper SQL query

Gets a DbConnection to the database, which
the micro-ORM called Dapper can use

Creates the SQL
query you want
to execute

Calls Dapper’s Query method with
the type of the returned data

Provides parameters to Dapper to
be added to the SQL command

PERFORMANCE TIP FromSqlRaw/FromSqlInterpolated methods must return
all the columns mapped to the entity calls, and even if you add a LINQ
Select after the FromSqlRaw/FromSqlInterpolated method, it still returns
all the columns. As a result, Dapper is likely to be faster at loading a few col-
umns from the database than any of the EF Core RawSql… methods.

Don’t be afraid to mix EF Core and Dapper, especially if you have a performance
problem. I use Dapper with EF Core in part 3 to get a performance improvement
because I wrote an improved SQL query that sorted on average review stars. The
downside of Dapper is that it doesn’t know anything about navigational properties, so
working with linked entities takes more code in Dapper than it does in EF Core.

Accessing information about the entity classes
and database tables
Sometimes, it’s useful to get information about how the entity classes and properties are
mapped to the database tables and columns. EF Core provides two sources of informa-
tion, one that emphasizes the entity classes and one that focuses more on the database:

 context.Entry(entity).Metadata—Has more than 20 properties and meth-
ods that provide information on the primary key, foreign key, and navigational
properties

 context.Model—Has a set of properties and methods that provides a similar set
of data to the Metadata property, but focuses more on the database tables, col-
umns, constraints, indexes, and so on

Here are some examples of how you might use this information to automate certain
services:

 Recursively visiting an entity class and its relationships so that you can apply
some sort of action in each entity class, such as resetting its primary-key values

369Accessing information about the entity classes and database tables
 Obtaining the settings on an entity class, such as its delete behavior
 Finding the table name and column names used by an entity class so that you

can build raw SQL with the correct table and column names

EF6 EF6.x provided some model information, but it was complex to use and
incomplete. EF Core has a comprehensive, easy-to-use set of Model information,
but there isn’t much documentation other than the methods’ comments.

The following sections provide examples of using these sources.

11.6.1 Using context.Entry(entity).Metadata to reset primary keys

In section 6.2.3, you learned how to copy an entity class with certain relationships by
resetting the primary keys manually. I needed a similar feature for a client’s applica-
tion, so I built a service that resets the primary keys automatically as a good example
of using context.Entry(entity).Metadata.

 The example in section 6.2.3 copied an Order entity with two LineItem entities,
but the Book entity class shouldn’t be copied. The following listing is a copy of the list-
ing from section 6.2.3.

var books = context.SeedDatabaseFourBooks();
var order = new Order
{
 CustomerId = Guid.Empty,
 LineItems = new List<LineItem>
 {
 new LineItem
 {
 LineNum = 1, ChosenBook = books[0], NumBooks = 1
 },
 new LineItem
 {
 LineNum = 2, ChosenBook = books[1], NumBooks = 2
 },
 }
};
context.Add(order);
context.SaveChanges();

In the version in chapter 6, you read in the Order and LineItems entity classes, and
then reset the primary keys manually. But in this example, you build a class called
PkResetter to perform this task automatically. The following listing shows this code in
the PkResetter class.

Listing 11.22 Creating an Order with two LineItems ready to be copied

For this test, add four
books to use as test data.

Create an Order with two LinItems
that you want to copy.

Set CustomerId to the default
value so that the query filter
lets you read the order back.

Adds the first
LineNum linked
to the first book

Adds the second
LineNum linked to

the second book

Writes this Order
out to the database

370 CHAPTER 11 Going deeper into the DbContext

ey
n
tity

public class PkResetter
{
 private readonly DbContext _context;
 private readonly HashSet<object> _stopCircularLook;

 public PkResetter(DbContext context)
 {
 _context = context;
 _stopCircularLook = new HashSet<object>();
 }

 public void ResetPksEntityAndRelationships(object entityToReset)
 {
 if (_stopCircularLook.Contains(entityToReset))
 return;

 _stopCircularLook.Add(entityToReset);

 var entry = _context.Entry(entityToReset);
 if (entry == null)
 return;

 var primaryKey = entry.Metadata.FindPrimaryKey();
 if (primaryKey != null)
 {
 foreach (var primaryKeyProperty in primaryKey.Properties)
 {
 primaryKeyProperty.PropertyInfo
 .SetValue(entityToReset,
 GetDefaultValue(
 primaryKeyProperty.PropertyInfo.PropertyType));
 }
 }

 foreach (var navigation in entry.Metadata.GetNavigations())
 {
 var navProp = navigation.PropertyInfo;

 var navValue = navProp.GetValue(entityToReset);
 if (navValue == null)
 continue;

 if (navigation.IsCollection)
 {
 foreach (var item in (IEnumerable)navValue)
 {
 ResetPksEntityAndRelationships(item);
 }
 }
 else
 {
 ResetPksEntityAndRelationships(navValue);
 }

Listing 11.23 Using metadata to visit each entity and reset its primary key

Used to stop
circular
recursive steps

This method will
recursively look at

all the linked entities
and reset their
primary keys.

If the method has already
looked at this entity, the
method exits.

Remembers
that this

entity has
been visited

by this
method

Deals with an entity
that isn’t known by
your configuration

Gets the
primary-k
informatio
for this en

Resets every
property used in

the primary key to
its default value

Gets all the
navigational

properties
for this entity

Gets a property that contains
the navigation property

Gets the
navigation

property value

If null, skips the
navigation property

If the navigation
property is

collection, visits
every entity

Recursively
visits each entity
in the collection

If a singleton,
visits that entity

371Accessing information about the entity classes and database tables
 }
 }
}

That listing might seem to be a lot of code to reset the three primary keys, but it will
work with any entity-class configuration, so you can use it anywhere. Here is a list of
the various Metadata properties and methods used in listing 11.23:

 Find the entity’s primary key—entry.Metadata.FindPrimaryKey()

 Get the primary key’s properties—primaryKeyProperty.PropertyInfo

 Find the entity’s navigational relationships—Metadata.GetNavigations()

 Get a navigational relationship’s property—navigation.PropertyInfo

 Checking whether the navigational property is a collection—navigation.IsCollection

NOTE The PkResetter class assumes that the primary keys and the naviga-
tional properties are stored in a property, but in fact, these values could be in
backing fields or shadow properties. This simplification was used to make the
code shorter and easier to read.

11.6.2 Using context.Model to get database information

The context.Model property gives you access to the Model of the database that EF
Core builds on first use of an application’s DbContext. The Model contains some data
similar to context.Entry(entity).Metadata, but it also has specific information of
the database schema. Therefore, if you want to do anything with the database side,
context.Model is the right information source to use.

 I used the context.Model source to build the EfCore.EfSchemaCompare library
that I mentioned in section 9.5.3. But for a smaller example, you’ll produce a method
that returns an SQL command to delete a collection of entities with a common for-
eign key. The reason for doing this is to improve the delete performance of a group of
dependent entities.

 If you deleted a group of dependent entities via EF Core, you would typically read in
all the entities to delete, and EF Core would delete each entity with a separate SQL com-
mand. The method in the following listing produces a single SQL command that deletes
all the dependent entities in one SQL command without the need to read them in. This
process, therefore, is much quicker than EF Core, especially on large collections.

public string BuildDeleteEntitySql<TEntity>
 (DbContext context, string foreignKeyName)
 where TEntity : class
{
 var entityType = context.Model.FindEntityType(typeof(TEntity));

Listing 11.24 Using context.Model to build a quicker dependent delete

This method provides a
quick way to delete all
the entities linked to a
principal entity.

Gets the Model information for the given type,
or null if the type isn’t mapped to the database

372 CHAPTER 11 Going deeper into the DbContext

w

 var fkProperty = entityType?.GetForeignKeys()
 .SingleOrDefault(x => x.Properties.Count == 1
 && x.Properties.Single().Name == foreignKeyName)
 ?.Properties.Single();

 if (fkProperty == null)
 throw new ArgumentException($"Something wrong!");

 var fullTableName = entityType.GetSchema() == null
 ? entityType.GetTableName()
 : $"{entityType.GetSchema()}.{entityType.GetTableName()}";

 return $"DELETE FROM {fullTableName} " +
 $"WHERE {fkProperty.GetColumnName()}"
 + " = {0}";
}

Having found the right entity/table and checked that the foreign key name matches,
you can build the SQL. As the listing shows, you have access to the table’s name and
schema, plus the column name of the foreign key. The following code snippet shows
the output of the BuildDeleteEntitySql method in listing 11.24 with a Review entity
class for the TEntity and a foreign-key name of BookId:

DELETE FROM Review WHERE BookId = {0}

The SQL command is applied to the database by calling the ExecuteSqlRaw method,
with the SQL string as the first parameter and the foreign-key value as the second
parameter.

NOTE The BuildDeleteEntitySql class assumes that the foreign key is singu-
lar, but a foreign key could be a composite key with multiple values. This sim-
plification was used to make the code shorter and easier to read.

Although this example is simple, it does show that using the Model methods allows you
to obtain information entity classes with its relationships and match those entity
classes to the database’s schema.

11.7 Dynamically changing the DbContext’s
connection string
EF Core 5 makes it easier to change the connection string in an instance of an applica-
tion’s DbContext. Now it provides a method called SetConnectionString that allows
you to change the connection string at any time so that you can change the database
you are accessing at any time. I typically use this feature to pick different databases based
on the person who is logged in, where the user is located, and so on. This process is
known as database sharding, and it offers better performance because the user’s data is
spread over multiple databases. It can also add some security by placing all the data for
one group of users in one database. Figure 11.6 shows the SetConnectionString
method used to implement a database sharding system with EF Core.

Looks for a foreign
key with a single
property with the
given name

If any of those things
doesn’t work, the code
throws an exception.

Forms the full
table name,

ith a schema
if required

Forms the main part
of the SQL code

Adds a parameter that the
ExecuteSqlRaw can check

373Handling database connection problems
EF Core 5 made one other important change: the connection string can be null when
you first create the application’s DbContext. (Before EF Core 5 the connection string
could not be null.) The connection string can be null until you need to access the
database. This feature is useful because on startup, there would be no tenant informa-
tion, so the connection string would be null. With the EF Core 5 change, however,
your EF Core configuration code can run without needing a connection string.
Another example is my EfCore.GenericServices library, which needs to scan the
entities used in a database on startup. Now that library works even if the connection
string is null.

11.8 Handling database connection problems
With relational database servers, especially in the cloud, a database access can fail
because the connection times out or certain transient errors occur. EF Core has an
execution strategy feature that allows you to define what should happen when a time-
out occurs, how many timeouts are allowed, and so on. Providing an execution strat-
egy can make your application less likely to fail due to connection problems or
transient internal errors.

EF6 EF Core’s execution strategy is an improvement on the EF6.x execution
strategy, as EF Core can handle retries in a transaction.

public class MyDbContext : DbContext
{

public MyDbContext(
DbContextOptions<MyDbContext> options,
IGetConnection getConnection)
: base(options)

{
Database.SetConnectionString(

getConnection?.CurrentConnection());
}

}

Name: joe@...
UserId: aca1a46…

Tenant: Company1

Joe

Login

IGetConnection

...Company3...Company2...Company1 ...Company2 ...Company3

This is an example of an application
that picks the database based on data
held in the user’s claims.

This provides better database
performance by spreading the load
over multiple databases. It also
improves security for each tenant.

User’s claims

SQL SQL SQL

Figure 11.6 A user logging in to an ASP.NET Core application. The application uses the user’s
details to work out what database they should access and adds a claim called Tenant to hold
that information. This works because when the application’s DbContext is created, its constructor
code runs to set the database connection string. This code uses the injected IGetConnection
class, which returns a connection string based on the Tenant claim that maps the user to the
correct database.

374 CHAPTER 11 Going deeper into the DbContext
The SQL Server database provider includes an execution strategy that’s specifically
tailored to SQL Server (including SQL Azure). It’s aware of the exception types that
can be retried and has sensible defaults for maximum retries, delay between retries,
and so on. This listing shows how to apply this strategy to the setup of SQL Server, with
the execution strategy shown in bold.

var connection = @"Server=(localdb)\mssqllocaldb;Database=… etc.”;
var optionsBuilder =
 new DbContextOptionsBuilder<EfCoreContext>();

optionsBuilder.UseSqlServer(connection,
 option => option.EnableRetryOnFailure());
var options = optionsBuilder.Options;

using (var context = new EfCoreContext(options))
{
 … normal code to use the context

Normal EF Core queries or SaveChanges calls will automatically be retried without
your doing anything. Each query and each call to SaveChanges is retried as a unit if a
transient failure occurs. But database transactions need a little more work.

11.8.1 Handling database transactions with EF Core’s execution
strategy

Because of the way that an execution strategy works, you need to adapt any code that
uses a database transaction in which you have multiple calls to SaveChanges within an
isolated transaction. (See section 4.7.2 for information on how transactions work.)
The execution strategy works by rolling back the whole transaction if a transient fail-
ure occurs and then replaying each operation in the transaction; each query and each
call to SaveChanges is retried as a unit. For all the operations in the transaction to be
retried, the execution strategy must be in control of the transaction code.

 The following listing shows both the addition of the SQL Server EnableRetryOn-
Failure execution strategy and the use of the execution strategy (in bold) with a
transaction. The transaction code is written in such a way that if a retry is needed, the
whole transaction is run again from the start.

var connection = @"Server=(localdb)\mssqllocaldb;Database=… etc.”;
var optionsBuilder =
 new DbContextOptionsBuilder<EfCoreContext>();

optionsBuilder.UseSqlServer(connection,
 option => option.EnableRetryOnFailure());
var options = optionsBuilder.Options

Setting up a DbContext with the standard SQL execution strategyListing 11.25

Writing transactions when you’ve configured an execution strategyListing 11.26

Configures the database to use
the SQL execution strategy, so
you have to handle transactions
differently

375Handling database connection problems
using (var context = new Chapter09DbContext(options))
{
 var strategy = context.Database
 .CreateExecutionStrategy();
 strategy.Execute(() =>
 {
 try
 {
 using (var transaction = context
 .Database.BeginTransaction())
 {
 context.Add(new MyEntity());
 context.SaveChanges();
 context.Add(new MyEntity());
 context.SaveChanges();
 transaction.Commit();
 }
 }
 catch (Exception e)
 {
 //Error handling to go here
 throw;
 }
 });
}

WARNING The code in listing 11.26 is safe when it comes to a retry. By safe, I
mean that the code will work properly. But in some cases, such as when data
outside the execution strategy retry action is altered, the retry could cause
problems. An obvious example is an int count = 0 variable defined outside
the scope of the retry action that’s incremented inside the action. In this case,
the value of the count variable would be incremented again if a retry
occurred. Bear this warning in mind when you design transactions if you’re
using the execution strategy retry facility.

11.8.2 Altering or writing your own execution strategy

In some cases, you might need to change the execution strategy for your database. If
there’s an existing execution strategy for your database provider (such as SQL Server),
you can change some options, such as the number of retries or the SQL errors to be
retried.

 If you want to write your own execution strategy, you need to implement a class
that inherits the interface IExecutionStrategy. I recommend that you look at the EF
Core internal class called SqlServerExecutionStrategy as a template. You can find
this template at http://mng.bz/A1DK.

 After you’ve written your own execution strategy class, you can configure it into
your database by using the ExecuteStrategy method in the options, as shown in bold
in the next listing.

Creates an
IExecutionStrategy
instance, which uses
the execution strategy
you configured the
DbContext with

The important thing is to make the
whole transaction code into an
Action method it can call.

The rest of the transaction
setup and running your
code are the same.

http://mng.bz/A1DK

376 CHAPTER 11 Going deeper into the DbContext
var connection = this.GetUniqueDatabaseConnectionString();
var optionsBuilder =
 new DbContextOptionsBuilder<Chapter09DbContext>();

optionsBuilder.UseSqlServer(connection,
 options => options.ExecutionStrategy(
 p => new MyExecutionStrategy()));

using (var context = new Chapter09DbContext(optionsBuilder.Options))
{
 … etc.

Summary
 You can use EF Core’s entity State property, with a little help from a per-

property IsModified flag, to define what will happen to the data when you call
SaveChanges.

 You can affect the State of an entity and its relationships in several ways. You
can use the DbContext’s methods Add, Remove, Update, Attach, and Track-
Graph; set the State directly; and track modifications.

 The DbContext’s ChangeTracker property provides several ways to detect the
State of all the entities that have changed. These techniques are useful for
marking entities with the date when an entity was created or last updated, or
logging every State change for any of the tracked entities.

 The Database property has methods that allow you to use raw SQL command
strings in your database accesses.

 You can access information about the entities and their relationships via the
Entry(entity).Metadata and the database structure via the Model property.

 EF Core contains a system that allows you to provide a retry capability. This sys-
tem can improve reliability by retrying accesses if there are connection or tran-
sient errors in your database.

For readers who are familiar with EF6:

 EF Core has changed the ways that the entity’s State is set based on lessons
learned from EF6.x. Now, it is more likely to set the entity’s State to the correct
value for the action you’re using.

 EF Core introduces a new method called TrackGraph, which will traverse a
graph of linked entities and call your code to set each entity’s State to the value
you require.

 The way you use raw SQL commands in EF Core is different from the way it’s
done in EF6.x.

Configuring your own execution strategy into your DbContextListing 11.27

377Summary
 EF Core’s Entry(entity).Metadata and Model properties are a tremendous
improvement over EF6.x’s access to the model metadata. Now you can access
every aspect of the database model.

 EF Core’s execution strategy is an improvement on the EF6.x execution strat-
egy, as EF Core can handle retries in a database transaction.

Part 3

Using Entity Framework Core
in real-world applications

In parts 1 and 2, you learned about EF Core in some detail, and at every step,
I tried to provide examples of using each feature or approach. Now, in part 3,
you are going to build a more complex version of the Book App and then
performance-tune it. There will be some new information, such as looking at
Cosmos DB in chapter 16 and unit testing in chapter 17, but the focus of part 3
is on using EF Core rather than learning about it.

 I am a freelance contractor. My clients want their requirements turned into
robust, secure, high-performance applications—and they want them quickly! To
provide these applications, I use approaches and libraries that are robust,
secure, and high-performance. The first two chapters in part 3 cover various
approaches I have learned over the years that allow me to build applications
quickly. As Kent Beck said, “Make it work, make it right, make it fast.”

 Having built an application in chapters 12 and 13, we move on to performance
tuning. The initial Book App has around 700 real books in it, but for performance
testing, we clone that data to 100,000 books and more. That number of books
exposes some database performance issues, and over two and a half chapters, you
will improve the Book App’s performance by using several techniques.

 Chapter 16 is about using Cosmos DB to add a final performance tune of the
Book App. This chapter exposes the differences between a relational (SQL)
database and a NoSQL database so that you are better informed about where
and how to use either type of database.

380 PART 3 Using Entity Framework Core in real-world applications
 Finally, chapter 17 covers unit testing, with the focus on EF Core. Unit testing
when a database is involved requires careful thought, especially if you don’t want the
unit test to run slowly. I share several techniques and approaches, and I provide a
NuGet package that I built, called EfCore.TestSupport. This library contains setup
methods that help you unit test EF Core applications safely and quickly.

Using entity events
to solve business problems
In software, the term event covers a wide range of architectures and patterns. Gen-
erally, it means “Action A triggers action B.” You saw some C# events in chapter 11,
such as events in which an entity state changes (section 11.4.4). But this chapter is
about another, quite different type of event, which I call an entity event because it is
held in your entity classes. Using an entity event is like putting a message in the
entity class for someone to read later.

 The purpose of entity events is to trigger business logic when something
changes in an entity class. In section 12.1.1 I show an example where a change in
an address’s details causes the sales tax on a quote to be updated. This example is

This chapter covers
 Understanding the types of events that work

well with EF Core

 Using domain events to trigger extra business
rules

 Using integration events to synchronize two
parts of your application

 Implementing an Event Runner and then
improving it
381

382 CHAPTER 12 Using entity events to solve business problems

implemented by detecting a change to the address details and sending an entity event
(message) that runs some business logic that updates the sales tax for quotes at that
address.

In addition to the entity events, you need parts that make them work. At the heart
of the entity-event approach is code that I call the Event Runner, whose job is to read in
all the entity events and run the specific business code (referred to as event handlers)
associated with each entity event. Each event handler contains the specific business
logic for that entity event, and each entity-event message provides the data that the
event handler needs.

The Event Runner runs before the SaveChanges and SaveChangesAsync methods
are called. The best way is to override the SaveChanges and SaveChangesAsync meth-
ods and then run the Event Runner into the methods. I refer to these SaveChanges

and SaveChangesAsync methods as being event-enhanced.

12.1 Using events to solve business problems
I came up with the name entity events, but much cleverer people coined the terms
domain events and integration events to define two uses of entity events. In this chapter,
you’ll learn about domain events and integration events, as well as the situations in
which they can be used. Then you will implement event-enhanced SaveChanges and
SaveChangesAsync methods that you can use in your applications.

12.1.1 Example of using domain events

I was introduced to domain events by one of my clients. The client had used an event
system discussed by Jimmy Bogard in his article “A better domain events pattern” (see
http://mng.bz/oGNp), which described how to add domain events to EF Core. I had
read this article some years before and didn’t get it, but my client did and used
domain events successfully. Seeing entity events being used in a real application per-
suaded me of their usefulness, and I went on to use domain events to solve several
business requirements and performance issues in the client’s application. The follow-
ing example is taken from one of those business requirements.

My client’s company sells bespoke constructions in the United States, and every
project starts with a quote to send to the client. The construction could be anywhere
in the United States, and the state where the work is done defines the sales tax. As a
result, the sales tax had to be recalculated when any of the following things happened:

 A new quote was created. By default, a new quote doesn’t have a location, so the
business rule was to give it the highest sales tax until the location was specified.

 The job location was set or changed. The sales tax had to be recalculated, and it was
the sales team’s job to select a location from a list of known locations.

 A location’s address changed. All the quotes linked to that location had to be recal-
culated to make sure that the sales tax was correct.

Now, you could add business logic for all these actions, but doing that would make the
frontend more complex, and you might miss one area where a location changed and

http://mng.bz/oGNp

383Using events to solve business problems
then the sales tax was wrong. The solution was to use events that triggered if a quote’s
location was added or updated, and it worked well. A change in the Location entity
class created a domain event to trigger an event handler that recalculated the sales tax
for a quote (or quotes). Each domain event needed a slightly different piece of busi-
ness logic, plus a common service to calculate the tax. Figure 12.1 shows an example
of what might happen if the address of a location changes.

I won’t delve into how this example works now, as this section describes where and
why events are useful. Suffice it to say that in section 12.4, you write code to handle
entity events and improve that code as you go deeper into this approach.

12.1.2 Example of integration events

The second use of an entity event is a more complex situation. In chapter 13, you will
learn multiple ways to improve the performance of your EF Core database accesses.
One of these approaches is to precalculate the data you need to show to the user and
store it in another database used only for displaying data to the user. This approach
improves read performance and scalability.

 The normal SQL commands for the Book App, for example, calculate the average
star rating of a book by dynamically calculating the average across all the Book’s
Reviews. That technique works fine for a small number of Books and Reviews, but
with large numbers, sorting by average review ratings can be slow. In chapter 16, you
will use a Query Responsibility Segregation (CQRS) database pattern to store the pre-
calculated data in a separate, read-side database. The problem is making sure that the
write-side SQL database and the read-side Cosmos DB database are always in step.

 I use this solution in chapter 16: when writing the SQL database, run a transaction
that contains both the update to the SQL database and the update to the read-side
Cosmos DB database. If either database fails, both databases will fail, which means that
they can’t get out of step. Figure 12.2 shows how this solution might work.

Location change
event handler

Location 987

- State
- County

Quote 123

- SalesTax
- TotalPrice

Quote 456

- SalesTax
- TotalPrice

User

Change

Location change event

Calculate
tax

service.

Figure 12.1 Rather than add code at the frontend to run some business logic when a
location changes, you can catch the change in the entity class and add a domain event to
the entity class. When SaveChanges is called, a piece of code added to SaveChanges
looks at any domain events and runs the appropriate event handler to make sure that all
the open Quotes have their SalesTax recalculated.

384 CHAPTER 12 Using entity events to solve business problems

12.2

User

Add Review

var transaction = ...BeginTransaction()
{

context.SaveChanges();
SendToCosmosDb(projection);
transaction.Commit();

}

Book 222

Title = “EF Core..”
Price = 45.99

Review 123

NumStars = 3Review 231

NumStars = 3Review 456

NumStars = 3

Existing Reviews

Review 987

NumStars = 5
BookId = 222

Cosmos DB

Cosmos.Update(projection);
Cosmos.SaveChanges();

ADD

CQRS setup

Read-side databaseWrite-side database

The transaction shown below ensures that the two
databases are in step. It does this by committing
the SQL database update only when the CosmosDB
update has successfully completed.

Event

Add Review
Update projection 222

SQL { }

Figure 12.2 A CQRS database using a relational database as the primary data store, with a Cosmos
DB database acting as a read-side database to improve performance. The issue is how to ensure that
the two databases are in step—in this case, the Book projection in the Cosmos DB matches what
the SQL database has. This figure is an example of using integration events to cross the boundary
of the code handling the relational database and the code handling the Cosmos DB database.

Defining where domain events and integration
events are useful
The two examples you have seen use events in different ways; the sales-tax event
example is focused within a specific part of the code relating to customers and quotes,
and the CQRS example is linking two quite different parts of an application. These
two types of events have been given names, primarily by the Domain-Driven Design
(DDD) community, but you will see that events can be used in normal, non-DDD
entity types too.

NOTE I cover how to apply a DDD approach to EF Core entity classes in chap-
ter 13. But in this chapter, you will learn how to use events in non-DDD entity
types.

DDD talks a lot about a bounded context, which represents a defined part of software
where particular terms, definitions, and rules apply in a consistent way. A bounded
context is about applying the Separation of Concerns (SoC) principle at the macro
level. The part 3 Book App, for example, is broken into different bounded contexts:
one handles displaying the books by using a SQL database, another provides a way to
display the books by using a NoSQL database, and yet another handles processing a
user’s order. So using the term bounded context, you can categorize the two event
types as follows:

385Where might you use events with EF Core?

12.3

 The sales-tax example is referred to as a domain event because it is working
exclusively within a single bounded context.

 The CQRS example is referred to as an integration event because it crosses
from one bounded context to another.

NOTE I cover bounded contexts in more detail in chapter 13.

Where might you use events with EF Core?
I don’t want to suggest that you should do everything by using entity events, but I do
think that entity events are a good approach to learn. Where would you use entity
events? The answer is best provided by some examples:

 Setting or changing an Address triggers a recalculation of the sales-tax code of
a Quote.

 Creating an Order triggers a check on reordering Stock.
 Updating a Book triggers an update of that Book’s Projection on another

database.
 Receiving a Payment that pays off the debt triggers the closing of the Account.
 Sending a Message to an external service.

Each example has two entity class names in an italic monospace font. These entity classes
are different but not tightly linked: Address/Quote, Order/Stock, Book/Projection,
Payment/Account, and Message/external service. When I say that the classes are
not tightly linked, I mean that the second class isn’t dependent on the first class. If the
Address entry were deleted, for example, the Quote entry wouldn’t be deleted.

NOTE A good indication that domain events could help is when your busi-
ness logic is going to be working on two different groups of data.

In all these cases, the first class could be handled in the standard way (that is, not
using entity event), and a domain event could trigger an event handler to handle the
update to the second class. Conversely, events aren’t useful when the entity classes are
already closely linked. You wouldn’t use events to set up each LineItem in an Order,
for example, because the two classes are closely linked to each other.

Another time where events can be useful is when you want to add a new feature to
some existing code and don’t want to alter the existing methods and business logic. If
the new feature doesn’t change the existing code, you might have a case for using
events even if the two entity classes are closely linked. Chapter 15 has a good example
that improves the performance of the existing Book App. I don’t want to change the
existing code, which works, but I want to add some cached values to the Book entity
class, and using domain events is a great solution.

Having said all that, it’s likely that you won’t use lots of domain events. There were
only 20 domain events in the system from which the sales-tax example came, for exam-
ple, but some of these events were critical to the features and especially the perfor-
mance of the application.

386 CHAPTER 12 Using entity events to solve business problems

 Integration events are even rarer; they are useful only when you have two bounded
contexts that need to work together. But if you need to synchronize two different parts
of your application, integration events are among the best approaches you can use.

 Overall, I find events like these to be so useful that I have built a library, EfCore
.GenericEventRunner, to easily add entity events (both domain and integration) to an
application when I need them. But before I get into how to implement such a system,
consider the pros and cons of using domain and integration events.

12.3.1 Pro: Follows the SoC design principle

The event systems already described provide a way to run separate business rules on a
change in an entity class. In the location-change/sales-tax example, the two entities
are linked in a nonobvious way; changing the location of a job causes a recalculation
of the sales tax for any linked quotes. When you apply the SoC principle, these two
business rules should be separated.

 You could create some business logic to handle both business rules, but doing so
would complicate a simple update of properties in an address. By triggering an event
if the State/County properties are changed, you can keep the simple address update
and let the event handle the second part.

12.3.2 Pro: Makes database updates robust

The design of the code that handles domain events is such that the original change
that triggers the event and the changes applied to entity classes via the called event
handler are saved in the same transaction. Figure 12.3 shows this code in action.

Location change
event handler

Quote 2

- Tax CHANGE

Quote 3

- Tax CHANGE

Stage 1 – Location changed

1. The State property is set.
2. This triggers an event.

Location
ID = 123
State = Change
...

Stage 2 – Before SaveChanges

The Event Runner finds and runs
the event handler for the event.

SaveChanges (with events extensions)

Stage 3 – Run SaveChanges

This saves ALL the changed
data to the database in one
transaction.

Database

Quote
ID = 456
Tax = Change
Price
...

Quote
ID = 789
Tax = Change
Price
...

User

Change

Change event

Event = “loc change”

Location A

- State CHANGE

Figure 12.3 The domain events system saves both the initial Location update that triggered
the event and the changes made to Quote entity classes in one transaction. The database will
contain all the changes in one go, so the two types of updates can’t get out of date.

387Implementing a domain event system with EF Core
As you will see in section 12.5, the integration event implementation is robust too. If
the integration event fails, the database update will be rolled back, ensuring that the
local database and the external service and different database are in step.

12.3.3 Con: Makes your application more complex

One of the downsides of using events is that your code is going to be more compli-
cated. Even if you use a library such as EfCore.GenericEventRunner to manage the
events, you will still have to create your events, add the events to your entity classes,
and write your event handlers, which requires more code than building services for
your business logic, as covered in chapter 4.

 But the trade-off of events that need more code is that the two business logic parts
are decoupled. Changes to the address become a simple update, for example, while
the event makes sure that the tax code is recalculated. This decoupling reduces the
business complexity that the developer has to deal with.

12.3.4 Con: Makes following the flow of the code more difficult

It can be hard to understand code that you didn’t write or wrote a while back. One
helpful VS/VS Code feature that I use is Go to Implementation, which lets me jump
to a method’s code so that I can dig down through the code to understand how each
part works before I change it.

 You can do the same thing when you use events, but that technique does add one
more level of indirection before you get to the code. For the sales-tax-change example
in figure 12.1, you would need to click the LocationChangedEvent class to find the
LocationChangedEventHandler that has the business code you’re looking for—only
one more step, but a step you don’t need if you don’t use events.

12.4 Implementing a domain event system with EF Core
In this section, you are going to implement a domain event system in EF Core. First,
you’ll add the ability to hold entity events in your entity classes. Then you’ll override
the DbContext’s SaveChanges so that you have extra logic to extract the entity events
and to find and run each corresponding event handler.

 Figure 12.4 shows the code and steps needed to implement a domain events sys-
tem, using the example described in figure 12.1, where a Location’s State property
changes. In this example, two Quotes are linked to that location, so their SalesTax
property should be updated to the correct sales tax at that location.

 To implement this domain event system, add the following code to your application:

1 You create some domain events classes to be triggered.
2 Add code to the entity classes to hold the domain events.
3 Alter the code in the entity class to detect a change on which you want to trig-

ger an event.

388 CHAPTER 12 Using entity events to solve business problems

Events:

LocStateChange

Location 987

State = “NewState”

STAGE 1: The Location entity class State property is set to “NewState.”

STAGE 1a: The setting of the State property adds a domain event to the entity class.

The LocStateChange domain event is held in a collection.
A new domain event is added via the AddEvent method
and read/cleared by the GetEventsThenClear method.

public override int SaveChanges()
{

_eventRunner?.RunEvents(this);

return base.SaveChanges();
}

public class
LocChangedEventHandler :
IEventHandler<LocChangedEvent>

{

Business logic
}

Quote 123

StateTax = 0.06

LocationId = 123
Quote 456

StateTax = 0.06

LocationId = 987

In this example these two
Quotes are linked to the
location 23 and their1

SaleTax is updated.

STAGE 2: Overridden SaveChanges is called.

STAGE 2a: The Event Runner finds and runs the event
handler for the event. The event handler then updates
the SaleTax in all the Quotes linked to that location.

STAGE 2b: Finally, the base SaveChanges runs, and the
Location and two Quotes are written to the database.

Figure 12.4 Stage 1 shows that a change of a Location’s State property will cause a domain event to
be added to the Location entity class. In stage 2, when the overridden SaveChanges method is called, it
will read in any domain events in the tracked entities and then find and run the appropriate event handler for
each domain event. In this example, the event handler updates the SalesTax property in all the Quotes
linked to that Location.

4 Create some event handlers that are matched to the events. These event han-
dlers may alter the calling entity class or access the database or business logic to
execute the business rules it is designed to handle.

5 Build an Event Runner that finds and runs the correct event handler that
matches each found event.

6 Add the Event Runner to the DbContext, and override the SaveChanges (and
SaveChangesAsync) methods in your application’s DbContext.

7 When the Event Runner has finished, run the base SaveChanges, which updates
the database with the original changes and any further changes applied by the
event handlers.

8 Register the Event Runner and all the event handlers.

Next, you will follow these steps to build each part of this approach.

12.4.1 Create some domain events classes to be triggered

There are two parts to creating an event. First, an event must have an interface that
allows the Event Runner to refer to it. This interface can be empty, representing an
event. (I call this interface IDomainEvent in this example.) I use this interface to rep-
resent a domain event inside the Event Runner.

389Implementing a domain event system with EF Core

 Each application event contains data that is specific to the business needs. The fol-
lowing listing shows the LocationChangedEvent class, which needs only the Location
entity class.

public class LocationChangedEvent : IDomainEvent
{
 public LocationChangedEvent(Location location)
 {
 Location = location;
 }

 public Location Location { get; }
}

Each event should send over the data that the event handler needs to do its job. Then
it is the event handler’s job to run some business logic, using the data provided by
the event.

12.4.2 Add code to the entity classes to hold the domain events

The entity class must hold a series of events. These events aren’t written to the data-
base but are there for the Event Runner to read via a method. The following listing
shows a class that an entity can inherit to add the event feature to its capabilities.

public class AddEventsToEntity : IEntityEvents
{
 private readonly List<IDomainEvent>
 _domainEvents = new List<IDomainEvent>();

 public void AddEvent(IDomainEvent domainEvent)
 {
 _domainEvents.Add(domainEvent);
 }

 public ICollection<IDomainEvent>
 GetEventsThenClear()
 {
 var eventsCopy = _domainEvents.ToList();
 _domainEvents.Clear();
 return eventsCopy;
 }
}

TheListing 12.1 LocationChangedEvent class, with data that the event handler needs

The class that entity classes inherit to create eventsListing 12.2

The event class must inherit
the IDomainEvent. The
Event Runner uses the
IDomainEvent to represent
every domain event.

The event handler needs Location
to do the Quote updates.

The IEntityEvents defines the
GetEventsThenClear method
for the Event Runner.

The list of IDomainEvent
events is stored in a field.

The AddEvent is used to
add new events to the
_domainEvents list.

This method is called by
the Event Runner to get
the events and then
clear the list.

The entity class can call the AddEvent method, and the Event Runner can get the
domain events via the GetEventsThenClear method. Getting the domain events also
clears the events in the entity class, because these messages will cause an event handler

390 CHAPTER 12 Using entity events to solve business problems
to be executed, and you want the event handler to run only once per domain event.
Remember that domain events are nothing like C# events; domain events are mes-
sages passed to the Event Runner via the entity classes, and you want a message to be
used only once.

12.4.3 Alter the entity class to detect a change to trigger an event on

An event is normally something being changed or something reaching a certain level.
EF Core allows you to use backing fields, which make it easy to capture changes to sca-
lar properties. The following listing shows the Location entity class that creates a
domain event when the State property changes.

public class Location : AddEventsToEntity
{
 public int LocationId { get; set; }
 public string Name { get; set; }

 private string _state;

 public string State
 {
 get => _state;
 set
 {
 if (value != _state)
 AddEvent(
 new LocationChangedEvent(this));
 _state = value;
 }
 }

}

NOTE Collection navigational properties are a little harder to check for
changes, but DDD-styled entity classes (covered in chapter 13) make this check
much simpler.

12.4.4 Create event handlers that are matched to the domain events

Event handlers are key to using events in your application. Each event handler con-
tains some business logic that needs to be run when the specific event is found. For
the Event Runner to work, every event handler must have the same signature, which is
defined by an interface I created for this example, called IEventHandler<T> where T :
IDomainEvent. The following listing shows the event handler that updates the Sales-
Tax in every Quote that is linked to the Location that changed.

Listing 12.3 The Location entity class creates a domain event if the State is changed

This entity class inherits the AddEventsToEntity
to gain the ability to use events.

These normal properties don’t generate
events when they are changed.

The backing field contains
the real value of the data.

The setter is changed to send a Location-
ChangedEvent if the State value changes.

This code will add a
LocationChangedEvent
to the entity class if
the State value
changes.

391Implementing a domain event system with EF Core
public class LocationChangedEventHandler
 : IEventHandler<LocationChangedEvent>
{
 private readonly DomainEventsDbContext _context;
 private readonly
 ICalcSalesTaxService _taxLookupService;

 public LocationChangedEventHandler(
 DomainEventsDbContext context,
 ICalcSalesTaxService taxLookupService)
 {
 _context = context;
 _taxLookupService = taxLookupService;
 }

 public void HandleEvent
 (LocationChangedEvent domainEvent)
 {
 var salesTaxPercent = _taxLookupService
 .GetSalesTax(domainEvent.Location.State);

 foreach (var quote in _context.Quotes.Where(
 x => x.WhereInstall == domainEvent.Location))
 {
 quote.SalesTaxPercent = salesTaxPercent;
 }
 }
}

The key point here is that the event handler is registered as a service so that the Event
Runner can get an instance of the event handler class via dependency injection (DI).
The event handler class has the same access to DI services that normal business
logic does. In this case, the LocationChangedEventHandler injects the application’s
DbContext and the ICalcSalesTaxService service.

12.4.5 Build an Event Runner that finds and runs
the correct event handler

The Event Runner is the heart of the event system: its job is to match each event to an
event handler and then invoke the event handler’s method, providing the event as a
parameter. This process uses NET Core’s ServiceProvider to get an instance of the
event handler, which allows the event handlers to access other services. Figure 12.5
provides a visual representation of what the Event Runner does.

NOTE If you don’t have NET Core’s DI feature available in your application,
you could replace the DI by handcoding a switch statement with code to cre-
ate each event manager. This technique is harder to manage, but it will work.

Listing 12.4 The event handler updates the sales tax on Quotes linked to this Location

This class must be registered as a service via DI. Every event handler must have
the interface IEventHandler<T>,
where T is the event class type.

This specific event
handler needs two classes
registered with DI.

The Event Runner will use
DI to get an instance of
this class and will fill in
the constructor
parameters.

The method from the
IEventHandler<T> that the
Event Runner will execute

Uses another service to
calculate the right sales tax

Sets the SalesTax on
every Quote that is
linked to this Location

392 CHAPTER 12 Using entity events to solve business problems

he
p
The following listing shows the Event Runner code. This code is fairly complex, because
the design of the Event Runner requires the use of generic classes.

public class EventRunner : IEventRunner
{
 private readonly IServiceProvider _serviceProvider;

 public EventRunner(IServiceProvider serviceProvider)
 {
 _serviceProvider = serviceProvider;
 }

 public void RunEvents(DbContext context)
 {
 var allEvents = context.
 ChangeTracker.Entries<IEntityEvents>()
 .SelectMany(x => x.Entity.GetEventsThenClear());

 foreach (var domainEvent in allEvents)
 {
 var domainEventType = domainEvent.GetType();
 var eventHandleType = typeof(IEventHandler<>)
 .MakeGenericType(domainEventType);

The Event Runner that is called from inside the overriddenListing 12.5 SaveChanges

tsvenE

Entity3

sEvent

Entity2

Events

Entity1 allEvents

Then loop through each event
foreach (var domainEvent in allEvents).
{

Type handlerType = IEventHandler<event type>;
var handler = …GetService(handlerType);

Invoke the event handler with the domain event
handler.HandleEvent(domainEvent);.

}

Location
change
handler

Calculate
tax

service

Each event handler runs
its business logic using the
data in the domainEvent.

Get all events from all tracked entities. This also clears
the events in each entity to make sure it is run only once.

Work out the type of event handler you need
and then get an instance using the DI provider.

b

Figure 12.5 The Event Runner
gathers the events from each tracked
entity that has the IEntityEvents
interface; then, for each event, it gets
an instance of the matching event
handler class and invokes the handler
with the event as a parameter.
Finally, each event handler runs its
business logic, using the data found
in the event.

The Event Runner needs an interface
so that you can register it with the DI.

The Event Runner needs
the ServiceProvider to
get an instance of the
event handlers.

Reads in all the
events and clears t
entity events to sto
duplicate events

Loops
through

each event
found

Gets the interface
type of the matching
event handler

393Implementing a domain event system with EF Core

ler-
ine
t-
 var eventHandler =
 _serviceProvider.GetService(eventHandleType);
 if (eventHandler == null)
 throw new InvalidOperationException(
 $"Could not find an event handler”)

 var handlerRunnerType = typeof(EventHandlerRunner<>)
 .MakeGenericType(domainEventType);
 var handlerRunner = ((EventHandlerRunner)
 Activator.CreateInstance(
 handlerRunnerType, eventHandler));

 handlerRunner.HandleEvent(domainEvent);
 }
 }
}

The following listing shows the EventHandlerRunner and EventHandlerRunner<T>
classes. You need these two classes because the definition of an event handler is
generic, so you can’t call it directly. You get around this problem by creating a class
that takes the generic event handler in its constructor and has a nongeneric method
(the abstract class called EventHandlerRunner) that you can call.

internal abstract class EventHandlerRunner
{
 public abstract void HandleEvent
 (IDomainEvent domainEvent);
}

internal class EventHandlerRunner<T> : EventHandlerRunner
 where T : IDomainEvent
{
 private readonly IEventHandler<T> _handler;

 public EventHandlerRunner(IEventHandler<T> handler)
 {
 _handler = handler;
 }

 public override void HandleEvent
 (IDomainEvent domainEvent)
 {
 _handler.HandleEvent((T)domainEvent);
 }
}

TheListing 12.6 EventHandlerRunner class that runs the generic-typed event handler

Uses the DI provider to
create an instance of

the event handler and
returns an error if one

is not found

Creates the
EventHandlerRunner
that you need to run

the event handler
Uses the
EventHandlerRunner to
run the event handler

By defining a nongeneric
method, you can run the
generic event handler.

Uses the EventHand
Runner<T> to def
the type of the Even
HandlerRunner

The EventHandlerRunner
class is created with an
instance of the event
handler to run.

Method that overrides
the abstract class’s
HandleEvent method

394 CHAPTER 12 Using entity events to solve business problems

s

12.4.6 Override SaveChanges and insert the Event Runner
before SaveChanges is called

Next, you override SaveChanges and SaveChangesAsync so that the Event Runner is
run before the base SaveChanges and SaveChangesAsync run. Any changes the event
handlers make to entities are saved with the original changes that caused the events.
This point is really important: both the changes made to entities by your nonevent
code are saved with any changes made by your event handler code. If a problem
occurs with the data being saved to the database (a concurrency exception was thrown,
for example), neither of the changes would be written to the database, so the two types
of entity changes—nonevent code changes and event-handler code changes—won’t
become CQRS out of step. The following listing shows how you inject the Event Run-
ner via your application’s DbContext constructor and then use that Event Runner
inside the overridden SaveChanges method.

public class DomainEventsDbContext : DbContext
{
 private readonly IEventRunner _eventRunner;

 public DomainEventsDbContext(
 DbContextOptions<DomainEventsDbContext> options,
 IEventRunner eventRunner = null)
 : base(options)
 {
 _eventRunner = eventRunner;
 }

 //… DbSet<T> left out

 public override int SaveChanges
 (bool acceptAllChangesOnSuccess)
 {
 _eventRunner?.RunEvents(this);
 return base.SaveChanges(acceptAllChangesOnSuccess);
 }

 //… overridden SaveChangesAsync left out
}

NOTE There are two version of SaveChanges and SaveChangesAsync, but you
need to override only one of each of them. You need to override only the int
SaveChanges(bool acceptAllChangesOnSuccess), for example, because the
SaveChanges with no parameters calls the SaveChanges with the acceptAll-
ChangesOnSuccess parameter set to true.

Listing 12.7 Your application’s DbContext with SaveChanges overridden

Holds the Event Runner
that is injected by DI via
the class’s constructor

The constructor now has
a second parameter DI
fills in with the Event
Runner.

You override SaveChanges so that you can run
the Event Runner before the real SaveChanges.

Runs the Event Runner

Runs the
base.SaveChange

395Implementing a domain event system with EF Core

Re
the

R

12.4.7 Register the Event Runner and all the event handlers

The last part is registering the Event Runner and the event handlers with the DI pro-
vider. The Event Runner relies on the DI to provide an instance of your event han-
dlers, using their interfaces; also, your application’s DbContext needs the Event
Runner injected by DI into the IEventRunner parameter of its constructor. When
Event Runner and the event handlers are registered, along with any services that the
event handlers need (such as the sales tax calculator service), the Event Runner will
work. In this simple example, you can register the few classes and interfaces manually
by using the following NET Core DI provider, as shown in the following listing.

public void ConfigureServices(IServiceCollection services)
{
 //… other registrations left out

 services.AddTransient<IEventRunner, EventRunner>();

 services.AddTransient<IEventHandler<LocationChangedEvent>,
 LocationChangedEventHandler>();
 services.AddTransient<IEventHandler<QuoteLocationChangedEvent>,
 QuoteLocationChangedEventHandler>();

 services.AddTransient<ICalcSalesTaxService,
 CalcSalesTaxService>();
}

Although manual registration works, a better way is to automate finding and register-
ing the event handlers. Listing 12.9 shows an extension method that will register the
Event Runner and all the event handlers in each assembly you provide. The following
code snippet shows how it is called:

services.RegisterEventRunnerAndHandlers(
 Assembly.GetAssembly(
 typeof(LocationChangedEventHandler)));

The following listing shows the RegisterEventRunnerAndHandlers code.

public static void RegisterEventRunnerAndHandlers(
 this IServiceCollection services,
 params Assembly[] assembliesToScan)
{
 services.AddTransient<IEventRunner, EventRunner>();

Manually registering the Event Runner and event handlers In ASP.NET CoreListing 12.8

Automatically registering the Event Runner and your event handlersListing 12.9

You register interfaces/classes with the
NET dependency injection provider—in

this case, in a ASP.NET Core app.

Registers the Event Runner,
which will be injected into
your application’s DbContext

Registers
all your
event
handlers

You need to register any services
that your event handlers will use.

The method needs
the NET Core’s service
collection to add to.

You provide one or more
assemblies to scan.

gisters
 Event
unner

396 CHAPTER 12 Using entity events to solve business problems

 foreach (var assembly in assembliesToScan)
 {
 services.RegisterEventHandlers(assembly);
 }
}

private static void RegisterEventHandlers(
 this IServiceCollection services,
 Assembly assembly)
{
 var allGenericClasses = assembly.GetExportedTypes()
 .Where(y => y.IsClass && !y.IsAbstract
 && !y.IsGenericType && !y.IsNested);
 var classesWithIHandle =
 from classType in allGenericClasses
 let interfaceType = classType.GetInterfaces()
 .SingleOrDefault(y =>
 y.IsGenericType &&
 y.GetGenericTypeDefinition() ==
 typeof(IEventHandler<>))
 where interfaceType != null
 select (interfaceType, classType);

 foreach (var tuple in classesWithIHandle)
 {
 services.AddTransient(
 tuple.interfaceType, tuple.classType);
 }

12.5

Calls a method to find
and register event
handler in an assembly

Finds and registers all
the classes that have the
IEventHandler<T> interface

Finds all the classes
that could be an event
handler in the assembly

Finds all the classes
that have the
IEventHandler<T>
interface, plus the
interface type

Registers each
class with its
interface

}

NOTE The RegisterEventRunnerAndHandlers code won’t register the Calc-
SalesTaxService service because it looks only for event handlers. But the
CalcSalesTaxService class is a normal service—that is, a class with a non-
generic interface, like any other service. Chapter 5, especially section 5.7.3,
shows how to register these types of services.

And that’s it! You have added the domain events feature to your application, and you
are ready to go. You will use domain events in chapter 15 as one way to improve data-
base query performance by updating cache values when Reviews are added or removed.
You can also see this feature in action in the Book App by clicking the SQL (cached)
menu link.

Implementing an integration event system
with EF Core
Now that you’ve seen how domain events work, we’ll move on to integration events.
Integration events are simpler to implement than domain events but harder to design
because they work across bounded contexts (see section 12.2).

There are many ways to implement integration events, but this book is about EF
Core, so this section concentrates on using an integration event within a database

397Implementing an integration event system with EF Core
transaction in the SaveChanges method. The purpose is to ensure that the database is
updated only if the integration event was successful.

 I provided one example in section 12.2: combining the update of a SQL database
with the corresponding update of a CQRS read-side database. This example works
because the core tries to update a CQRS read-side database only if the SQL update
succeeded, and it commits the SQL update only if the CQRS read-side database was
successful; that way, the two databases contain the same data. You can generalize this
example into two parts, both of which must work for the action to be successful:

 Don’t send the integration event if the database update didn’t work.
 Don’t commit the database update unless the integration event worked.

Now let’s implement some code that follows the integration event approach. As a sim-
ple example, suppose that you are building a new service that sends customers their
orders of Lego bricks by courier on the same day. You don’t want to disappoint your
customers, so you must be sure that your warehouse has the items in stock and has a
courier that can deliver the order immediately. The overall system is depicted in fig-
ure 12.6.

Lego® Brick selling site

Order 123

: sdersyYretsCustomerId
CustomerName : John Doe
CustomerAddress : 1 some street,...

:LineItems

John Doe

ProductCode

etc.

Amount

etc…

Order

John Doe’s house

pub S veChanges()a
{
va t ansactionr
{

ontext.SaveChanges();c
llocateOrderAndDispatch();A
// f errors throw exceptioni
ransaction.Commit();t

}
}

2. The order is
saved but awaits
a successful
return from the
warehouse.

3. The integration event goes
to the correct warehouse
which only returns a success
if the order can be fulfilled
and delivered. Otherwise, it
returns error(s).

1. John orders bricks
for immediate
delivery.

4. If warehouse returns errors, it throws an
exception, and the Order is not saved. Otherwise,
commit is called, and the Order is saved.

Figure 12.6 Using an integration event to make sure that you can deliver an order before you save it. To
implement this event, you override SaveChanges in your application’s DbContext and handle any new
Order by using a transaction. The Order is validated and saved; then an integration event sends the
content of the order to the warehouse. If the warehouse has all the items needed and has a courier available
to get the order to the customer, it returns a success message, which causes the Order to be committed
to the database. If errors occur, the Order is not written to the database, and the errors are shown to the
customer.

398 CHAPTER 12 Using entity events to solve business problems
You have two options for detecting and handling your integration event in your appli-
cation’s DbContext:

 You inject the service directly into your application’s DbContext, which works
out for itself whether a specific event has happened by detecting the State of
the entities. A second part is called only if the first method says that it needs to
be called.

 You could use an approach similar to the Event Runner that you used for
domain events, but a different event type is run within a transaction after the
base SaveChanges is called.

In most cases, you won’t have many integration events, so the first option is quicker; it
bypasses the event system you added to the entity for the domain events and does its
own detection of the event. This approach is simple and keeps all the code together,
but it can become cumbersome if you have multiple events to detect and process.

 The second option is an expansion of the Event Runner and domain events,
which uses a similar creation of an integration event when something changes in the
entity. In this specific case, the code will create an integration event when a new
Order is created.

 Both options require an event handler. What goes in the event handler is the
business logic needed to communicate with the system/code and to understand its
responses. The first option was used in the Lego example, where the event handler
detected the event itself. You need to add two sections of code to implement this
example:

 Build a service that communicates with the warehouse.
 Override SaveChanges (and SaveChangesAsync) to add code to create the inte-

gration event and its feedback.

12.5.1 Building a service that communicates with the warehouse

You know that integration events cross boundaries in an application. In the Lego
example, the design suggests that the website where customers place orders is sepa-
rate from the warehouse, which means some form of communication, maybe via some
RESTful API. In this case, you would build a class that communicates with the correct
warehouse and returns either a success or a series of errors. The following listing is
one way to implement the code that communicates with the external warehouse.

public class WarehouseEventHandler : IWarehouseEventHandler
{
 private Order _order;

 public bool NeedsCallToWarehouse(DbContext context)
 {

Listing 12.10 The Warehouse event handler that both detects and handles the event

This method detects
the event and returns
true if there is an
Order to send to
the warehouse.

399Implementing an integration event system with EF Core

 var newOrders = context.ChangeTracker
 .Entries<Order>()
 .Where(x => x.State == EntityState.Added)
 .Select(x => x.Entity)
 .ToList();

 if (newOrders.Count > 1)
 throw new Exception(
 "Can only process one Order at a time");

 if (!newOrders.Any())
 return false;

 _order = newOrders.Single();
 return true;
 }

 public List<string> AllocateOrderAndDispatch()
 {
 var errors = new List<string>();

 //... code to communicate with warehouse

 return errors;
 }
}

12.5.2 Overriding SaveChanges to handle the integration event

As stated earlier, you are using an integration event implementation that detects the
event itself, rather than adding an event to the entity class, so the code inside the over-
ridden SaveChanges and SaveChangesAsync is specific to the integration event. The
following code listing shows the code to implement the Lego example.

public class IntegrationEventDbContext : DbContext
{
 private readonly IWarehouseEventHandler
 _warehouseEventHandler;

 public IntegrationEventDbContext(
 DbContextOptions<IntegrationEventDbContext> options,
 IWarehouseEventHandler warehouseEventHandler)
 : base(options)
 {
 _warehouseEventHandler = warehouseEventHandler;
 }

 public DbSet<Order> Orders { get; set; }
 public DbSet<Product> Products { get; set; }

 public override int SaveChanges
 (bool acceptAllChangesOnSuccess)

DbContext with overriddenListing 12.11 SaveChanges and Warehouse event handler

Obtains all the
newly created
Orders

The business logic
handles only one Order
per SaveChanges call.

If there isn’t a new
Order, returns false

If there is an Order,
retains it and returns true

This method will
communicate with the
warehouse and returns
any errors the warehouse
sends back.

Adds the code to
communicate with
the warehouse

Returns a list of errors.
If the list is empty, the
code was successful.

Holds the instance of the
code that will communicate
with the external
warehouse

Injects the warehouse
event handler via DI

Overrides SaveChanges to
include the warehouse
event handler

400 CHAPTER 12 Using entity events to solve business problems

,
 {
 if (!_warehouseEventHandler.NeedsCallToWarehouse(this))
 return
 base.SaveChanges(acceptAllChangesOnSuccess);

 using(var transaction = Database.BeginTransaction())
 {
 var result =
 base.SaveChanges(acceptAllChangesOnSuccess);

 var errors = _warehouseEventHandler
 .AllocateOrderAndDispatch();

 if (errors.Any())
 {
 throw new OutOfStockException(
 string.Join('.', errors));
 }

 transaction.Commit();
 return result;
 }
 }

 //… overridden SaveChangesAsync left out
}

NOTE When you use transactions in which the retry-on-failure option is
enabled, you need to wrap the transaction in an execution strategy (see sec-
tion 11.7.1).

12.6 Improving the domain event and integration event
implementations
The code shown so far implements a fully running domain events and integration-
events system that you can use, but it omits several features that would be useful. Async
event handlers would be important features to add, for example. In this section, you
explore some extra features that you might like to add to your event handling. Here
are some of the additional features I found when I created a generalized event library
called EfCore.GenericEventRunner:

 Generalizing events (events running before, during, and after the call to
SaveChanges)

 Adding support for async event handlers
 Handling multiple event handers for the same event
 Handling event sagas, in which one event kicks off another event

The following sections add the features in this list to the domain and integration
designs you have worked on so far. The aim is to build a generalized event library that
you can use in any application that events would help.

If the event
handler doesn’t
detect an event,
it does a normal

SaveChanges.

There is an
integration event
so a transaction
is opened.

Calls the base
SaveChange to
save the Order Calls the warehouse event

handler that communicates
with the warehouse

If the warehouse
returned errors,
throws an
OutOfStockException

If there were no errors,
the Order is committed
to the database.

Returns the
result of the
SaveChanges

401Improving the domain event and integration event implementations
NOTE Full implementations of the new features are not provided due to
space constraints. The aim is to show what sort of improvements you could add
to the Event Runner. Links to the implementation in the EfCore.Generic-
EventRunner library are provided where appropriate.

12.6.1 Generalizing events: Running before, during,
and after the call to SaveChanges

If you are going to build a library to handle events, it’s worth looking at all the types of
events you might want to handle. You have already seen the domain event and an inte-
gration event, but for the integration event example, you handcoded an integration
event system because doing that was easier. But when you are willing to write a library,
it’s worth putting in the work to handle integration events too.

 Another event type might be useful—one that runs when SaveChanges or Save-
ChangesAsync has finished successfully. You could send an email when you are sure
that an Order has been checked and successfully added to the database. That example
uses three event types, which I call Before (domain events), During (integration events),
and After events (figure 12.7).

To implement the Before, During, and After event system, you must add two more
Event Runners (see listing 12.5): one called within a transaction to handle the integra-
tion events, and one after SaveChanges/SaveChangesAsync has finished successfully
(figure 12.7). You also need three event-handler interfaces—Before, During, and
After—so that the correct event handler is run at the same time.

public override int SaveChanges()
{

var transaction = ...BeginTransaction()
{

context.SaveChanges();

transaction.Commit();
}

}

Run BEFORE events

Run DURING events

Run AFTER events

The three types of events:

1. Before events (domain events)
These are run before SaveChanges
is called.

2. During events (integration events)
These are run within a transaction
and after SaveChanges is called.

3. After events
These are run after the SaveChange
has finished successfully.

Figure 12.7 A study of the various events around the call to SaveChanges or
SaveChangesAsync suggests three important positions: 1. Before SaveChanges is
called, which allows you to alter entities before they are saved; 2. within a transaction
where SaveChanges has been called but the transaction hasn’t been committed
yet, allowing you to roll back the saved data if the outgoing event fails; and 3. after
SaveChanges/SaveChangesAsync finishes successfully, which allows you to run
code that is valid only if the data was successfully saved.

402 CHAPTER 12 Using entity events to solve business problems
 The full implementation is rather long and not repeated here. You can find the
code in the RunEventsBeforeDuringAfterSaveChanges method that implements the
Before, During, and After event system in the EfCore.GenericEventRunner library.
See http://mng.bz/K4A0.

12.6.2 Adding support for async event handlers

In many of today’s multiuser applications, async methods will improve scalability, so
you need to have async versions of the event handlers. Adding an async method
requires an extra event handler interface for an async event handler version. Also, the
Event Runner code must be altered to find an async version of the event handler
when the SaveChangesAsync is called. Listing 12.12 shows the updated RunEvents
method in the Event Runner from listing 12.5 updated as an async RunEventsAsync
method.

NOTE To help you see the changes added to the version from listing 12.5,
I’ve added comments for only the changed code.

public async Task RunEventsAsync(DbContext context)
{
 var allEvents = context.
 ChangeTracker.Entries<IEntityEvents>()
 .SelectMany(x => x.Entity.GetEventsThenClear());

 foreach (var domainEvent in allEvents)
 {
 var domainEventType = domainEvent.GetType();
 var eventHandleType = typeof(IEventHandlerAsync<>)
 .MakeGenericType(domainEventType);

 var eventHandler =
 _serviceProvider.GetService(eventHandleType);
 if (eventHandler == null)
 throw new InvalidOperationException(
 "Could not find an event handler”);

 var handlerRunnerType =
 typeof(EventHandlerRunnerAsync<>)
 .MakeGenericType(domainEventType);
 var handlerRunner = ((EventHandlerRunnerAsync)
 Activator.CreateInstance(
 handlerRunnerType, eventHandler));

 await handlerRunner.HandleEventAsync(domainEvent);
 }
}

Listing 12.12 The original RunEvents method updated to run async event handlers

The RunEvent
becomes an
async method,
and its name is
changed to
RunEventAsync.

The code is now
looking for a
handle with an
async type.

Needs a async
EventHandlerRunner to
run the event handler

Is cast to a
async method

Allows the code
to run the async
event handler

http://mng.bz/K4A0

403Improving the domain event and integration event implementations

This
co

loopi
shouldR
12.6.3 Handling multiple event handers for the same event

You might define more than one event handler for an event. Your LocationChanged-
Event, for example, might have one event handler to recalculate the tax code and
another event handler to update the company’s map of ongoing projects. In the cur-
rent implementations of the Event Runners, the .NET Core DI method GetService
would throw an exception because it can return only one service. The solution is sim-
ple. Use the .NET Core DI method GetServices method and then loop through each
event handler found:

var eventHandlers =
 _serviceProvider.GetServices(eventHandleType);
if (!eventHandlers.Any())
 throw new InvalidOperationException(
 "Could not find an event handler”);
foreach(var eventHandler in eventHandlers)
{
 //… use code from listing 12.5 that runs a single event handler

12.6.4 Handling event sagas in which one event kicks off another event

In my client’s system, we found that one event could cause a new event to be created.
The LocationChangedEvent event updated the SalesTax, which, in turn, caused a
QuotePriceChangeEvent. These updates are referred to as event sagas because the
business logic consists of a series of steps that must be executed in a certain order for
the business rule to be completed.

 Handling event sagas requires you to add a looping arrangement that looks for
events being created by other events. The following listing shows the updated Run-
Events method in the Event Runner from listing 12.5, with only the new looping code
having comments.

public void RunEvents(DbContext context)
{
 bool shouldRunAgain;
 int loopCount = 1;
 do
 {
 var allEvents = context.
 ChangeTracker.Entries<IEntityEvents>()
 .SelectMany(x => x.Entity.GetEventsThenClear());

 shouldRunAgain = false;
 foreach (var domainEvent in allEvents)
 {
 shouldRunAgain = true;

 var domainEventType = domainEvent.GetType();
 var eventHandleType = typeof(IEventHandler<>)
 .MakeGenericType(domainEventType);

Listing 12.13 Adding looping on events to the RunEvents method in the Event Runner

Controls whether the code should
loop around again to see whether
there are any new events

Counts how many times the
Event Runner loops around
to check for more events

do/while
de keeps
ng while
unAgain
is true.

shouldRunAgain is set to
false. If there are no events,
it will exit the do/while loop.

There are
events, so

shouldRunAgain
is set to true.

404 CHAPTER 12 Using entity events to solve business problems
 var eventHandler =
 _serviceProvider.GetService(eventHandleType);
 if (eventHandler == null)
 throw new InvalidOperationException(
 "Could not find an event handler”);

 var handlerRunnerType = typeof(EventHandlerRunner<>)
 .MakeGenericType(domainEventType);
 var handlerRunner = ((EventHandlerRunner)
 Activator.CreateInstance(
 handlerRunnerType, eventHandler));

 handlerRunner.HandleEvent(domainEvent);
 }
 if (loopCount++ > 10)
 throw new Exception("Looped to many times");
 } while (shouldRunAgain);
}

Summary
 A domain event class carries a message that is held inside an entity class. The

domain event defines the type of event and carries event-specific data, such as
what data has changed.

 Event handlers contain business logic that is specific to a domain event. Their job
is to run the business logic, using the domain event data to guide what it does.

 The domain events version of the SaveChanges and SaveChangesAsync meth-
ods captures all the domain events in the tracked-entities classes and then runs
matching event handlers.

 The integration events versions of the SaveChanges and SaveChangesAsync
methods use a transaction to ensure that both the database and integration event
handler succeed before the database is updated. This requirement allows you to
synchronize two separate parts of your application.

 In section 12.4, you implemented a domain events system by creating domain
event classes, event handlers, and an Event Runner. Using these three parts and
overriding the SaveChanges and SaveChangesAsync methods allows you to use
domain events in your applications.

 In section 12.5, you updated the domain events system in section 12.4 to handle
integration events, which requires calling an external service within a database
transaction.

 In section 12.5, you added enhancements to the Event Runner, such as support-
ing event handlers that use async methods.

This check catches
an event handler
that triggers a
circular set of
events.

Stops looping when there
are no events to handle

Domain-Driven Design
and other architectural

approaches
Although this book is about EF Core, I want to include something about software
architecture, as readers of the first edition of this book found it useful. You were
introduced to the layered architecture in part 1. Now, in part 3, in which we are
building a much more complex Book App, I’ll change the Book App’s software
architecture to improve the separation of parts of the code and make the entity
classes’ data more secure.

 The most important of these architectural changes is swapping to the use of
Domain-Driven Design (DDD), from Eric Evan’s book of the same name (Addison-
Wesley Professional, 2003). The first version of EF Core added one new feature that

This chapter covers
 Three architectural approaches applied to the

part 3 Book App

 The differences between normal and DDD-styled
entity classes

 Eight ways you can apply DDD to your entity
classes

 Three ways to handle performance problems
when using DDD
405

406 CHAPTER 13 Domain-Driven Design and other architectural approaches
EF6 didn’t have—backing fields—and that new feature makes following the DDD
approach possible. Since the first edition of this book came out, I have used DDD a
lot, both in client applications and in building libraries to handle DDD entity classes.

 I share my experiences and code to help you learn how DDD can help you with
developing applications. The use of DDD on entity classes is broken into eight sec-
tions so that you can understand how each part of DDD helps improve the applica-
tion. Finally, I cover ways to deal with slow performance on updates when there are
lots of entries in a relationship using DDD-styled entities.

A good software architecture makes it easier to build13.1
and maintain your application
One problem with building software applications is that they can become harder and
harder to develop as they get bigger because you need to alter the existing code to
add a new feature. All sorts of issues arise, such as finding and understanding the
existing code, deciding on the best way to add the new feature, and making sure that
you haven’t broken anything.

 The architecture you choose for your application is one of the ways you can make
it easier to write and update the code. Software principles, such as Separation of Con-
cerns (SoC) and DDD, also play a part in making the application easier to fix and
extend. A good application design provides a pattern that guides your coding, as well
as some rules that encourage you down a good development route.

 Neal Ford coined the term evolutionary architecture in Building Evolutionary Architec-
tures (O’Reilly, 2017) to recognize the fact that, nowadays, applications need to grow
and change to keep providing the user the right features and the best experience. In
section 13.2, I describe the architecture/software principles I chose for the Book App
in part 3—principles that make adding features much easier.

The Book App’s evolving architecture13.2
In parts 1 and 2, the Book App uses one database containing about 50 books. Its purpose
is to provide a simple application to show how various EF Core features can be used in a
real application. Therefore, the layered architecture (see section 5.2) is a good fit.

 The part 1 and 2 Book App is small enough that I could have put all the code
inside the ASP.NET Core application, but I didn’t. Instead, I used a layered architec-
ture with most of the interesting code in the data layer and the service layer. Here is
why I didn’t put all the code in the ASP.NET Core application:

 It would be harder to find something inside the single ASP.NET Core project.
 It would be harder to test because the code would be hardcoded to ASP.NET

Core.

In addition to using the layered architecture, I used the SoC software principle (see
section 2.7) to break the software into smaller parts because I knew that I would be
adding features. Here are two of many examples that show why SoC is so useful:

407The Book App’s evolving architecture
 I build the main Book App query in sections (Select, Filter, Sort, Page) to make
it easier to understand, test, and refactor.

 In part 2, I moved the EF Core Fluent API code into per-entity configuring
classes to made it easier to find, show, and refactor a configuration for a specific
entity class.

The layered architecture works well in parts 1 and 2, where the focus is on how EF
Core works, but part 3 focuses on performance-tuning your EF Core applications.
This part uses multiple databases (SQL and Cosmos DB), two ways to access the data-
base (EF Core and Dapper), and multiple performance-tuning techniques. This means
there are different versions of the code to display the books in the Book App’s data-
base. To manage all these different query approaches and to show you some new ways to
design applications, I am adopting three new architectural/software principles to build
part 3’s Book App:

 A modular monolith approach, which enforces SoC by using .NET projects
 DDD principles, both architecturally and on the entity classes
 A clean architecture, as described by Robert C. Martin (known as Uncle Bob)

I provide introductions to these three architectural/software principles in sections 13.2.1
through 13.2.3. Figure 13.1 provides an overall view of the part 3 Book App architecture.

Persistence projects

...Common

...EfCoreSql.Books

...EfCoreSql.Orders

...EfCoreSql.Orders.DbAccess

...CosmosDb.Books

ServiceLayer projects

...DefaultSql.Books

...CachedSql.Books

...Dapper.Books

...CosmosDb.Books

...EfCoreSql.Orders

Infrastructure projects

...Orders.BizLogic

...Books.EventHandlers

...Books.Seeding

...LoggingServices

...BackgroundTasks

...Books ...Orders

Cosmos DB

DDD and clean architecture say that the entity classes should not know
anything about the persistence of the data. Therefore, the Domain.Books
and Domain.Orders don’t link to any other projects in the application
and have basic NuGet packages only.

The Persistence projects
focus on the configuration
and access to the
databases.

The Infrastructure projects
contain services that other
services can call. Their output is
data and needs interpreting
before it’s useful to the user.

The ServiceLayer projects
focus on converting
database data into a form
that is useful to the user. The BookApp.UI

project is the
ASP.NET Core
MVC frontend.Each line starting with

… is a separate project
in the Book App.

Domain projects

BookApp.UI

DefaultSqlController
CachedSqlController
DapperSqlController
CosmosDbController
…and so on

SQL { }

Figure 13.1 An overview of how the part 3 Book App is constructed, with five groups: Domain, Persistence,
Infrastructure, ServiceLayer, and the ASP.NET Core BookApp.UI. This structure is designed to enforce the
SoC rules by limiting what the developer can access from a project. The aim is to break the code into discrete
“features” to make it easier to understand and refactor the code.

408 CHAPTER 13 Domain-Driven Design and other architectural approaches

13.2.1 Building a modular monolith to enforce the SoC principles

My goal is to make the application modular. By modular, I mean that the code for a
specific feature, such as displaying the books, is easy to identify, and has no links to
feature code that it doesn’t need. I achieve this goal by creating small projects that
implement code for a specific job and link only to projects that contain the code
required for a specific feature (see figure 13.2).

 The layered architecture in parts 1 and 2 has a service layer project containing code
for lots of Book App features mixed together, including code for displaying books,
creating an order, seeding the database, and running background services. This
architecture becomes a mass of interconnected code (known as a ball of mud) and is
hard to refactor. In part 3’s modular monolith design, each of these features has its
own project, which makes it (nearly) impossible for features to share code except via a
lower layer.

 It’s not obvious in figure 13.1, but various projects are linked to create features that
are as self-contained as possible. Figure 13.2 shows two features, one for handling
books and one for handling user’s orders. These two features are separate (apart from
the Persistence.Common project) and have only one shared project.

Customer Order handling feature

Default SQL Books display feature

ServiceLayer.DefaultSql.Books

Persistence.EfCoreSql.Books

Domain.Books

ServiceLayer.EfCore.Orders

Persistence.EfCoreSql.Orders

Domain.Orders

Infrastructure.Orders.BizLogicPersistence.EfCoreSql.Orders.DbAccess

Persistence.Common
This project contains code to
autoconfigure Query Filters.

Figure 13.2 The modular monolith approach follows the SoC principle by breaking the application’s
code into small projects, each of which has a specific job to do. This approach also follows the clean
architecture layer approach with four layers: Domain, Persistence, Infrastructure, and ServiceLayer,
as shown in the names in each project. Some of the project names, such as ServiceLayer.DefaultSql
.Books, may not make sense now, but they will become clear when you get to chapters 15 and 16.

The main aim of applying a modular approach to a monolith is to overcome the
typical “ball of mud” monolith structure. If it helps, you can think of features in a

409The Book App’s evolving architecture

modular monolith architecture as being the same as microservices, but the features
communicate by means of simple method calls, whereas microservices communicate
over some sort of protocol, with possible failures.

DEFINITION The microservices architecture arranges an application as a collec-
tion of loosely coupled services that communicate by using some form of mes-
sage passing, such as HTTP messages.

Using a modular approach provides numerous benefits:

 It’s easy to see all the code involved in a certain command, such as displaying
a book.

 A change in a feature should have no effect, or minimal effect, on other features.
 You should be able to move a feature to another application, such as a micro-

service, with minimal problems for the rest of the application.

At the same time, you want your code to be DRY (don’t repeat yourself), so there will
be some shared code, such as the Persistence.Common project shown in figure 13.2.
But I recommend that you don’t create lots of generic code that is used in lots of proj-
ects, because changing that generic code could break code in another feature. If your
generic code is that good, turn it into a library. (That’s what I do.)

This section ends our overview of the overall architecture of the part 3 Book App.
The rest of this chapter looks at DDD, because DDD can profoundly affect how you
build and use your EF Core code and entity classes.

NOTE Because I made significant changes in chapters 15 and 16, I added a
new section 13.8 to this chapter to share my experiences of using the three
architectural approaches as I added new features that doubled the size of the
Book App from its chapter 13 start.

13.2.2 Using DDD principles both architecturally
and on the entity classes

DDD details many approaches for defining, building, and managing software applica-
tions. But I want to point out three DDD principles in particular:

 The part 3 Book App’s entity classes follow the DDD rules for what DDD calls
entities (and what EF Core calls entity classes). The main rule is that a DDD entity
is in total control of the data in that entity: all the properties are made read-
only, and there are constructors/methods to create/update the entities’ data.
Giving the entity total control of its data makes your entity classes much more
powerful; each entity class has clearly defined constructors/methods for the
developer to use.

 DDD says that entities, which contain both data and domain (business) logic,
should not know anything about how the entities are persisted to a database
(mentioned in section 4.3.1). I talk more about that topic in section 13.2.3,
which covers the use of clean architecture.

410 CHAPTER 13 Domain-Driven Design and other architectural approaches
 DDD talks about bounded contexts, which separate your application into distinct
parts. The idea is to create bounded contexts that are separate so that they are
easier to understand, and then set up clearly defined communication between
the bounded contexts. In the part 3 Book App, I created a bounded context
around the display and editing of books, and another bounded context cover-
ing the ordering of books.

13.2.3 Applying a clean architecture as described by Robert C. Martin

Clean architecture is a software design approach that separates the different parts of
your code into layers, arranged as a series of rings like those of an onion. These layers,
plus some rules, are there to organize your code so that your entity classes and busi-
ness logic are kept isolated from higher layers in the rings. I couldn’t get all the proj-
ects into figure 13.1 by using a series of rings, but the arrangement of the Book App
does follow the clean-architecture approach.

NOTE Here is a link to the clean architecture definition written by Robert C.
Martin (Uncle Bob): http://mng.bz/9N71.

Clean architecture incorporates several other architectures, including hexagonal and
onion. The purpose of this architecture is to define rules that state how different lay-
ers communicate. Clean architecture has a dependency rule, for example, stating that
code in inner rings can’t explicitly link to outer rings. Clean architecture matches
DDD’s rule to separate the entities from the database (DDD persistence) code and
helps keep the code separated in rings, which I have defined as Domain, Persistence,
Infrastructure, ServiceLayer, and the ASP.NET Core BookApp.UI.

13.3 Introduction to DDD at the entity class level
DDD is a massive topic with many facets, but this book is about EF Core. Therefore, I
focus on EF Core entity classes, keeping the database parts out of DDD entities and
using DDD’s bounded context pattern to define how your code accesses the database.

 With its focus on patterns and designs that make building applications better
and more relevant, Eric Evans’s 2003 Domain-Driven Design is a pivotal book in soft-
ware development. What Domain-Driven Design doesn’t do is give you a detailed set
of steps on how you should implement with DDD. I think that is good, because if
the book had given detailed steps, it would be outdated by now, but the principles
are just as relevant today.

 Because the Evans book didn’t include detailed implementation plans, however,
lots of people have come up with different ways to implement DDD. At one end, the
entity classes are carefully crafted to contain only business code; all database parts,
such as primary and foreign keys, are hidden. At the other end are designs in which—
due to the developer’s desire to move all the business code inside the entity class—the
entity class contains reads and writes to the database. I’m going to describe the
approach that most people take to DDD, plus some code to reduce the code you must

http://mng.bz/9N71

411Altering the Book App entities to follow the DDD approach
write. (I don’t show the strict DDD style, with all keys hidden, but you can follow that
approach with shadow properties.)

 First, however, let’s look at the major changes between a normal entity class and a
DDD entity class, which will help you understand the differences between what has
been shown in this book so far and how DDD works. We’ll start with a simple update
to a Book’s PublishedOn property as an example of updating the database; you first
saw this update in section 3.3. The code is trivial, making it easier to see the differ-
ences in the two approaches. Figure 13.3 shows the original, non-DDD design on the
left and the DDD design on the right.

 The DDD version in figure 13.3 requires slightly more code, but as you will see in
section 13.4, that extra code lets these DDD entity classes become much more valu-
able parts of your code. Nevertheless, with potentially hundreds of creates and updates,
those few extra lines add up, which is why I am always trying to find ways to reduce the
code I need to write (see section 13.5).

13.4 Altering the Book App entities to follow
the DDD approach
In this section, you are going to change the Book entity class and associated entity
classes to follow the DDD approach. You will make these changes in stages so that you
can understand how and why you are making them. Here are the steps in the process
of changing your code to the DDD approach:

 Changing the properties in the Book entity to read-only
 Updating the Book entity properties via methods in the entity class
 Controlling how the Book entity is created
 Understanding the differences between an entity and a value object
 Minimizing the relationships between entity classes
 Grouping entity classes (DDD name: aggregates)
 Deciding when the business logic shouldn’t be run inside an entity
 Applying DDD’s bounded context to your application’s DbContext

13.4.1 Changing the properties in the Book entity to read-only

DDD says that the entity class is in charge of the data it contains; therefore, it must
control how the data is created or changed. For the entity class to control its data, you
make all the properties in the entity read-only. After that, a developer can set the data
in the entity class only via the class’s constructor (section 13.4.3) or via the methods in
the entity class (section 13.4.2). The entity can ensure that it is always in a valid state.
With a non-DDD Book entity class, I could create a Book without an Author, but the
business rules state that a valid book has at least one Author. To get this level of con-
trol, you need to make all the properties read-only so that a developer must use the
defined methods/constructors. Listing 13.1 shows the Book entity class with the prop-
erties changed to read-only.

412 CHAPTER 13 Domain-Driven Design and other architectural approaches
public BookDdd
{

public DateTime
PublishedOn
{get; set;}Private

public ChangePubDate
(DateTime date)

{
PublishedOn = date;

}
{

The PublishedOn property now has a private setter.

DDD repository designNon-DDD design summary

Summary of the differences:

1. The DDD version of the
PublishedOn property is

oread-only. Y u update the
PublishedOn property via
a method.

2. The DDB version moves
the database code into
a repository.
- FindBook (bookId)
- PersistData()

public Book
{

...
public DateTime

PublishedOn {get; ;}set
...

}

CRUD service:

{
var book =

_context.Find<Book>
(dto.BookId);

book.PublishedOn =
dto.PublishedOn;

_context.SaveChanges();
}

BookDdd FindBook(int bookId)
{

return _context.
(bookId);Find<BookDdd>

}

void PersistData()
{ _context.SaveChanges(); }

CRUD service:

DDD repository

{
var dddRepro = new
BookDddRepository(context);
var book =
dddRepro.FindBook(bookId);

book.ChangePubDate(newDate);
dddRepro.PersistData();

}

Admin controller

ChangePubDate()

Admin controller

ChangePubDate()

See how the Find
method moves

o.into the DDD rep

Domain

layer

Service

layer

UI layer

Persistence

layer

DDD repository:

Data is saved via
the repository.

Assignment changes
to method call

Figure 13.3 Comparing the non-DDD design for updating a Book’s publication date in the Book App (left)
with the DDD design (right). The code required for the update has the same parts, but the DDD version moves
all the EF Core code to the Persistence layer. If you also “hide” the application’s DbContext in the DDD
version, you can ensure that the developer can access the database only via the DDD repository.

413Altering the Book App entities to follow the DDD approach

A
is s
bac
public class Book
{
 public int BookId { get; private set; }
 public string Title { get; private set; }
 //… other non-collection properties left out

 private HashSet<Review> _reviews;
 public IReadOnlyCollection<Review>
 Reviews => _reviews?.ToList();

 private HashSet<BookAuthor> _authorsLink;
 public IReadOnlyCollection<BookAuthor>
 AuthorsLink => _authorsLink?.ToList();
 //… other collection properties left out
}

WARNING If you are using AutoMapper, it will ignore the private access scope
on your setter and update the property, which is not what you want to happen
when using DDD. To stop this update, you need to add the IgnoreAll-
PropertiesWithAnInaccessibleSetter method after the call to AutoMapper’s
CreateMap<TSource,TDestination> method.

13.4.2 Updating the Book entity properties via methods
in the entity class

With all the properties converted to read-only, you need another way to update the
data inside an entity. The answer is to add methods inside the entity class that can
update the properties. I call these methods access methods. Creating access methods is
extra work, so why does DDD say you should do this? Here are the main benefits:

 You can use an entity like a black box. The access methods and constructors are
its API: it’s up to the entity to make sure that the data inside the entity is always
in a valid state.

 You can put your business rules in the access method. The method can return
errors to users so that they can fix the problem and retry, or for a software prob-
lem, you can throw an exception.

 If there isn’t a method to update a specific property, you know that you’re not
allowed to change that property.

Some simple methods only change a property, but many methods contain the busi-
ness rules for your application. One example in the Book entity is adding and remov-
ing a promotional price. In the part 3 Book entity class, you replace the PriceOffer
entity class with two methods that run the business rules for adding and removing a
promotional price. The rules are

 The sale price of a book is contained in the ActualPrice property.
 The full price of a book is contained in the OrgPrice property.

Making theListing 13.1 Book entity class’s properties read-only

Noncollection properties have
their setter set to private.

collection
tored in a
king field.

The property collection
returns the appropriate
backing fields as read-
only collections.

414 CHAPTER 13 Domain-Driven Design and other architectural approaches

prom
Text h

If
o

Actual
Promot

are
 The PromotionalText property should be null if there is no promotion, but it
must have the promotion message if there is a promotion.

It would be easy for someone to disobey these rules, but turning the rules into an
access method means that no one can get them wrong. Also, the rules are in one
place, so they’re easy to change if necessary. These access methods are some of DDD’s
most powerful techniques.

 Listing 13.2 shows the AddPromotion and RemovePromotion access methods in the
Book entity. These methods ensure that the rules for adding and removing a promo-
tional price are followed.

NOTE The IStatusGeneric interface and StatusGenericHandler class come
from a small open source NuGet library called GenericServices.Status-
Generic, which I use in many of my own libraries and applications.

public IStatusGeneric AddPromotion(
 decimal actualPrice, string promotionalText)
{
 var status = new StatusGenericHandler();
 if (string.IsNullOrWhiteSpace(promotionalText))
 {
 return status.AddError(
 "You must provide text to go with the promotion.",
 nameof(PromotionalText));
 }

 ActualPrice = actualPrice;
 PromotionalText = promotionalText;

 return status;
}

public void RemovePromotion()
{
 ActualPrice = OrgPrice;
 PromotionalText = null;
}

NOTE The name of the property in the AddError method in listing 13.2 is
PromotionalText, not promotionalText, because we are providing the name
of the property that the ASP.NET Core frontend was using when it called the
AddPromotion method.

Listing 13.2 Example of a DDD access method that contains business logic/validation

The AddPromotion returns a status.
If that status has errors, the

promotion is not applied.

The parameters came
from the input.

Creates a status that is
successful unless errors
are added to it

Ensures
that the
otional-
as some
text in it

The AddError method adds an
error and returns immediately.

The error contains a user-
friendly message and the

name of the property that
has the error.

no errors
ccur, the
Price and
ionalText
 updated. The status, which is

successful, is returned.

This removes an existing promotion. Because
there are no possible errors it returns void.

Removes the promotion by resetting the
ActualPrice and the PromotionalText

415Altering the Book App entities to follow the DDD approach

Cre
statu

can re
resu

this

statu
to

Book
If
e

val
13.4.3 Controlling how the Book entity is created

In line with the DDD approach, in which the entity controls the setting of data in it,
you need to think about the creation of an entity. As far as I know, Eric Evans
doesn’t define this process, but creating an entity class is an important issue, espe-
cially as all the properties are read-only. Therefore, you need to provide at least one
constructor or a static create factory method for a developer to use to create a new
instance of the entity.

 In the Book entity class, it’s possible to create an invalid instance, because the busi-
ness rules state that a Book’s Title must not be empty and that there should be at least
one Author. A constructor can’t return errors, so you create a static create factory
method that returns a status containing errors if the Book’s Title is empty or if no
Author is provided. If there aren’t any errors, the status contains a Result property
containing the newly created Book, as shown in the following listing.

private Book() { }

public static IStatusGeneric<Book> CreateBook(
 string title, DateTime publishedOn,
 decimal price,
 ICollection<Author> authors)
{
 var status = new StatusGenericHandler<Book>();
 if (string.IsNullOrWhiteSpace(title))
 status.AddError(
 "The book title cannot be empty.");

 var book = new Book
 {
 Title = title,
 PublishedOn = publishedOn,
 OrgPrice = price,
 ActualPrice = price,
 };
 if (authors == null)
 throw new ArgumentNullException(nameof(authors));

 byte order = 0;
 book._authorsLink = new HashSet<BookAuthor>(
 authors.Select(a =>
 new BookAuthor(book, a, order++)));

 if (!book._authorsLink.Any())
 status.AddError(
 "You must have at least one Author for a book.");

 return status.SetResult(book);

Listing 13.3 The static create factory to create a valid Book or return the errors

Creating a private constructor
means that people can’t create
the entity via a constructor.

The static CreateBook
method returns a
status with a valid
Book (if there are
no errors).

These parameters are all that are
needed to create a valid Book.

ates a
s that
turn a
lt—in

case, a
Book

Adds an error. Note that it
doesn’t return immediately so
that other errors can be added.

Sets the
properties

The authors parameter,
which is null, is
considered to be a
software error and
throws an exception.

Creates the BookAuthor class
in the order in which the
Authors have been provided

If there are no
Authors, add
an error.

Sets the
s’s Result
 the new

 instance.
there are
rrors, the
ue is null.

}

416 CHAPTER 13 Domain-Driven Design and other architectural approaches

For simple entity classes, you can use a public constructor with specific parameters,
but any entities that have business rules and return error messages should use a static
factory in the entity class.

13.4.4 Understanding the differences between an entity
and a value object

DDD talks about an entity (the Book entity being an example), but it also talks about a
value object. The difference is what uniquely defines an instance of each. Eric Evans
says, “Tracking the identity of entities is essential,” but “Make [value objects] express
the meaning by the attributes [properties] it conveys” (Domain-Driven Design, p. 98–99).
Here are two examples that might help:

 An entity isn’t defined by the data inside it. I expect that more than one person
named John Smith has written a book, for example. Therefore, the Book App
would need a different Author entity for each author named John Smith.

 A value object is defined by the data inside it. If I have an address to send an
order to, and another address with the same road, city, state, zip code, and
country, was created, the two instances of the address are said to be equal.

From an EF Core perspective, a DDD entity is an EF Core entity class, which is saved to
the database with some form of primary key. The primary key ensures that the entity is
unique in the database, and when EF Core returns a query including entity classes
(and the query doesn’t include any form of the AsNoTracking method), it uses a sin-
gle instance for each entity class that has the same primary key (see section 6.1.3).

You can implement a value object by using EF Core’s owned type (see section 8.9.1).
The main form of an owned type is a class with no primary key; the data is added to
the table it is included in.

NOTE The Book App doesn’t include any value objects, so I can’t use it as an
example. Please look at listing 8.15 for a good example of using owned types
in an entity class.

13.4.5 Minimizing the relationships between entity classes

Eric Evans says, “It is important to constraint relationships as much as possible”
(Domain-Driven Design, p. 83). He goes on to say that added two-way relationships
between entities mean you need to understand both entities when working on either
entity, which makes the code harder to understand. His recommendation (and mine)
is to minimize the relationships. A Book, for example, has a navigational property of
all the Reviews for a Book, but the Review does not have a navigational property back
to the Book (see section 8.2).

It’s easy to minimize navigational relationships between entity classes. In section 8.2,
I look at the relationships between the Book entity class and the Review entity class. I
concluded that the Book entity needed a navigational collection of Reviews linked to
it, but the Review entity didn’t need a navigational link back to the Book entity. In

417Altering the Book App entities to follow the DDD approach

other words, understanding the Book entity requires some idea of what the Review
entity does, but when dealing with the Review entity, I had to understand only what
the Review entity does.

13.4.6 Grouping entity classes

Another important DDD pattern called aggregates offers some guidance on handling
related entities. The aggregates principle says that you should group entities that can
be considered to be “one unit for the purpose of data changes” (Domain-Driven Design,
p. 126). One of the entities in an aggregate is the root aggregate, and any changes in the
other aggregates are made via this root aggregate.

 Figure 13.4 shows aggregate entities around the DDD version of the Book entity
class used in the Book App. Any changes to the Review or BookAuthor entities linked
to a Book entity can be changed only via access methods or constructors in the Book
entity. The Author entity is outside the Book aggregate because it can be linked to mul-
tiple Books.

Aggregate (1)Aggregate (3)

Book

BookId

AuthorId

Order

Book

Author

BookAuthor AuthorId

Name

BooksLink

Author

BookId

Title

Description

…

Reviews

AuthorsLink

ReviewId

NumStars

Comment

Voter

BookId

Review

The Book entity is the root aggregate, and the Review and
BookAuthor entities can be updated only via the Book entity.

The Author entity
isn’t part of the Book
aggregate but a
separate aggregate
all on its own.

Figure 13.4 DDD’s aggregates concept groups entities that can be managed as though they
were one group of data. One of the entities is the root aggregate (the Book entity in the left
aggregate and Author in the right aggregate). All updates to the Book’s Reviews or
BookAuthor entities are done via the Book entity. This technique reduces the amount of
entities you need to deal with and allows the root entity to ensure that all the other aggregates
are set up correctly (that a Book has at least one BookAuthor link, for example).

NOTE The BookAuthor entity in figure 13.4 breaks Evans’s DDD aggregate
rule because a nonroot aggregate should not be referenced from outside the
aggregate. (The Author entity has a backlink to the BookAuthor entity.) But
the BookAuthor entity contains book-specific data: the Order property, which
defines the order in which the Authors should be cited. These features of the
BookAuthor entity make it an aggregate of the Book entity.

The aggregate rule simplifies the handling of entities classes because one root entity
can handle multiple aggregates in its group. Also, the root entity can validate that the

418 CHAPTER 13 Domain-Driven Design and other architectural approaches
other, nonroot aggregates are set up correctly for the root aggregate, such as the Book
create factory’s checking that there is at least one Author for a Book entity.

 This rule also calls for using an access method in the Book entity to add, update, or
remove Review entities’ links to the Book entity instance. The following listing shows
the two access methods for adding or removing Reviews.

public void AddReview(int numStars,
 string comment, string voterName)
{
 if (_reviews == null)
 throw new InvalidOperationException(
 "Reviews collection not loaded”);

 _reviews.Add(new Review(
 numStars, comment, voterName));
}

public void RemoveReview(int reviewId)
{
 if (_reviews == null)
 throw new InvalidOperationException(
 "Reviews collection not loaded”);

 var localReview = _reviews.SingleOrDefault(
 x => x.ReviewId == reviewId);

 if (localReview == null)
 throw new InvalidOperationException(
 "The review wasn’t found”);

 _reviews.Remove(localReview);
}

One additional change you make is marking the Review entity class’s constructor as
internal. That change stops a developer from adding a Review by creating an instance
outside the Book entity.

13.4.7 Deciding when the business logic shouldn’t be run inside
an entity

DDD says that you should move as much of your business logic inside your entities,
but the DDD aggregates rule says that the root aggregate should work only with other
entities in the aggregate group. If you have business logic that includes more than one
DDD aggregate group, you shouldn’t put (all) the business logic in an entity; you
need to create some external class to implement the business logic.

 An example of a situation that requires more than one aggregate group in the busi-
ness logic is processing a user’s order for books. This business logic involves the Book

The access methods that control the aggregate entityListing 13.4 Review

Adds a new review with
the given parameters

This code relies on the _reviews
field to be loaded, so it throws
an exception if it isn’t.

Creates a new Review, using
its internal constructor

Removes a Review,
using its primary key

Finds the
specific Review
to remove

Not finding the Review is considered
to be a software error, so the code
throws an exception.

The found Review
is removed.

419Altering the Book App entities to follow the DDD approach

cre

bo
o

Call
stati

is
job

s.
entity, which is in the Book/Review/BookAuthor aggregate group, and the Order/
LineItem aggregate group.

 You saw a solution to the order-for-books problem in section 4.4.3. The DDD ver-
sion uses similar code, but the final stage of building the Order is carried in a static
factory inside the Order entity because the Order is the root aggregate in the Order/
LineItem aggregate group. The following listing shows the external business class
called PlaceOrderBizLogic.

NOTE Because you saw some of this code in listing 4.2, I left out similar parts
of the code. The purpose is to focus on the changes in the DDD parts, espe-
cially creating the Order via an Order static factory.

public async Task<IStatusGeneric<Order>>
 CreateOrderAndSaveAsync(PlaceOrderInDto dto)
{
 var status = new StatusGenericHandler<Order>();

 if (!dto.AcceptTAndCs)
 {
 return status.AddError("accept T&Cs…”);
 }
 if (!dto.LineItems.Any())
 {
 return status.AddError("No items in your basket.");
 }

 var booksDict = await _dbAccess
 .FindBooksByIdsAsync
 (dto.LineItems.Select(x => x.BookId));

 var linesStatus = FormLineItemsWithErrorChecking
 (dto.LineItems, booksDict);
 if (status.CombineStatuses(linesStatus).HasErrors)
 return status;

 var orderStatus = Order.CreateOrder(
 dto.UserId, linesStatus.Result);

 if (status.CombineStatuses(orderStatus).HasErrors)
 return status;

 await _dbAccess.AddAndSave(orderStatus.Result);

 return status.SetResult(orderStatus.Result);
}

Listing 13.5 PlaceOrderBizLogic class working across Book and Order entities

This method returns a status with the created
Order, which is null if there are no errors.

The PlaceOrderInDto
contains a TandC bool, and
a collection of BookIds
and number of books.

This status is used to
gather errors, and if
there are no errors, the
code returns an Order.Validate

the user’s
input

The _dbAccess contains
the code to find each
book (see listing 4.3)

This method
ates a list of
bookIds and
numbers of

oks (see end
f listing 4.2).

If any errors were
found while checking
each order line, returns
the error status

s the Order
c factory. It
the Order’s
to form the
Order with
LineItems.

Again, any errors will abort
the Order and return error

The _dbAccess
contains the code to
add the Order and call
SaveChangesAsync.

Returns a successful status with
the created Order entity

420 CHAPTER 13 Domain-Driven Design and other architectural approaches

th
The biggest change from the code in chapter 4 is that the Order entity takes over the
final stage of building the Order. The following listing shows the Order static factory
method.

public static IStatusGeneric<Order> CreateOrder
 (Guid userId,
 IEnumerable<OrderBookDto> bookOrders)
{
 var status = new StatusGenericHandler<Order>();
 var order = new Order
 {
 UserId = userId,
 DateOrderedUtc = DateTime.UtcNow
 };

 byte lineNum = 1;
 order._lineItems = new HashSet<LineItem>(
 bookOrders
 .Select(x => new LineItem(x, lineNum++)));

 if (!order._lineItems.Any())
 status.AddError("No items in your basket.");

 return status.SetResult(order);
}

13.4.8 Applying DDD’s bounded context to your application’s DbContext

In section 13.2.2, I said that bounded contexts “separate your application into distinct
parts” and that bounded contexts have “clearly defined communication.” In figure 13.1,
you saw two Persistence projects, Persistence.EfCoreSql.Books and Persistence
.EfCoreSql.Orders, which are independent. But code previously described for placing
a user’s order needed information about the Book, so how do we manage this situation?

 In this specific case, the solution is to use an SQL View in the Order’s DbContext
that maps to the Books table in the Book’s DbContext, as shown in figure 13.5. That
way, you can make the Persistence.EfCoreSql.Books and Persistence.EfCoreSql
.Orders independent while letting both access the database data.

 Using an SQL View is an excellent solution in this case because it follows many of
the DDD rules. First, the BookView contains only the data that the Orders side needs,
so the developer isn’t distracted by irrelevant data. Second, when an entity class is con-
figured as a View, EF Core marks that entity class as read-only, enforcing the DDD rule
that only the Books entity should be able to change the data in the Books table.

NOTE Another benefit is that a class mapped to an SQL View won’t add migra-
tion code to alter that table. You can apply EF Core migrations from both the

Listing 13.6 This static factory creates an Order with the LineItems, with error checks

This static factory creates
the Order with lineItems. The Order uses the

UserId to show orders
only to the person
who created it.

The OrderBookDto lives in the Order domain
and carries the info that the Order needs.

Creates a status to return wi
an optional result of Order

Sets the standard
properties in an
order

Creates each of the LineItems
in the same order in which
the user added them

Double-checks that
the Order is valid

Returns the status with the Order. If there
are errors, the status sets the result to null.

421Using your DDD-styled entity classes in your application
BookDbContext and the OrderDbContext contexts to the database, and only
the BookDbContext’s Book entity will affect the Books table (see section 9.4.3).

Although the SQL View works well for this purpose, it creates a link between the two
bounded contexts. Be careful if you change the Book entity and then migrate the
database.

NOTE Passing data between bounded contexts is a big topic that I can’t cover
here. I recommend the old but still-relevant article “Strategies for Integrating
Bounded Contexts,” in which Philip Brown gives a good overview of many
ways to communicate between bounded contexts (http://mng.bz/96Bg).

13.5 Using your DDD-styled entity classes
in your application
The DDD approach is to keep the focus on the domain mode—that is, on the entities
and their relationships. Conversely, it doesn’t want the database (DDD persistence)
parts to distract the developer who is working on the domain design. The idea is that
the entity and its relationships (navigational properties in EF Core terms) are all the
developer needs to consider when solving domain issues.

 Having updated the design of your entity classes to one that follows the DDD
approach, now you want to use these classes in your application. Querying the Book
hasn’t changed, but how you create and update your DDD-styled entity classes has
changed. In section 13.4, you altered your entity classes to use constructors or static
create factories to create and access methods to update. In this section, you are going
to look at how you would use these new approaches in an application. The examples
come from the Book App (which is an ASP.NET Core MVC application) in part 3. Fig-
ure 13.6 shows the page that the admin user uses to add a promotion to a book.

BookDbContext OrderDbContext

The OrderDbContext has a class called BookView, which is configured
as an SQL View mapped to specific columns in the Books table.

Orders

LineItem

BookView

Reviews

Author

BooksBookAuthor

Figure 13.5 To follow the DDD bounded-context approach, the Domain.Books should be
independent of the Domain.Orders. But at the database level, both Domains need a Book
entity. The solution in this case is to create a BookView entity in the Domain.Orders that
contains only the specific properties to create and display an order. Then we configure the
BookView class as an SQL View mapped to the Books table.

http://mng.bz/96Bg

422 CHAPTER 13 Domain-Driven Design and other architectural approaches
Next, you will implement the code to put in an ASP.NET Core controller to display
the page shown in figure 13.6 and update the Book entity when the user has provided
their input and clicked the Update button. You will use two approaches: the standard
approach described by Evans and a library designed to work directly with DDD access
methods (which I refer to as a class-to-method-call library). The following list allows you
to compare the two approaches:

 Calling the AddPromotion access method via a repository pattern
 Calling the AddPromotion access method via a class-to-method-call library

You will build code that adds a new Review to the Book entity class. Updates to rela-
tionships require you to decide how to handle the update. You will implement the
AddReview example in two ways so that you can compare the two approaches:

 Adding a Review to the Book entity class via a repository pattern
 Adding a Review to the Book entity class via a class-to-method-call library

13.5.1 Calling the AddPromotion access method via a repository pattern

Evans’s book uses a repository pattern to handle the database accesses. Microsoft’s
definition of the repository pattern says, “Repositories are classes or components that
encapsulate the logic required to access data sources. They centralize common data
access functionality, providing better maintainability and decoupling the infrastruc-
ture or technology used to access databases from the domain model layer.”

 There are many ways to build a repository pattern. I have chosen to use a generic
repository, which will work with any entity. The following listing shows the generic
repository that you need for the AddPromotion example.

public class GenericRepository<TEntity>
 where TEntity : class
{

A generic repository that handles some basic database commandsListing 13.7

Figure 13.6 Web page used to add a
promotion to a book. This example shows
the title and full price of the book, and
invites the admin user to give the new
price and some text to go next to the
price. When the Update button is clicked,
the AddPromotion access method is
called with the new data, and if there are
no errors, SaveChanges is called to
update the Book.

The generic repository will
work with any entity class.

423Using your DDD-styled entity classes in your application

e
sin

p

t
 protected readonly DbContext Context;

 public GenericRepository(DbContext context)
 {
 Context = context;
 }

 public IQueryable<TEntity> GetEntities()
 {
 return Context.Set<TEntity>();
 }

 public async Task<TEntity> FindEntityAsync(int id)
 {
 var entity = await Context.FindAsync<TEntity>(id);

 if (entity == null)
 throw new Exception("Could not find entity");

 return entity;
 }

 public Task PersistDataAsync()
 {
 return Context.SaveChangesAsync();
 }
}

Using this repository, you can find a specific Book entity and call that Book’s Add-
Promotion access method, using the data provided by the admin user. The following list-
ing shows the code using the GenericRepository<Book> that would go in the ASP.NET
Core AdminController. This controller has two methods, both named AddPromotion,
but with different parameters and attributes. The first AddPromotion method is called to
display the page shown in figure 13.6. The second AddPromotion method is called when
the user clicks the Update button and handles the update of the Book entity with the
promotion.

NOTE If you aren’t familiar with ASP.NET Core, please look at section 5.7,
which gives you a step-by-step look at how ASP.NET Core controllers work.

The following listing shows the AdminController with its constructor and the two
methods. Note that only the new code that uses the repository has comments.

public class AdminController : Controller
{
 private readonly GenericRepository<Book> _repository;

 public AdminController(
 GenericRepository<Book> repository)
 {
 _repository = repository;
 }

Handling theListing 13.8 AddPromotion update by using a repository pattern

The repository needs
the DbContext of the
database.

Returns an
IQueryable query
of the entity type

This method finds and
returns a entity with a
integer primary key.

Finds an
ntity via its
gle, integer
rimary key

A rudimentary check tha
the entity was found

The found
entity is

returned.
Calls SaveChanges
to update the
database

The Generic-
Repository<Book>
is injected into the
Controller.

424 CHAPTER 13 Domain-Driven Design and other architectural approaches

 public async Task<IActionResult> AddPromotion(int id)
 {
 var book = await _repository.FindEntityAsync(id);

 var dto = new AddPromotionDto
 {
 BookId = id,
 Title = book.Title,
 OrgPrice = book.OrgPrice
 };

 return View(dto);
 }

 [HttpPost]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> AddPromotion(AddPromotionDto dto)
 {
 if (!ModelState.IsValid)
 {
 return View(dto);
 }

 var book = await _repository
 .FindEntityAsync(dto.BookId);
 var status = book.AddPromotion(
 dto.ActualPrice, dto.PromotionalText);

 if (!status.HasErrors)
 {
 await _repository.PersistDataAsync();
 return View("BookUpdated", “Updated book…”);
 }

 //Error state
 status.CopyErrorsToModelState(ModelState, dto);
 return View(dto);
 }

Uses the
repository
to read in
the Book

entity

Copies over
the parts of
the Book you
need to show
the page

Calls the
AddPromotion
access method with
the two properties
from the dto

The access
method returned
no errors, so you
persist the data to
the database.

}

13.5.2 Calling the AddPromotion access method via
a class-to-method-call library

Although calling DDD access methods by using a repository system works, this approach
has some repetitious code, such as in the first stage, where you copy properties into a
DTO/ViewModel (referred to as the DTO from now on) to show to the user, and in
the second stage, where returned data in the DTO is turned into an access method
call. What would happen if you had a way to automate this process?

Well, in early 2018, after I had finished the first edition of this book, I found a
way to automate both parts of the DDD CRUD and built an open source library
called EfCore.GenericServices (referred to as GenericServices from now on).
The GenericServices library automates most CRUD operations from normal entity

425Using your DDD-styled entity classes in your application

classes with settable properties and DDD entity classes with their constructors and
access methods.

 One benefit of using this library is that it reduces the amount of code you have to
write in comparison to the repository approach. The library saves you about five lines
in ASP.NET Core, and you don’t have to write the repository. Another benefit is that
the code you use is the same for every update; only the DTO is different. The library
allows you to copy/paste frontend code and then change only the DTO type to swap
to another access method, constructor, or static factory.

NOTE I designed GenericServices to deal with most, but not all, CRUD
code. It’s great at dealing with simple to moderate CRUD situations, but it
can’t cover every circumstance. For more complex CRUD code, I write the
code by hand. You can learn more about this library at http://mng.bz/jBoP.

The rest of this section shows how you can implement the AddPromotion example by
using GenericServices. First, you will look at the DTO in figure 13.7, which defines
what entity the library needs to load, what properties to load for the read part, and
what access method to call.

public class AddPromotionDto

: ILinkToEntity<Book>

{

public int BookId { get; set; }

public string Title { get; set; }

public decimal OrgPrice { get; set; }

public decimal ActualPrice { get; set; }

public string PromotionalText { get; set; }

}

The simplest way to define what access method you want called is to
name the DTO as <access-method-name> with an ending of “Dto” or “Vm.”

This interface tells GenericServices
what entity class to load.

For updates, you include the primary
key(s) using the same name and type.

These properties all match properties
in the Book entity, so they are filled in
by the read part.

These two properties match the name (with Pascal to camel casing)
and the type of the two properties in the AddPromotion access
method, so they are used in the call to that access method.

Figure 13.7 The DTO defines what entity class is read and updated by using the
ILinkToEntity<T> interface. On a read, it will fill in all the properties in the DTO that
have the same name/type as the linked entity class—in this case, the Book entity. The
name of the DTO is used to find the access method to call, and the properties are found
by matching names (with Pascal to camel casing) and their types.

The following listing shows the use of the GenericServices library instead of a repos-
itory (listing 13.8). Note that I’ve commented only the new code that uses Generic-
Services.

http://mng.bz/jBoP

426 CHAPTER 13 Domain-Driven Design and other architectural approaches

//public class AdminController : Controller
{
 private readonly ICrudServicesAsync _service;

 public AdminController(
 ICrudServicesAsync service)
 {
 _service = service;
 }

 public async Task<IActionResult> AddPromotion(int id)
 {
 var dto = await _service
 .ReadSingleAsync<AddPromotionDto>(id);

 return View(dto);
 }

 [HttpPost]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> AddPromotion(AddPromotionDto dto)
 {
 if (!ModelState.IsValid)
 {
 return View(dto);
 }

 await _service.UpdateAndSaveAsync(dto);

Handling theListing 13.9 AddPromotion update by using GenericServices

The ICrudServicesAsync
service comes from
GenericServices and
is injected via the
Controller’s
constructor.

The ReadSingleAsync<T>
reads into the DTO, using
the given primary key.

The UpdateAndSaveAsync
method calls the access
method, and if no errors
occur, it saves the access
method to the database.

if (!_service.HasErrors)
{

return View("BookUpdated", service.Message);
}

//Error state
_service.CopyErrorsToModelState(ModelState, dto);
return View(dto);

}
}

As you can see, the code is much smaller, with only one line in each ASP.NET Core
action method. My own before-and-after analysis suggests that the GenericServices

library reduces the time it takes to build a backend ASP.NET Core application by
10–20%.

13.5.3 Adding a Review to the Book entity class via a repository pattern

When you’re updating navigational properties, you need to handle another step: pre-
loading the navigational property. In listing 13.4, the access methods to add a Review

to or remove a Review from the Book entity require the _reviews backing field to be
filled before the addition or removal, so you need to update the repository that reads

427Using your DDD-styled entity classes in your application
in the Book entity with its Reviews collection included. Because this task is specific to the
Book entity, you create a BookRepository class that inherits the GenericRepository.
The following listing shows this new BookRepository.

public class BookRepository : GenericRepository<Book>
{
 public BookRepository(DbContext context)
 : base(context)
 { }

 public async Task<Book>
 LoadBookWithReviewsAsync(int bookId)
 {
 var book = await GetEntities()
 .Include(b => b.Reviews)
 .SingleOrDefaultAsync(
 b => b.BookId == bookId);
 if (book == null)
 throw new Exception("Could not find book");
 return book;
 }
}

This repository replaces the GenericRepository<Book> in listing 13.9. This code snip-
pet shows how you would call the LoadBookWithReviewsAsync method in ASP.NET
Core’s POST action method:

var book = await _repository
 .LoadBookWithReviewsAsync(dto.BookId);
book.AddReview(
 dto.NumStars, dto.Comment, dto.VoterName);
await _repository.PersistDataAsync();

13.5.4 Adding a Review to the Book entity class via
a class-to-method-call library

For preloading navigational properties, the GenericServices library provides an
IncludeThen attribute that you add to the DTO. This attribute allows you to define
the name of navigational properties to lnclude or ThenInclude. The following listing
shows the AddReviewDto class with its IncludeThen attribute.

[IncludeThen(nameof(Book.Reviews))]
public class AddReviewDto

Add theListing 13.10 LoadBookWithReviewsAsync method to the repository

TheListing 13.11 AddReviewDto class with an attribute to load the Reviews

The book repository inherits the generic repository to get the general commands.

The GenericRepository
needs the application’s
DbContext.

Loads a
Book with

Reviews Uses the GenericRepository’s
GetEntities to get a
IQueryable<Book> query

Makes sure that
the Review

collection is
loaded with

the book

Selects the Book with
the given BookId

A rudimentary
check that the
entity was
found

Returns the book
with the Reviews
collection loaded

The IncludeThen attribute includes the
Book’s Reviews navigational property. The name of the DTO shows

that it should call the
AddReview access method.

428 CHAPTER 13 Domain-Driven Design and other architectural approaches

Th

lin
t

ent

 : ILinkToEntity<Book>
{
 public int BookId { get; set; }

 public string Title { get; set; }

 public string VoterName { get; set; }
 public int NumStars { get; set; }
 public string Comment { get; set; }

e entity
that this

DTO is
ked to is
he Book
ity class.

The primary key of the Book is filled in by
the read and used by the update method.

The Title is read in on a read and used
to confirm to the user what book they
are adding a Review to.

These three properties are
used as parameters in the
AddReview access method.

}

After you add the IncludeThen attribute, any read of an entity will include the naviga-
tional properties. You use GenericServices’ ReadSingleAsync<T> and UpdateAnd-

SaveAsync(dto) methods the same way that you would access methods that do not
have navigational properties to update.

13.6 The downside of DDD entities:
Too many access methods
Matthew Krieger read one of my articles about using DDD with EF Core and left this
comment: “Here is the big thing I cannot get my head around: Won’t you end up with
lots of access methods?” He was right. In real applications, you can end up with lots of
access methods. When you are building a large application, the time it takes to write
an access method grows if you have hundreds to write.

Two of my clients used DDD, and both went for an approach that allowed some
properties to be updated directly—that is, not using access methods. One client
wanted to use JSON Patch to update the entities because it sped up the building of the
frontend pages. Another client was using DDD but updating some properties by let-
ting AutoMapper “punch through” the private setter and set the value. (See my warn-
ing in section 13.4.1.)

DEFINITION JSON Patch is a way to send alterations to data by using a JSON
object that conforms to the IETF RFC 6902 specification. See http://jsonpatch
.com for more information.

Both clients were attempting to speed up development, and saying “That’s not the
right way to use DDD” wasn’t the right suggestion. We agreed on this approach: if
the property has no business rules (other than validation attributes), the setter on
that property could be made public. I refer to entity classes that use this approach as
hybrid DDD entities.

As an example, if you look at the Book entity class, the Title property and the
Publisher property have no business logic but should not be empty, so the setter of
these two properties could be made public without having any effect on the business
rules. Making the properties’ setter public would save you from writing two more
access methods and allow JSON Patch or AutoMapper to update these properties.
Some DDD practitioners might criticize this hybrid DDD suggestion as not following
the DDD pattern, but I call it a pragmatic solution.

http://jsonpatch.com/
http://jsonpatch.com/
http://jsonpatch.com/

429Getting around performance issues in DDD-styled entities
NOTE My GenericServices library can detect and use hybrid DDD classes. If
a DDD class has properties with public setters, it registers the entity class as a
hybrid DDD class. Hybrid DDD classes enable GenericServices to use JSON
Patch or AutoMapper to set these properties directly without needing an
access method to be written. See my article at http://mng.bz/Wrj1.

13.7 Getting around performance issues
in DDD-styled entities
So far, you have looked at the ways to apply the DDD approach to entity classes in EF
Core. But when you start building real applications, you sometimes need to improve
performance. Typically, the performance issues in an application involve queries, and
DDD doesn’t affect them at all. But if you have database write performance issues, you
might feel the need to bypass DDD. Instead of ditching DDD, you have three ways to
keep using DDD with minimal bending of the rules.

 As an example, we look at the performance of adding or removing a Review. So
far, you have loaded all the reviews before running add/remove access methods. If
you have only a few Reviews, you have no problem, but if your site is like Amazon,
where products can have thousands of reviews, loading all of them to add one new
Review is going to be too slow.

 In section 3.4.3, I describe a way to add a single Review to a Book by creating that
Review and setting its BookId foreign key to the primary key of the Book. This approach
means that you don’t have to include all the Reviews, so the update will be quick. But all
the solutions in this section break the DDD rule that the entity classes shouldn’t know
anything about the database code. So in this section, you look at three solutions.

 Each solution requires one change: a way to set the BookId foreign key in the
Review entity. This change immediately breaks the rule that DDD entities shouldn’t
know about the database, but I can’t see any way around this part, although the last
approach I describe is close.

 We start with the following listing, which shows the updated Review constructor.
Note that the Review has an internal access modifier, which means that it can be created
only in the Domain.Books project. The use of an internal access modifier and the
optional BookId parameter in the constructor will become clearer as we solve this issue.

internal Review(
 int numStars, string comment, string voterName,
 int bookId = 0)
{
 NumStars = numStars;
 Comment = comment;
 VoterName = voterName;

Listing 13.12 The updated Review public constructor with optional foreign key

The Review constructor
is internal, so only entity
classes can create a Review.

Standard
properties

A new, optional property
is added for setting the
Review foreign key.

Sets the standard
properties

http://mng.bz/Wrj1

430 CHAPTER 13 Domain-Driven Design and other architectural approaches

... bu
par

is
w

DbC

 if (bookId != 0)
 BookId = bookId;
}

ALTERNATIVE The other option is to expose a navigational property linking
the Review back to the Book entity. This option keeps the entity from knowing
about foreign keys but breaks the DDD rule on minimizing relationships. Pick
which rule you want to break.

After you have changed the Review entity, you can use any of three options:

 Allow database code into your entity classes.
 Make the Review constructor public and write nonentity code to add a Review.
 Use domain events to ask an event handler to add a Review to the database.

13.7.1 Allow database code into your entity classes

One solution is for the AddReview access method to have access to the application’s
DbContext. You can provide the application’s DbContext by adding an extra parameter
to the AddReview/RemoveReview access methods or using EF Core’s service injection as
shown in section 6.1.10. Listing 13.13 shows the two access methods to add/remove a
Review. The DbContext is provided in the access methods via a parameter.

NOTE I couldn’t use this solution in the part 3 Book App because clean archi-
tecture bans adding any substantial libraries, especially anything having to do
with databases, to the Domain projects. But I have used this solution in other
applications.

public void AddReview(
 int numStars, string comment, string voterName,
 DbContext context)
{
 if (BookId == default)
 throw new Exception("Book must be in db");

 if (context == null)
 throw new ArgumentNullException(
 nameof(context),
 "You must provide a context");

 var reviewToAdd = new Review(
 numStars, comment, voterName,
 BookId);

 context.Add(reviewToAdd);
}

public void RemoveReview (
 int reviewId,
 DbContext context)

Providing the application’s DbContext to the access methodsListing 13.13

If a foreign-key parameter
was provided, the BookId
foreign key is set.

The access method takes the
normal AddReview inputs ...

t a new
ameter
 added,
hich is

EF Core
ontext.

This method works only on a Book
that is already in the database.

This method works
only if an DbContext
instance is provided.

Creates the Review
and sets the Review
BookId foreign key

Uses the DbContext Add method to mark the
new Review to be added to the database

The access method takes
the normal RemoveReview
input of the ReviewId.

431Getting around performance issues in DDD-styled entities

{
 if (BookId == default)
 throw new Exception("Book must be in db");

 if (context == null)
 throw new ArgumentNullException(
 nameof(context),
 "You must provide a context");

 var reviewToDelete = context.Set<Review>()
 .SingleOrDefault(x => x.ReviewId == reviewId);

 if (reviewToDelete == null)
 throw new Exception("Not found");
 if (reviewToDelete.BookId != BookId)
 throw new Exception("Not linked to book");

 context.Remove(reviewToDelete);
}

This solution breaks the following DDD rules:

 The add/remove review access methods contain database features.
 The Review entity knows about a database feature: the BookId foreign key

NOTE GenericServices supports injection of a DbContext via a parameter.
When GenericServices calls DDD constructors, static factories, or access meth-
ods, it looks for parameters of type DbContext or the type of the application’s
DBContext and fills them in with the DBContext that GenericServices was
registered with.

13.7.2 Make the Review constructor public and write nonentity code
to add a Review

This solution removes the database features introduced in section 13.7.1 from the
Book’s access methods and places them in another project (most likely BizLogic). The
solution makes the Book entity cleaner, but it does require the Review constructor’s
access modifier to be changed to public. The downside is that anyone can create a
Review entity instance.

 The code to add/remove a Review is the same as shown in listing 13.4, but now it is
in its own class. This solution breaks the following DDD rules:

 The Book entity isn’t in charge of the Review entities linked to it.
 The Review has a public constructor, so any developer can create a Review.
 The Review entity knows about a database feature: the BookId foreign key.

This method works only on a Book
that is already in the database.

This method works
only if an DbContext
instance is provided.

Reads in the
review to delete

A rudimentary check that
the review entity was found

If not linked to
this Book, throw
an exception.

Deletes the review

432 CHAPTER 13 Domain-Driven Design and other architectural approaches
13.7.3 Use domain events to ask an event handler to add
a review to the database

The last solution is to use a domain event (see chapter 12) to send a request to event
handlers that add or remove a Review. Figure 13.8 shows the AddReviewViaEvents
access method in the Book entity on the left and the AddReviewHandler being run by
SaveChanges (or SaveChangesAsync) on the right.

Figure 13.8 shows only the AddReview example, but RemoveReview would send the
ReviewId to a RemoveReviewHandler, whose job is to find and delete that Review. This
approach has the least divergence from the DDD approach because it leaves the Book
entity in charge of managing the Reviews linked to the Book. Also, the Review entity
can keep its internal access modifier so that no code outside the entity classes project

public override int SaveChanges()

{

_eventRunner?.RunEvents(this);

return base.SaveChanges();
}

public class Book

{

public void AddReviewViaEvents(

int numStars, string comment,

string voterName)

{

//… check code left out

var reviewToAdd = new Review(

numStars, comment, voterName,

BookId);

AddEvent(new AddReviewEvent(

reviewToAdd));

}

//… all other code left out

}

public class AddReviewHandler

: IEventHandler<AddReviewEvent>

{

private MyDbContext _context;

public void HandleEvent

(AddReviewEvent event)

{

_context.Add(event.reviewToAdd);

}

}
3. The AddReviewHandler has access to the

application’s DbContext, which allows it to
call the Add method to add the new review
to the database.

2. When the SaveChanges method is called,
the domain events are run before the
base SaveChanges is called.

1. The AddReviewViaEvents access method
creates the Review and sends it via an event to
the AddReviewHandler.

Figure 13.8 A solution using events to add a single Review without loading all the Reviews in a
Book entity. The Book entity has an access method called AddReviewsViaEvents, which
creates the review and sends it in a domain event to an event handler. When your event-enhanced
SaveChanges/SaveChangesAsync method is called, it finds and runs the AddReviewHandler
while providing the domain event as a parameter. The event handler can access the application’s
DbContext, so it can call the Add method to add that new Review to the database. Then the base
SaveChanges/SaveChangesAsync updates the database with the changes.

433Three architectural approaches: Did they work?

can create a Review. But it still has the downside that all the solutions have: the Review

entity knows about a database foreign key.

13.8 Three architectural approaches: Did they work?
The experience of building and enhancing part 3’s Book App was a great test of apply-
ing the three architectural approaches during development. The Book App started
with 9 projects, but by the end of chapter 16, it had 23 projects—a big change, with
lots of refactoring to support new features. This section summarizes my experience of
using these approaches on the initial part 3 Book App up to the end of chapter 16.

13.8.1 A modular monolith approach that enforces SoC
by using projects

I was aware of the modular monolith approach but hadn’t used it in an application
before. My experience was that it worked well; in fact, it was much better than I thought
it would be. I would use this approach again for any medium-size to large application.
Following the modular monolith approach meant each project was small and focused,
and giving the project a name that said what it did made navigating the code easy.

Having used the layered architecture (see section 5.2) for some time, I know that
the service layer can get really big and hard to work on (sometimes referred to as the
big ball of mud problem). I try to mitigate this problem by grouping related code into
folders, but I’m never quite sure whether the code in folder A links to code in the
other folders. When I’m using a layered architecture, if I’m in a hurry, I tend to write
something new instead of refactoring the old code. I can’t take the time to work out
whether code is used elsewhere or uses something I don’t know about.

By contrast, the modular monolith approach provides small, focused projects. I
know that all the code in the project is doing one job, and the only links are to other
projects that are relevant to this project. That approach makes the code easier to
understand, and I’m much more inclined to refactor the old code, as I’m less likely to
break something else.

One lazy thing I found myself doing was referring to the book display project that
contained the original Book App code from part 1. That layer has some useful classes
and enums that could be used in other book-display projects. I was breaking the modu-
lar monolith rules by referring to a project that had a lot of code that wasn’t relevant
to the linked project. I should have pulled those common classes into a separate proj-
ect, but I was racing to finish my book, and it was easy to reference the first book dis-
play project (as on a real job!). The modular monolith approach helps separate the
code, but it relies on the developer to follow the rules.

NOTE I had to go back to the Book App in chapter 16 to add new versions of
some display features, so I took the opportunity to create a project called
BookApp.ServiceLayer.DisplayCommon.Books, which holds all the common
code. That project removes the linking between query features and makes the
code much easier to understand and refactor.

434 CHAPTER 13 Domain-Driven Design and other architectural approaches
Here are a few tips for using the modular monolith approach:

 Use a hierarchal naming rule for your projects. A name like BookApp.Persistence
.EfCoreSql.Books, for example, makes it easier to find things.

 Don’t end a project name with the name of a class. Instead, use something like
…Books, not …Book. I named some projects …Book, which required me to pre-
fix each Book class with its complete namespace—in this case, BookApp.Domain
.Books.Book.

 You’re going to get project names wrong. I called one project BookApp
.Infrastructure.Books.EventHandlers, but as the Book App grew and the proj-
ect expanded, I had to change it to BookApp.Infrastructure.Books.Cached-
Values.

 If you change the name of a project in Visual Studio by selecting the project
and typing the new name, you don’t change the folder name. I found that situa-
tion confusing in GitHub, so I made sure to rename the folder as well, which
meant editing the solution file (there is a nice tool that can do this for you; see
https://github.com/ModernRonin/ProjectRenamer).

 You need Visual Studio 16.8.0 or later if you are going to have lots of projects in
your application because Visual Studio 16.8 is much quicker than older versions
at dealing with lots of projects in a solution. (VS Code has always been fast with
lots of projects.)

13.8.2 DDD principles, both architecturally and on the entity classes

I am familiar with using DDD, and as I expected, it worked well. Here is a list of DDD
features that made the development of the Book App easier:

 Each entity class contained all the code needed to create or update that entity
and any aggregate entities. If I needed to change anything, I knew where to
look, and I knew that there wasn’t another version of this code elsewhere.

 The DDD access methods were especially useful when I used domain events in
chapter 15.

 The DDD access methods were even more useful when I used integration
events in chapter 16 because I had to capture every possible change to the Book
entity and its aggregates, which was easy to do by adding integration events to
every access method and static create factory method in the Book entity. If I
couldn’t capture all changes in that way, I would have to detect changes by
using the entities’ State, and I know from experience that detecting changes is
hard to implement.

 The DDD bounded context that allowed two different EF Core DbContexts,
BookDbContext and OrderDbContext, also worked well. Migrating the two parts
of the same database (see section 9.4.5) worked fine.

https://github.com/ModernRonin/ProjectRenamer

435Three architectural approaches: Did they work?
13.8.3 Clean architecture as described by Robert C. Martin

It wasn’t my first time using clean architecture, as I had worked on a client’s appli-
cation that used a clean architecture approach, but it was the first time I’d started
from scratch with this approach. I was much more aware of where I should place
the different parts of the application. Overall, I found the clean architecture layers
to be useful, but I had to change one thing, which I will describe at the end of this
section.

 By the end of chapter 16, the part 3 Book App consisted of five layers, starting at
the center and working out:

 Domain—Holding entity classes
 Persistence—Holding the DbContexts and other database classes
 Infrastructure—Holding a mixture of projects, such as seeding the database and

event handlers
 ServiceLayers—Holding code to adapt the lower layers to the frontend
 UI—Holding the ASP.NET Core application

Figure 13.9 shows these five layers, with the number of projects in each layer after all
the chapters were written.

The main problem was fitting the EF Core DbContext into the clean architecture.
Clean architecture says that the database should be on the outer ring, with interfaces
for the access. The problem is that there is no simple interface you can use for the
application’s DbContext. Even if I were using a repository pattern (which I wasn’t), I

1. Domain (2 projects)

2. Persistence (5 projects)

3. Infrastructure (4 projects)
and BizLogic (project)1

4. ServiceLayers (8 projects)

5. UI (project, ASP.NET Core)1

The five layers in the final Part 3 Book App

Figure 13.9 The five layers of the Book App in part 3, with the number of
projects in each layer after chapter 16 was finished. See the Part3 branch
of the associated GiHub repo for each project.

436 CHAPTER 13 Domain-Driven Design and other architectural approaches
would still have a problem because the application’s DbContext has to be defined
deep in the onion.

 One rule of the clean architecture approach that I didn’t like, but stuck to, is that
the Domain layer shouldn’t have any significant external package (such as a NuGet
library) added to it. This clean-architecture rule required me to do more work in a few
places. In chapter 15, for example, I had code that marked every Book entity when it
was added or updated. It would have been easier to pass EF Core’s EntityEntry class
to the LogAddUpdate method in the Domain level. Also, in chapter 16, I wanted to use
an owned type with Cosmos DB, and I had to use Fluent API configuration commands
to set that up. I would rather have added the [Owned] attribute to the class, which
would save me from adding a OnModelCreating method to the CosmosDbContext class
to add extra Fluent API configuration commands. Next time, I might add the EF Core
base NuGet package to handle these features.

Summary
 The architecture you use to build an application should help you focus on the

feature you are adding while keeping the code nicely segregated so that it’s eas-
ier to refactor.

 DDD provides lots of good recommendations on how to build an application,
but this chapter focuses on EF Core entity classes and application DbContexts.

 DDD-styled entities control how they are created and updated; it’s the job of an
entity to ensure that the data inside it is valid.

 DDD has lots of rules to make sure that developers can put all their effort into
the domain (business) needs that they have been asked to implement.

 DDD groups entities into aggregates and says that one entity in the group, known
as the root aggregate, manages the data and relationships across the aggregate.

 Bounded context is a major DDD concept. This chapter looks only at how
bounded context might be applied to the application’s DbContext.

 To update a DDD entity, you call a method within the entity class. In this book,
these methods are referred to as access methods.

 To create a new instance of an DDD entity, you use a constructor with specific
parameters or a static create factory method that returns validation feedback.

 To update a DDD entity, first load the entity so that you can call the access
method. You can do this via normal EF Core code, a repository, or the EFCore
.GenericServices library.

 The EFCore.GenericServices library saves you development time. It removes
the need to write a repository, and it can find and call access methods by using
the name and properties in the DTO.

 Updating collection relationships can be slow if there are lots of existing entries
in the collection. You have three ways to improve performance in these cases.

437Summary
 A review of applying the three architectural approaches through chapter 16
shows that all three made enhancing and refactoring the Book App easier. All
approaches worked, but the standouts were modular monolith and DDD.

For readers who are familiar with EF6.x:

 In EF6.x, you can’t fully create DDD entities in EF6.x because you can’t make
navigational collection properties read-only. EF Core has solved that problem
with its backing fields feature.

EF Core
performance tuning
This chapter covers
 Deciding which performance issues to fix

 Employing techniques that find performance
issues

 Using patterns that promote good performance

 Finding patterns that cause performance issues

This chapter is the first of three addressing performance-tuning your database
accesses. Covering what to improve, as well as where and how to improve your EF
Core database code, this chapter is divided into three parts:

 Part 1—Understanding performance, the difference between speed and scal-
ability, deciding what to performance-tune, and determining the costs of per-
formance tuning

 Part 2—Techniques you can use to find performance issues and the use of EF
Core’s logging to help you spot problems

 Part 3—A whole range of database access patterns, both good and bad, to
help you diagnose and fix many EF Core performance issues

In chapter 15, you’ll apply the approaches shown in this chapter to the Book
App’s book list query. You’ll start by tuning EF Core code and then progress to
438

439Part 1: Deciding which performance issues to fix

more complex techniques, such as adding SQL commands to squeeze the best per-
formance out of the database accesses.

14.1 Part 1: Deciding which performance issues to fix
Before describing how to find and fix performance issues, I want to provide an over-
view of the subject of performance. Although you can ignore performance at the start
of a project, some concepts might help you later, when someone says, “The applica-
tion is too slow; fix it.”

When people talk about an application’s performance, they’re normally talking
about how fast an application deals with requests—how long it takes an API to return
a specific request, for example, or how long a human user has to wait when searching
for a specific book. I call this part of the application’s performance speed and use
terms such as fast and slow to describe it.

The other aspect is what happens to the speed of your application when it has lots
of simultaneous requests. A fast website with a few users might become slow when it
has many simultaneous users, a situation that is referred to as the scalability of the
application—the ability of the application to feel fast even when it has a high load of
users. Scalability is often measured via throughput—the number of requests an applica-
tion can handle per second.

14.1.1 “Don’t performance-tune too early” doesn’t mean
you stop thinking

Pretty much everyone says you shouldn’t performance-tune early; the number-one
goal is to get your application working properly first. A saying attributed to Kent Beck
is “Make it Work. Make it Right. Make it Fast,” which gets across the progressive steps
in building an application, with performance tuning coming last. I totally agree, but
with three caveats:

 Make sure that any software patterns you use don’t contain inherent perfor-
mance problems. Otherwise, you’ll be building in inefficiencies from day one.
(See section 14.4.)

 Don’t write code that makes it hard to find and fix performance problems. If you
mix your database access code with other code, such as frontend code, for exam-
ple, performance changes can get messy and difficult to test. (See section 14.4.6.)

 Don’t pick the wrong architecture. Nowadays, the scalability of web applications
is easier to improve by running multiple instances of the web application. But if
you have an application that needs high scalability, a Command and Query
Responsibility Segregation (CQRS) architecture might help. I cover this topic
in chapter 16.

It’s often hard to predict what performance problems you’re going to hit, so waiting
until your application is starting to take shape is sensible. But a bit of up-front thought
can save you a lot of pain later if you find that your application is too slow.

440 CHAPTER 14 EF Core performance tuning
14.1.2 How do you decide what’s slow and needs performance tuning?

The problem with terms such as fast, slow, and high load is that they can be subjective.
You might think your application is fast, but your users may think it’s slow. Sticking
with subjective views of an application’s performance isn’t going to help, so the key
questions are these: Does the speed matter in this case, and how fast should it be?

 You should remember that in human-facing applications, the raw speed matters,
but so do the user’s expectations of how fast a certain feature should be. Google search
has shown how blindingly fast a search can be, for example; therefore, we expect all
searches to be fast. Conversely, paying for an online purchase—with the need to fill in
your address, credit card number, and so on—isn’t something that we expect to be fast
(although if it’s too slow or too difficult, we’ll give up!).

 When you think about what needs to be performance-tuned, you need to be
selective; otherwise, you’re in for a lot of work for little gain. I once developed a small
e-commerce site that had a little more than 100 different queries and updates to 20
database tables. More than 60% of the database accesses were on the admin side, and
some were rarely used. Maybe 10% of the database accesses affected paying users.
That analysis helped me decide where to put my effort.

 Figure 14.1 shows what happens when you apply the same analysis of the user’s
expectations against the speed of the database access for the Book App. This analysis
covers the book listing/search; the placing of an order; and the few admin com-
mands, ranging from updating the publication date of a book (fast) to wiping and
inputting all the books again (quite slow).

After you’ve done some analysis of your application, you should get a list of features
that are worthy of performance tuning. But before you start, you need clear metrics:

Place

order

Book

search

Must

improve

Admin staff features

(used a lot)

Admin staff features

(rare)

Strategic decision:
The order-processing
code is already fast, and
users don’t necessarily
expect placing an order
to be quick.
But you might want to
improve the performance
to make the user
experience better (so
that they buy more).

Must improve:
Users expect the search
to be quick, because
they’re used to Google’s
search speed.

Might improve:
It may be worth speeding
up the everyday admin
commands.

Don’t improve:
Rare admin commands
aren’t worth the effort
to improve.

User

expectations

High

Low

Short db access speed Long

Figure 14.1 Various features from the Book App graded with the user’s expectations of speed on
the vertical access and the actual complexity/speed of the database access part of the feature. The
type of user and user expectations have a big impact on what needs performance-tuning.

441Part 1: Deciding which performance issues to fix

 Define the feature. What’s the exact query/command that needs improving, and
under what circumstances is it slow (number of concurrent users, for example)?

 Get timings. How long does the feature take now, and how fast does it need to be?
 Estimate the cost of the fix. How much is the improvement worth? When should

you stop?
 Prove that it still works. Do you have a way to confirm that the feature is working

properly before you start the performance tuning and that it still works after
the performance change?

TIP You can find an old but still-useful article on general performance tun-
ing at http://mng.bz/G62D.

14.1.3 The cost of finding and fixing performance issues

Before diving into finding and fixing performance issues, I want to point out that
there’s a cost to performance-tuning your application. It takes development time and
effort to find, improve, and retest an application’s performance. As figure 14.1 illus-
trates, you need to be picky about what you plan to improve.

 Many years ago, I wrote an article in which I measured the gain in performance in
an EF6.x database access against the time it took me to achieve that improvement. Fig-
ure 14.2 shows the results of that work. I started with an existing EF6.x query (1 on the

Figure 14.2 The trade-off between database performance and development effort for three stages
of improvement of an EF database access. Development time is shown as a bar chart (hours: left scale),
and the speed of the database access is shown as a line (milliseconds: right scale). An almost-
exponential increase occurs in development effort against an almost-linear reduction in database
access time.

http://mng.bz/G62D

442 CHAPTER 14 EF Core performance tuning
horizontal scale) and then applied two steps (2 and 3) of improvement, still using
EF6.x. Finally, I estimated the time it would take to write a raw SQL version (4 on the
horizontal scale).

 The point of figure 14.2 is to show that extreme performance improvements aren’t
easy. I had an exponential increase in development effort against an almost-linear
reduction in database access time. Therefore, it’s worth thinking about the problem
holistically. Although it might be that the database access is slow, the solution might
come from changing other parts of the application. For web/mobile applications, you
have a few other possibilities:

 HTTP caching—Caching allows you to remember a request in memory and
return a copy if the same URL is presented, thus saving any need to access the
database. Caching takes work to get right, but it can have a big effect on per-
ceived performance.

 Scaling up/out—Cloud hosting allows you to pay for more-powerful host com-
puters (known as scaling up in Azure) and/or running more instances of the
web application (known as scaling out in Azure). This approach might solve a lot
of small performance problems quickly, especially if scalability is the problem.

I’m not suggesting sloppy programming. I certainly try to show good practices in this
book. But by choosing EF Core over writing direct SQL commands, you’ve already
opted for quicker development time with (possibly) slower database access times. In
the end, it’s always about effort against reward, so you should performance-tune only
the parts of your application that need the extra speed or scalability.

Part 2: Techniques for di14.2 agnosing a performance issue
In part 1, you decided which parts of your application need improving and how much
improvement you want. The next steps are finding the code involved in the slow fea-
ture and diagnosing the problem.

 This book is about EF Core, so you’ll concentrate on the database code, but those
database accesses rarely exist on their own. You need to drill down through your appli-
cation to find the database code that’s hitting the application’s performance. Figure 14.3
shows a three-step approach that I use to pinpoint performance bottlenecks. You’ll
explore these stages in detail in the next three subsections.

WARNING Measuring the time it takes for ASP.NET Core to execute a com-
mand in debug mode can give misleading figures, because some slow logging
methods may be enabled. These methods can add significant extra time to
each HTTP request. I recommend testing your software in Release mode to
get more-representative figures.

443Part 2: Techniques for diagnosing a performance issue

1. he erT us experience is paramount, so
start there. Measure what the user sees.

2. Find all the database accesses, and look for
any performance antipatterns (see section 2.5).1

3. The ultimate truth can be found in the actual SQL
database access commands. Look for poor queries.

Measure the user’s experience.

Find the database
accesses.

Look at the
SQL.

Figure 14.3 Finding database performance issues requires you to start with what the user
sees and then drill down to the database code. After finding the database code, you check
whether it uses the optimal strategies outlined in this chapter. If this step doesn’t improve the
situation, you need to look at the actual SQL commands sent to the database and consider
ways to improve them.

14.2.1 Stage 1: Get a good overview, measuring the user’s experience

Before you go digging to find a performance problem, you need to think about the
user’s experience, because user experience is what matters. You might improve the speed
of a database access by 500%, but if speed is a small part of the whole picture, that
improvement won’t help much.

First, you need to find a tool that measures how long a specific request/feature
takes. What you use will depend on the type of application you’re using. Here’s a list
of free tools that are available for looking at the overall time a request takes:

 For Windows applications, you can use the Performance Profiler in Visual Studio.
 For websites, you can use your browser in developer mode to obtain timings (I

use Google Chrome).
 For the ASP.NET Core Web API, you can use Azure Application Insights locally

in debug mode.
 And don’t forget logging output. ASP.NET Core and EF Core’s logging output

include timings.

NOTE All the tools I listed are free, but plenty of commercial (paid) tools are
available for testing and profiling all manner of systems.

Figure 14.4 shows the timeline for the Book App before any performance tuning, as
measured by the Google browser, Chrome, in developer mode (F12), but most web
browsers contain the same features. The figure shows only one timing, but you should
take multiple timings for a query, as timings will differ. Also, to get an overview of
where the performance issues exist, you should try different sort/filter combinations
in the book list feature. See chapter 15 for an example of timings for multiple sort/fil-
ter combinations.

NOTE The Book App in branch Part3 captures ASP.NET Core’s Request-
Finished log, which contains the total time for the HTTP request. If you

444 CHAPTER 14 EF Core performance tuning
repeat the same query, this feature will provide max, min, and average tim-
ings. You can access this timing feature via the Admin > Timings last URL
menu command.

14.2.2 Stage 2: Find all the database code involved
in the feature you’re tuning

Having identified the part of the application you want to performance-tune, you need
to locate all the database access code involved in that feature. After you’ve found the
database code, run your eye over the code, looking for performance antipatterns (see
sections 14.5 and 14.6), which is a quick way to find and fix issues. It’s not foolproof,
but after a while, you’ll get a feel for what might be causing a problem.

 When you look at the listing of books in your Book App, for example, the most
obvious performance bottleneck is calculating the average review votes. Average
review votes are used not only for displaying to the user, but also for sorting and filter-
ing the books to be displayed. Running various timing tests showed that sorting or
filtering on average votes was slow, but it wasn’t until I looked at the EF Core logging
output (section 14.2.3) that I saw the problems.

 The Book App doesn’t have a lot of writes, only adding a review or adding or
removing a promotion, and they are fast, but in many applications, writes can be a bit
of a bottleneck. Write-performance issues can be more complex to diagnose, as there
are two parts to consider: the time EF Core takes to detect and link changes to the
data and the time it takes to write to the database. For writes, the overall timing is
important, as it contains both parts (see section 14.6).

14.2.3 Stage 3: Inspect the SQL code to find poor performance

The ultimate source of database query performance is the SQL code, and the EF Core
logs will list the SQL sent to the database, along with the time that query took. I’ll
cover how you can use this information to look for performance issues, but first, let

I am interested in the total time my ASP.NET
Core application took to show the default list
of books—in this case, 22 ms.

22 ms

Figure 14.4 Using the Google Chrome browser in development mode to find out how long the Book
App takes to display 700 books when using EF Core 5, before you start any performance tuning. This
feature is already quick, but in chapter 15, when we take it up to 100,000 books, it starts to have
problems.

445Part 2: Techniques for diagnosing a performance issue

ive

c
an
to
me describe how to access the logging information that EF Core produces. The steps
in obtaining the EF Core logging output are

1 Understanding the logging output produced by EF Core
2 Capturing the logging output
3 Extracting the SQL commands sent to the database

UNDERSTANDING THE LOGGING OUTPUT PRODUCED BY EF CORE

.NET Core defines a standard logging interface that any piece of code can use. EF
Core produces a substantial amount of logging output, which is normally collected by
the application it’s running in. Logging information is categorized by a LogLevel,
which ranges from the most detailed information at the Trace (0) level, right up to
Critical (5). In production, you’d limit the output to Warning (3) and above, but
when running in debug mode, you want Information level, as EF Core (and ASP.NET
Core) have useful information and timings at this level.

CAPTURING THE LOGGING OUTPUT

One way to access the logs is to use what is known as a logging provider. Logging is so
useful that most applications include code to set up the logging providers. In an
ASP.NET Core application, for example, a logging provider(s) is configured during
startup (see http://mng.bz/KH6W), so you can obtain the logs as your application is
running either in debug mode or from your live application.

 Another way to capture logging information is to use EF Core 5’s new LogTo fea-
ture inside your unit tests. This feature provides a simple way to capture the log out-
put by EF Core. Listing 14.1 shows you one way to use this feature, but I recommend
that you also read chapter 17, which is all about unit-testing your EF Core code.

NOTE Because you’re using the xUnit unit-tests library (see https://xunit
.net), you can’t output by using the Console.Writeline method, as xUnit
runs tests in parallel. Therefore, you’ll log to a list. Chapter 17 covers this
topic in detail in section 17.11.1, including how to output to a console from
xUnit.

var logs = new List<string>();
var builder =
 new DbContextOptionsBuilder<BookDbContext>()
 .UseSqlServer(connectionString)
 .EnableSensitiveDataLogging()
 .LogTo(log => logs.Add(log),
 LogLevel.Information);
using var context = new BookDbContext(builder.Options);
 //... your query goes here

Listing 14.1 Capturing EF Core’s logging output in a unit test

Holds all the logs that
EF Core outputs

The DbContextOptionsBuilder<T>
is the way to build the options
needed to create a context.

Says you are using a SQL
Server database and takes
in a connection string

By default, exceptions don’t contain sensit
data. This code includes sensitive data.

The log
string is
aptured
d added
 the log.

Sets the log level. Information
level contains the executed SQL.

Creates the application’s
DbContext—in this case, the

context holding the books data

http://mng.bz/KH6W
https://xunit.net
https://xunit.net
https://xunit.net

446 CHAPTER 14 EF Core performance tuning

WARNING The EnableSensitiveDataLogging method in listing 14.1 will
include any parameters in the logging. This method is helpful for debugging
but should not be used in your live application, as the parameters may contain
private data that should not be logged for security and/or privacy reasons.

We’ve covered how to capture EF Core’s logging; next, you’ll see how to use this infor-
mation to find performance issues.

EXTRACTING THE SQL COMMANDS SENT TO THE DATABASE

EF Core logs what it is doing, and these logs can be useful. If you set the log level to
Information in your application, you’ll get a complete list of the SQL commands
generated by EF Core and sent to the database. The following listing shows an exam-
ple of an Information message containing the SQL code from the part 1 or 2 Book
App context.

Executed DbCommand (4ms)
 [Parameters=[],
 CommandType='Text',
 CommandTimeout='30']
SELECT [p].[BookId], [p].[Description],
 [p].[ImageUrl], [p].[Price],
 [p].[PublishedOn], [p].[Publisher],
 [p].[Title],
 [p.Promotion].[PriceOfferId],
 [p.Promotion].[BookId],
 [p.Promotion].[NewPrice],
 [p.Promotion].[PromotionalText]
FROM [Books] AS [p]
LEFT JOIN [PriceOffers] AS [p.Promotion]
ON [p].[BookId] = [p.Promotion].[BookId]
ORDER BY [p].[BookId] DESC

14.3

Listing 14.2 An Information log showing the SQL command sent to the database

Tells you how long the database
took to return from this command

If any external parameters
are used in the command,
their names will be listed
here.

The timeout for the
command. If the command
takes more than that time,
it’s deemed to have failed.

SQL command that was
sent to the database

For those of you who are happy working with SQL, you can copy the SQL code from
the logging output and run it in some form of query analyzer. Microsoft SQL Server
Management Studio (SSMS) allows you to run a query and look at its execution plan,
which tells you what each part of the query is made up of and the relative cost of each
part. Other databases have a query analyzer, such as MySQL Query Analyzer and the
PostgreSQL plprofiler.

Part 3: Techniques for fixing performance issues
The rest of this chapter provides a list of good and bad EF Core patterns for data-
base access. These patterns are here both to teach you what can help or hurt perfor-
mance and to act as a reference on database performance issues. This section
consists of four parts:

447Using good patterns makes your application perform well
 Good EF Core patterns—“Apply always” patterns that you might like to adopt.
They aren’t foolproof but give your application a good start.

 Poor database query patterns—EF Core code antipatterns, or patterns you shouldn’t
adopt, because they tend to produce poor-performing SQL queries.

 Poor software patterns—EF Core code antipatterns that make your database write
code run more slowly.

 Scalability patterns—Techniques that help your database handle lots of database
accesses.

Chapter 15 walks you through an example of the performance-tuning approaches
shown in this chapter. Chapter 15 starts with tuning the EF Core commands in your
Book App, but then goes into deeper techniques, such as replacing EF Core code with
direct SQL and changing the database structure to provide better performance. Chap-
ter 16 takes the discussion to the next level with a CQRS approach using the Cosmos
DB database, which has excellent performance and scalability.

14.4 Using good patterns makes your application
perform well
Although I’m not a fan of early performance tuning, I do look at the performance
aspects of any patterns I adopt. It’s silly to create a pattern that’s going to bake in poor
performance right from the start. Many of the patterns and practices described in this
book do have some effect on performance or make performance tuning easier. Here’s
a list of the patterns that help with performance issues that I always apply right from
the start of a project:

 Using Select loading to load only the columns you need
 Using paging and/or filtering of searches to reduce the rows you load
 A warning that using lazy loading will affect database performance
 Always adding the AsNoTracking method to read-only queries
 Using the async version of EF Core commands to improve scalability
 Ensuring that your database access code is isolated/decoupled, so it’s ready for

performance tuning

14.4.1 Using Select loading to load only the columns you need

In section 2.4, you learned about the four ways of loading related data, one of which
was to use the LINQ Select command. For database queries that require information
from multiple tables, the Select method often provides the most efficient database
access code for queries. (See section 14.5.1 for more on minimizing database accesses.)
Figure 14.5 illustrates this process.

 Creating a Select query with a DTO does take more effort than using eager load-
ing with the Include method (see section 2.4.1), but benefits exist beyond higher
database access performance, such as reducing coupling between layers.

448 CHAPTER 14 EF Core performance tuning

From Authors table
(via BookAuthor
linking table)

From Review table

From Tag table
(via BookTags
linking table)

From Books
table

From PriceOffers table

Figure 14.5 Select queries provide the best-performing database access, in which the final result
consists of a mixture of columns from multiple tables.

TIP Section 6.1.9 describes how you can use AutoMapper to automate the
building of a Select query and thus speed your development.

14.4.2 Using paging and/or filtering of searches to reduce
the rows you load

Because EF Core’s queries use LINQ commands, you can sometimes forget that one
query can pull in thousands or millions of rows. A query that works fine on your devel-
opment system, which might have only a few rows in a table, may perform terribly on
your production system, which has a much larger set of data. You need to apply com-
mands that will limit the amount of data returned to the user. Typical approaches are
as follows:

 Paging—You return a limited set of data to the user (say, 100 rows) and provide
the user commands to step through the “pages” of data (see section 2.7.3).

 Filtering—If you have a lot of data, a user will normally appreciate a search fea-
ture, which will return a subset of the data (see section 2.7.2).

Remember not to write open-ended queries, such as context.Books.ToList(),
because you might be shocked when it runs on your production system, especially if
you’re writing code for Amazon’s book site.

14.4.3 Warning: Lazy loading will affect database performance

Lazy loading (see section 2.4.4) is a technique that allows relationships to be loaded
when read. This feature is in EF6.x and was added to EF Core in version 2.1. The prob-
lem is that lazy loading has a detrimental effect on the performance of your database
accesses, and after you’ve used lazy loading in your application, replacing it can
require quite a bit of work.

This instance is one in which where you bake in poor performance, and you might
regret doing that. When I understood the effects of lazy loading in EF6.x, I didn’t use
it anymore. Sure, it can make development easier in some cases, but each lazy load is
going to add another database access. Considering that the first performance antipattern

449Using good patterns makes your application perform well

I list is “Not minimizing the number of calls to the database” (section 14.5.1), if you
have too many lazy loads, your query is going to be slow.

14.4.4 Always adding the AsNoTracking method to read-only queries

If you’re reading in entity classes directly and aren’t going to update them, including
the AsNoTracking method (see section 6.1.2) in your query is worthwhile. It tells EF
Core not to create a tracking snapshot of the entities loaded, which saves a bit of time
and memory use. It also helps when saving data, as it reduces the work that Detect-
Changes method has to do (see section 14.6.2).

 The query in listing 14.3 is an example of one for which the AsNoTracking
method, in bold, will improve performance. The simple performance test of loading
100 Books with Reviews and Authors in chapter 6 said that using AsNoTracking was
50% quicker—an extreme case, because the query had 5,000 Reviews in it; fewer rela-
tionships will provide less performance savings. See table 6.1 for detailed timings.

var result = context.Books
 .Include(r => r.Reviews)
 .AsNoTracking()
 .ToList();

Using theListing 14.3 AsNoTracking method to improve the performance of a query

Returns a Book entity class and a
collection of Review entity classes

Adding the AsNoTracking method tells
EF Core not to create a tracking snapshot,
which saves time and memory use.

If you use a Select query in which the result maps to a DTO, and that DTO doesn’t
contain any entity classes, you don’t need to add the AsNoTracking method. But if
your DTO contains an entity class, adding the AsNoTracking method will help.

14.4.5 Using the async version of EF Core commands
to improve scalability

Microsoft’s recommended practice for ASP.NET applications is to use async com-
mands wherever possible. (Section 5.10 explains async/await.) This practice improves
the scalability of your website by releasing a thread while the command is waiting for
the database to respond; this freed-up thread can run another user’s request.

Nowadays, using async/await has a small performance cost, so for applications that
handle multiple simultaneous requests, such as a website, you should async/await.
Section 14.7.2 covers this topic in more detail.

14.4.6 Ensuring that your database access code is isolated/decoupled

As I said earlier, I recommend that you get your EF Core code working first, without
any performance tuning—but you should be ready to make that code faster if you
need to later. To achieve isolation/decoupling, make sure that your code

 Is in a clearly defined place (isolated). Isolating each database access into its own
method allows you to find the database code that’s affecting performance.

450 CHAPTER 14 EF Core performance tuning

 Contains only the database access code (decoupled). My advice is to not mix your data-
base access code with other parts of the application, such as the UI or API. That
way, you can change your database access code without worrying about other,
nondatabase issues.

Throughout this book, you’ve seen lots of examples of this approach. Chapter 2
introduced the Query Object pattern (see section 2.6), and chapter 4 showed the
use of a separate project to hold the database access code for the business logic (see
section 4.4.4). These patterns make performance-tuning your database access code
easier, as you have a clearly defined section of code to work on.

14.5 Performance antipatterns: Database queries
The previous patterns are worth using all the time, but you’ll still bump into issues that
require you to tune up your LINQ. EF doesn’t always produce the best-performing SQL
commands, sometimes because EF didn’t come up with a good SQL translation, and
sometimes because the LINQ code you wrote isn’t as efficient as you thought it was.

This section presents some of the performance antipatterns that affect the time it
takes to get data to and from the database. I use the negative antipattern terms, as
that’s what you’re looking for—places where the code can be improved. Here’s a list
of potential problems, followed by how to fix them, with the ones you’re most likely to
hit listed first:

 Not minimizing the number of calls to the database
 Missing indexes from a property that you want to search on
 Not using the fastest way to load a single entity
 Allowing too much of a data query to be moved into the software side
 Not moving calculations into the database
 Not replacing suboptimal SQL in a LINQ query
 Not precompiling frequently used queries

14.5.1 Antipattern: Not minimizing the number of calls to the database

If you’re reading an entity from the database with its related data, you have four ways
of loading that data: select loading, eager loading, explicit loading, and lazy loading.
Although all three techniques achieve the same result, their performance differs quite
a lot. The main difference comes down to the number of separate database accesses
they make; the more separate database accesses you do, the longer your database
access will take.

Since EF Core 3.0, the default way to handle any collections found in a query has
been to load the collection with the base entity. context.Books.Include(b =>

b.Reviews), for example, would load the Book entity and the related Review entities
in one database access. Select and eager loading queries will load the collections to
the database in one call. The example queries in the following code snippets take only
one database access:

451Performance antipatterns: Database queries
var bookInclude = context.Books.Include(b => b.Reviews).First();

var bookSelect = context.Books.Select(b => new
{
 b.Title,
 Reviews = b.Reviews.ToList()
}).First();

On the other hand, explicit or lazy loading would take two database accesses. To see
the effect of the different approaches on performance, load the Book entity with its
Reviews, BookAuthor, and Authors (two authors) by using select/eager loading, eager
loading with AsSplitQuery (see section 6.1.4), and explicit/lazy loading. Table 14.1
shows the results.

WARNING Queries that include multiple collections with large amounts of
entries will not perform well when you use the default query approach. Load-
ing an entity with three collections, each containing 100 entries, would return
100*100*100 = 1,000,000 rows. In these cases you should add the AsSpilt-
Query method to your query. See section 6.1.4 for details.

NOTE The figures in table 14.1 were so different from the first edition of the
book that I ran the old code to check my results, and EF Core 2.1 was much
slower. EF Core 3.0 improved loading of collections, and NET 5 improved the
time taken to access the SQL Server database.

With the improvements in EF Core, the differences between Select/eager, eager with
AsSplitQuery, and explicit/lazy loading are smaller, but multiple accesses to the data-
base still have a cost. So the rule is to try to create one LINQ query that gets all the
data you need in one database access. Select queries are the best-performing if you
need only specific properties; otherwise, eager loading, with its Include method, is
better if you want the entity with its relationships to apply an update.

14.5.2 Antipattern: Missing indexes from a property that
you want to search on

If you plan to search on a property that isn’t a key (EF Core adds an index automatically
to primary, foreign, or alternate keys), adding an index to that property will improve
search and sort performance. It’s easy to add an index to a property; see section 6.9.

Table 14.1 Comparing the four ways to load data, which tells you that the more trips to the database
the query makes, the longer the query will take

Type of query #Database accesses EF 5 time (ms) / %

Select 1.95 / 100%1and eager loading

Eager loading with AsSplitQuery 4 2.10 / 108%

6 4.40 / 225%Explicit and lazy loading

452 CHAPTER 14 EF Core performance tuning
 There’s a small performance cost to updating an index when the value of a prop-
erty (column) is changed, but often, update performance cost is far smaller than the
performance gain when sorting or filtering on that property. Even so, adding indexes
works best if you have lots of entries to sort/filter by a property, and reads are more
important than update times.

14.5.3 Antipattern: Not using the fastest way to load a single entity

When I learned EF Core, I thought that the best way to load a single entity was to use
the EF Core’s Find method. I used that method until I saw Rick Anderson, who works
for Microsoft, using FirstOrDefault. I asked why, and he said it was quicker. At that
point, I measured performance, and he was right.

 Table 14.2 gives you the timings for each of the methods you could use to load a
single entity, in these cases via the entity’s primary key, with the timing.

NOTE I couldn’t find any significant performance difference between the
sync and async versions or First or FirstOrDefault methods I show.

The table shows that Single (and SingleOrDefault) was fastest for a database access,
and also better than using First, as Single will throw an exception if your Where
clause returns more than one result. Single and First also allow you to use Includes
in your query.

 You should use the Find method if the entity is being tracked in the context, in
which case Find will be super-fast; see the last row of table 14.2. Find is fast because it
scans the tracked entities first, and if it finds the required entity, it returns that entity
without any access to the database. The downside of this scan is that Find is slower if
the entity isn’t found in the context.

NOTE The Find method will return a tracked entity that hasn’t yet been
added or updated in the database. I use this capability in a concurrency han-
dler (see listing 15.11) to recalculate a cached value, using the new author
name that hasn’t been written out to the database yet.

Table 14.2 Time taken to read in a single book using different methods. The timing was taken by
averaging the time taken to load 1,000 books. Note that there are two versions of loading via the Find
method.

Method Time Ratio to single

context.Books.Single(x => x.BookId == id) 100%175 us.

context.Books.First(x => x.BookId == id) 109%190 us.

context.Find<Book>(id) 350%610 us.(entity not tracked)

context.Find<Book>(id) 0.3%0.5 us.(entity already tracked)

453Performance antipatterns: Database queries

14.5.4 Antipattern: Allowing too much of a data query to be
moved into the software side

It’s all too easy to write LINQ code that moves part of the database evaluation out of
the database and into the software, often with a big impact on performance. Let’s start
with a simple example.

context.Books.Where(p => p.Price > 40).ToList();
context.Books.ToList().Where(p => p.Price > 40);

Listing 14.4 Two LINQ commands that would have different performance times

This query would perform well, as the Where
part would be executed in the database.

This query would perform
badly, as all the books
would be returned (which
takes time), and then the
Where part would be
executed in software.

Although most people would immediately spot the mistake in listing 14.4, it’s possible
for code like this listing to be hidden in some way. So if you find a query that’s taking
a long time, check the parts of the query.

One big change in EF Core 3 was to use only client vs. server evaluation (see sec-
tion 2.3) at the last Select level of a query. This situation caused problems when peo-
ple updated to EF Core 3, but it exposed only LINQ queries that were running slowly.
Since that change, if EF can’t translate your query to database commands, you get a
could not be translated exception, so many bad LINQ queries are caught. The
exception goes on to say

… or switch to client evaluation explicitly by inserting a call
to 'AsEnumerable', 'AsAsyncEnumerable', 'ToList', or 'ToListAsync'

This exception message is helpful, but sometimes EF Core throws a could not be

translated exception because you didn’t get the LINQ query quite right. Aggregate
LINQ methods (that is, Sum, Max, Min, and Average; see section 14.5.5) require a nul-
lable version of the type to work, and if you don’t provide it, you will get the could not

be translated exception. See “Aggregates need a null (apart from count)” in sec-
tion 6.1.8. So before you add 'AsEnumerable', 'AsAsyncEnumerable', and so on, you
should check for a way to make the query translate to database commands.

14.5.5 Antipattern: Not moving calculations into the database

One of the reasons why the Book App is fast is that you moved part of the calculations
into the database—specifically, the count of Reviews and the average of the votes from
the Reviews. If you hadn’t moved these calculations into the database, the Book App
might work, but it would be slow, especially on sorting or filtering of average votes.

Typically, you won’t be able to move many calculations into the database, but the
ones you do get can make a big difference, especially if you want to sort or filter on
the calculated value. Here are a couple of examples of what you can do:

 Count a collection navigational property, such as Book.Reviews. This approach is
useful if you need the count but don’t need the content of the collection type.

454 CHAPTER 14 EF Core performance tuning

 Sum a value in a collection, such as summing the price of all the LineItems in an
Order. This approach is useful if you want to sort the Orders by price.

NOTE See section 6.1.8 for LINQ commands that require special attention to
make the LINQ queries translate to database commands.

14.5.6 Antipattern: Not replacing suboptimal SQL in a LINQ query

Sometimes, you know something about your data that allows you to come up with a
piece of SQL code that’s better than EF Core. But at the same time, you don’t want to
lose the ease of creating queries with EF Core and LINQ. You have several ways to add
SQL calculations to the normal LINQ queries:

 Add user-defined functions to your LINQ queries. A scalar-valued user-defined func-
tion (UDF; see section 10.1) returns a single value that you can assign to a prop-
erty in a query, whereas a table-valued UDF returns data as though it came from
a table. In section 15.3, I use a scalar-valued UDF 3 to build the list of author
names for a book.

 Create an SQL View in your database that has the SQL commands to compute values.
Map an entity class to that View (see section 7.9.3) and then apply LINQ que-
ries to that mapped entity class. This approach gives you room to add some
sophisticated SQL inside the View while using LINQ to access that data.

 Use EF Core’s raw SQL methods FromSqlRaw and FromSqlInterpolated. These
methods allow you to use SQL to handle the first part of the query. You can fol-
low with other LINQ commands, such as sort and filter, but read section 11.5
for the limitations of the FromSqlRaw and FromSqlInterpolated methods.

 Configure a property as a computed column. Use this approach if that property cal-
culation can be done with other properties/columns in the entity class and/or
SQL commands. (See listing 10.7 for some examples, and see section 10.2 for
more on computed columns.)

Clearly, you need to understand and write SQL, but if you can, these techniques pro-
vide a simpler experience than using a library that works with SQL, such as ADO.NET
or Dapper (see section 11.5.4).

14.5.7 Antipattern: Not precompiling frequently used queries

When you first use an EF Core query, it’s compiled and cached, so if you use it again,
the compiled query can be found in the cache, which saves compiling the query
again. But there’s a (small) cost to this cache lookup, which the EF Core method
EF.CompiledQuery can bypass. If you have a query that you use a lot, it’s worth trying,
but I don’t think that precompiled queries improve performance much. The other issue
is that precompiled queries have some limitations that can make them hard to use:

 You can use a compiled query only if the LINQ command isn’t built dynami-
cally, with parts of the LINQ being added or removed. The BookListFilter

455Performance antipatterns: Writes
method, for example, builds the LINQ command dynamically by using a switch
statement, so you couldn’t turn that LINQ into a compiled query.

 The query returns a single entity class—an IEnumerable<T> or an IAsync-
Enumerable<T>—so you can’t chain query objects as you did in chapter 2.

The EF.CompiledQuery method allows you to hold the compiled query in a static vari-
able, which removes the cache lookup part. The LINQ queries can have variables in
the LINQ methods, and you pass the values for these variables with the application’s
DbContext, as shown in the following listing.

private static Func<EfCoreContext, int, Book>
 _compiledQueryComplex = f
 EF.CompileQuery(
 (EfCoreContext context, int i) =>
 context.Books
 .Skip(i)
 .First()
);

The EF.CompiledQuery method is for taking a specific query and compiling it. In the
case of the book query, you’d need to build a separate compiled query for each filter
and sort option to allow each one to be compiled, as follows:

 Query books, no filter, no sort
 Query books, filter on votes, no sort
 Query books, filter on votes, sort on votes
 Query books, filter on votes, soft on publication date

The EF.CompiledQuery method is useful, but it’s best to apply it when the query you
want to performance-tune is stable because it may take some work to reformat your
query in the correct form to fit the EF.CompiledQuery method.

14.6 Performance antipatterns: Writes
Now that you’ve learned about performance antipatterns that apply to queries, let’s
look at performance antipatterns that apply to writes. These performance issues are a
mixture of patterns that produce poor performance from either the database or com-
pute time in your application. I’ve listed the problems with the most likely ones first:

 Calling SaveChanges multiple times
 Making DetectChanges work too hard
 Not using HashSet<T> for navigational collection properties
 Using the Update method when you want to change only part of the entity
 Startup issue: Using one large DbContext

Creating a compiled query and holding it in a static variableListing 14.5

You define a static function to hold
your compiled query—in this case,
the function with two inputs and
the type of the returned query.

Expects a DbContext, one or two
parameters to use in your query, and
the returned result (an entity class or
IEnumerable<TEntity>)

Defines the query to
hold as compiled

456 CHAPTER 14 EF Core performance tuning
14.6.1 Antipattern: Calling SaveChanges multiple times

If you have lots of information to add to the database, you have two options:

 Add one entity and call SaveChanges. If you’re saving 10 entities, call the Add
method followed by a call to the SaveChanges method 10 times.

 Add all the entity instances, and call SaveChanges at the end. To save 10 entities, call
Add 10 times (or, better, one call to AddRange) followed by one call to Save-
Changes at the end.

Option 2—calling SaveChanges only once—is a lot faster, as you can see in table 14.3,
because EF Core will batch multiple data writes on database servers that allow this
approach, such as SQL Server. As a result, this approach generates SQL code that’s
more efficient at writing multiple items to the database. Table 14.3 shows the differ-
ence in time for the two ways of writing out 100 new entities to an SQL Server data-
base on my development system.

The difference between the two ways of saving multiple entities can be large. In the
extreme example in table 14.3 where SaveChanges is called 100 times (left side), the
time taken is more than 15 times slower than calling SaveChanges once (right side).

 Some of the performance loss of the “one at a time” approach is due to extra data-
base accesses. The “all at once” approach taps EF Core’s batching capability, which
produces SQL that performs well when adding lots of data to a database. For a detailed
look at this topic, see http://mng.bz/ksHg.

NOTE It’s also not a good practice to call SaveChanges after each change,
because what happens if something goes wrong halfway through? The recom-
mendation is to do all your additions, updates, and removals and then call
SaveChanges at the end. That way, you know that all your changes were
applied to the database or that if there was an error, none of the changes
were applied.

Table 14.3 A comparison of calling SaveChanges after adding each entity, and adding all the entities
and then calling SaveChanges at the end. Calling SaveChanges at the end is about 15 times faster
than calling SaveChanges after every Add.

One at a time All at once (batched in SQL Server)

for (int i = 0; i < 100; i++)
{
 context.Add(new MyEntity());
 context.SaveChanges();
}

Total time = 160 ms

for (int i = 0; i < 100; i++)
{
 context.Add(new MyEntity());
}
context.SaveChanges();

Total time = 9 ms

http://mng.bz/ksHg

457Performance antipatterns: Writes
14.6.2 Antipattern: Making DetectChanges work too hard

Every time you call SaveChanges, by default it runs a method inside your application’s
DbContext called ChangeTracker.DetectChanges to see whether any of the tracked
entities has been updated. (See section 9.3.3 for details.) The time DetectChanges takes
to run depends on how many tracked entities are loaded—that is, the number of enti-
ties you read in without the AsNoTracking or AsNoTrackingWithIdentityResolution
method (see section 6.1.2) that don’t implement the INotifyPropertyChanged inter-
face (see section 11.4.2).

 Table 14.4 shows the time taken for different levels of tracked entities. In this case,
the entities are small, with a few properties; if the tracked entities were more complex,
the time would be larger.

This sort of problem has various solutions, depending on the design of your applica-
tion. Here are ways to solve this sort of performance issue:

 Do you need all these tracked entities loaded? If SaveChanges is taking a long
time, did you forget to use the AsNoTracking/AsNoTrackingWithIdentity-
Resolution method when you made read-only queries?

 Can you break a big insert into smaller batches? I do this in chapter 15, where I
build a class to create large test data sets for performance tests. In that class,
I write out in batches of ~700 Books and use a new instance of the application’s
DbContext so that there aren’t any tracked entities.

 When you need a lot of entities loaded that are ready to be modified, consider
changing your entity classes to use the INotifyPropertyChanged change
tracking strategy. This change requires extra coding of your entity classes to add
the INotifyPropertyChanged and configure the entity class’s change tracking
strategy (see section 11.4.2). The result is that your entities will report any
changes to EF Core, and DetectChanges doesn’t have to scan your loaded enti-
ties for changes.

Table 14.4 Time taken by the SaveChanges method, which contains the call to the DetectChanges
.Detect method, to save one entity for different levels of tracked entities. Note that the tracked entities
used in this table are small.

Number of tracked entities How long SaveChanges took How much slower?

n/a0.2 ms.0

2 times slower0.6 ms.100

11 times slower2.2 ms.1,000

100 times slower20.0 ms.10,000

458 CHAPTER 14 EF Core performance tuning

14.6.3 Antipattern: Not using HashSet<T> for navigational
collection properties

In section 6.2.2, you learned that when you call the Add method to add a new entity to
the database, EF Core runs a series of steps to ensure that all the relationships are set
up correctly. One of the steps EF Core runs, called relational fixup, checks whether any
of the entities in the added entity are already tracked. (See section 6.2.2 for details.)

From a performance point of view, the relational fixup stage can cost you compute
time because it must compare all the tracked entities that are used in the added entity
and its relationships. It’s hard to get reliable timings because the first few uses of the
application’s DbContext are slow, but here are some observations:

 When you’re loading collection navigational properties in a query—say, by
using the Include method—HashSet<T> for collections is quicker than collec-
tion navigational properties using ICollection<T> / IList<T>. Adding an entity
with 1,000 entities in a collection navigational property, for example, took 30%
longer with ICollection<T> than using HashSet<T> because it is easier to
detect/find instances in a HashSet<T>.

 The more tracked entities of the same type found in the entity (and its relation-
ships) that was added, the more time it takes to check them all. The perfor-
mance hit is hard to measure but seems to be small. But if you have issues with
an Add taking a long time, it’s worthwhile to check for a lot of tracked entities,
which may be part of the slowness of your Add method call.

 As I said in section 2.1.3, the downside of using HashSet<T> is that it does not
guarantee the order of the entries in the collection. So if you are using EF
Core 5’s ability sort entries in an Include method, you can’t use HashSet<T>.

14.6.4 Antipattern: Using the Update method when you want
to change only part of the entity

EF Core is great at detecting changes to individual properties in an entity class using
the DetectChanges.Detect method. If you change one property, such as the publica-
tion date of a book, and then call SaveChanges, the DetectChanges.Detect method
will find that property change, and EF Core will create some SQL to update that single
column in the correct row of the Books table.

On the other hand, if you use the Update method on the Book entity, all the prop-
erties are marked as changes, and the SQL becomes bigger and takes (a bit) longer to
execute. The Update method should be used only when the whole entity has changed;
see section 11.3.4 for an example.

14.6.5 Antipattern: Startup issue—Using one large DbContext

The first time you create your application’s DbContext, it’ll take some time, perhaps
several seconds. There are many reasons for this slowness, but one of them is that EF
Core needs to scan all the entity classes in the application’s DbContext to configure
itself and build a model of the database you want to access. Normally, this problem

459Performance patterns: Scalability of database accesses
isn’t a big one, because after your application is running, the configuration and data-
base model information is cached by EF Core. But if your application is constantly
being started and stopped—say, in a serverless architecture (see https://martinfowler
.com/articles/serverless.html)—this startup time could matter.

 You can help speed the building of the first application’s DbContext by reducing
the number of entity classes it includes. The only reasonable way to do that is to pro-
duce multiple application DbContexts, with each one covering a subset of the tables
in the database. Section 13.4.8 covers splitting a database across multiple DbContexts
based on the DDD approach bounded contexts. Figure 14.6 illustrates how a large
database could be split across multiple applications’ DbContexts.

Figure 14.6 splits the database across different applications’ DbContexts based on the
business domains, which might be an appropriate split for some applications. If you’re
building small, self-contained applications, such as in a serverless architecture or a
microservices architecture (see https://martinfowler.com/articles/microservices .html),
you could build an application’s DbContext, including only the entities/tables spe-
cific to each application.

14.7 Performance patterns: Scalability
of database accesses
Scalability of an application (the number of simultaneous accesses that the applica-
tion can handle) is a big topic. Even when limiting the scope to database access scal-
ability, you still have a lot of things to think about. Scalability issues typically can’t be
tracked to a poorly written piece of code, because scalability is more about design.
This section covers

 Using pooling to reduce the cost of creating a new application’s DbContext
 Adding scalability with little effect on overall speed

CustomerContextOrderContextBookContext

uthorA

eviewsR

BookAuthor
uthorA

ddressOA ddressCA

ustomerC

Credit

neItemLi

iceOffersPr

iedCop

ksBoo

Figure 14.6 A large database can be split into multiple applications’ DbContexts. In this case,
the database is split along business lines. If you need to minimize application startup costs, you
could create specific DbContexts for each application containing only the entities that the
application needs to access.

https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/microservices.html

460 CHAPTER 14 EF Core performance tuning

 Helping your database scalability by making your queries simple
 Scaling up the database server
 Picking the right architecture for applications that need high scalability

14.7.1 Using pooling to reduce the cost of a new application’s
DbContext

If you’re building an ASP.NET Core application, EF Core provides a method called
AddDbContextPool<T> that replaces the normal AddDbContext<T> method. The Add-
DbContextPool<T> method uses an internal pool of an application’s DbContext
instances, which it can reuse. This method speeds your application’s response time
when you have lots of short requests.

 But be aware that you shouldn’t use it in some situations. When you’re passing in
data based on the HTTP request, such as the logged-in user’s ID, you shouldn’t use
DbContext pooling because it would use the wrong user ID in some instances of the
application’s DbContext. DbContext pooling is simple to use, and this listing shows an
updated registration of the EfCoreContext context in the Book App.

services.AddDbContextPool<EfCoreContext>(
 options => options.UseSqlServer(connection,
 b => b.MigrationsAssembly("DataLayer")));

Listing 14.6 Using AddDbContextPool to register the application’s DbContext

You’re using an SQL Server database, but
pooling works with any database provider. You register your application

DbContext by using the
AddDbContextPool<T>.

Because you’re using migrations in a layered
architecture, you need to tell the database provider

which assembly the migration code is in.

Whether DbContext pooling makes a significant difference to the scalability of your
application depends on the type of concurrent traffic you have. But you should get at
least a small improvement in speed, as the AddDbContextPool<T> method will be
quicker at returning a fresh application’s DbContext instances.

14.7.2 Adding scalability with little effect on overall speed

In section 14.4.5, I said that you should use the async versions of the database access
methods in an application that must handle multiple simultaneous requests because
async/await releases a thread to allow other requests to be handled while the async
part is waiting for the database to respond (see figure 5.8). But using an async method
instead of the normal, synchronous method does add a small amount of overhead to
each call. Table 14.5 lists performance figures for a few types of database accesses.

The differences between sync and async in table 14.5 are small, but there is a dif-
ference: the slow queries need async, as it releases a thread for a long time. But the
fact that the fastest queries have the smallest sync/async difference says that using
async won’t penalize the small queries. Overall, you have plenty to gain and little down-
side from using async/await.

461Performance patterns: Scalability of database accesses
14.7.3 Helping your database scalability by making your queries simple

Creating SQL commands that have a low cost on the database server (they’re easy to
execute and return a minimal amount of data) minimizes the load on the database.
Performance-tuning your key queries to be simple and return only the data needed
not only improves the speed of your application, but also helps with the scalability of
your database.

14.7.4 Scaling up the database server

With the move to using cloud databases, you can increase the performance of your
database with the click of a button (and a credit card!). You have are so many options
(Azure has more than 50 options for SQL Server) that it’s not hard to balance perfor-
mance and cost.

14.7.5 Picking the right architecture for applications
that need high scalability

Section 5.2 details how a web application can have multiple instances to provide more
scalability. Running multiple instances of your web application is helpful for soft-
ware/compute performance, but if all the web application instances are accessing
only one database, it doesn’t necessarily help the database scalability.

 Although software/compute performance is normally the bottleneck in scalability,
for applications that make high demands on the database, extra instances of the web
application won’t help much. At this point, you need to think about other architec-
tures. One approach, called sharding, spreads your data across multiple databases,
which can work for certain types of multitenant applications. In chapters 15 and 16,
you will explore two architectural approaches—caching and the CQRS pattern—that
improve performance and scalability.

 Because most applications read the database more than they write to the database,
the CQRS architecture can help with database performance. In addition, by splitting
out the read-only queries to a NoSQL database called Cosmos DB, you can make the
replication of the read-only databases easier, which gives you more database band-
width. I implement such an architecture by using a CQRS approach in chapter 16,
with impressive performance gains.

Table 14.5 Performance for a mixture of types of database access returning books, using sync and
async versions. The database contains 1,000 books.

Type of database access #DB trips Sync Async Difference

112%0.8 ms.0.7 ms.1Read book only, simple load

1 140%13.7 ms.9.7 ms.Read book, eager-load relationships

Read book, eager-load relation-
ships+sort and filter

1 140%14.5 ms.10.5 ms.

462 CHAPTER 14 EF Core performance tuning
Summary
 Don’t performance-tune too early; get your application to work properly first.

But try to design your application so that if you need to performance-tune later,
it’s easier to find and fix your database code.

 Performance tuning isn’t free, so you need to decide what performance issues
are worth the development effort to fix.

 EF Core’s log output can help you identify database access code that has perfor-
mance issues.

 Make sure that any standard patterns or techniques you use in writing your appli-
cation perform well. Otherwise, you’ll bake in performance issues from day one.

 Avoid or fix any database performance antipatterns (database accesses that don’t
perform well).

 If scalability is an issue, try simple improvements, but high scalability may need
a fundamental rethinking of the application’s architecture.

 Chapter 15 provides an example of applying the recommendations in this chap-
ter to improve the performance of the Book App.

For readers who are familiar with EF6:

 Some EF6.x performance issues, such as using the AddRange method over
repeated Add method calls, have been fixed in EF Core.

Master class on
performance-tuning

database queries
Chapter 14 provided lots of information on how to performance-tune an applica-
tion. In this chapter and part of chapter 16, you are going to see how quickly you
can make the part 3 Book App display books. This information will expose you
to various ways to performance-tune an EF Core application; each approach
involves a balance between better performance and extra development time. By
learning a range of approaches, you’ll be ready to decide what you need in your
own applications.

This chapter covers
 Understanding four different approaches to

performance-tuning EF Core queries

 Comparing the different performance gains each
approach provides

 Extracting the good practices from each approach
to use in your applications

 Evaluating the skills and development effort
needed to implement each approach

 Understanding what database scalability is and
how to improve it
463

464 CHAPTER 15 Master class on performance-tuning database queries
 You will apply different performance-tuning approaches that progressively increase
the speed of the Book App while taking more and more development effort to achieve
these performance gains. Although the specific performance code in the Book App
may not apply to your application, each of the performance changes uses a different
methodology, so you can adapt the approach that works for you.

 This chapter focuses on read-only queries, which are often the main perfor-
mance problem areas in applications. For database writes, see section 14.6.

The test setup and a summ15.1 ary of the four performance
approaches
Before we can performance tune an application, we need some example data to test
against. Sometimes, the data comes from an existing application that is showing per-
formance problems, or maybe your design/management team has set some perfor-
mance targets. But to improve performance, you need test data that’s representative
of the real data that you would encounter in the real world.

 For part 3 of this book, I reached out to Manning Publications (this book’s pub-
lisher), which provided a set of real data containing about 700 real books. Figure 15.1
shows this book’s information in the Book App. (Clicking the book title takes you to a
details page with further data and an image of the cover.)

Figure 15.1 The upgraded BookApp.UI, using real book data from Manning Publications. This figure
shows an example of the Book App using real book data provided by Manning, which has been duplicated
so that there are 100,000 Books in the database, as well as more than a half-million Reviews.

465The test setup and a summary of the four performance approaches
NOTE You can try this example yourself by downloading the GitHub repo
associated with this book (http://mng.bz/XdlG) and then selecting the
Part3 branch. The BookApp.UI project contains the ASP.NET Core applica-
tion. When you run this application, see the Things to Do section of the home
page for a link to information on configuring the app to show the four
approaches used in this chapter.

The four approaches used in this chapter to performance-tune are

 Good LINQ—Uses the same approach shown in section 2.6 and follows the sug-
gestions in chapter 14. This approach is our base performance.

 LINQ+UDFs—Combines LINQ with SQL UDFs (user-defined functions; see sec-
tion 10.1) to move concatenations of Author's Names and Tags into the database.

 SQL+Dapper—Creates the required SQL commands and then uses Dapper to
execute that SQL to read the data.

 LINQ+caching—Precalculates some of the costly query parts, such as the aver-
ages of a Review’s NumStars (referred to as votes).

To provide a more demanding set of data to test these approaches, use the Book App’s
BookGenerator to duplicate the initial 700 books to get as many as you like. For the
tests in this chapter, I used 100,000 books. Table 15.1 shows the full list of the data in
the database.

In this chapter, you are going to compare the performance of these four query
approaches with that of three different book-display queries. The three queries range
from the simple sort-by-date query to the complex sort-by-votes query. Figure 15.2
shows the time taken for each query approach for each of the three queries, using test
data detailed in table 15.1.

 Here is a detailed explanation of the three types of queries shown in figure 15.2:

 Sort by votes—Sorts by average votes, which is calculated by averaging the Num-
Stars property in the Reviews linked to a book. This query shows that sorting
on the average votes, which is a sort that users would use a lot, has a large amount
of variation across all four approaches, for reasons explained in the sections on
each approach.

 Filter votes+sort price—Filters out all books with fewer than 4 for its average vote
(which leaves about 3,000 books) and then sorts on price. This query shows that
the first three approaches take a similar amount of time. The cached version is
fast because the average vote is precalculated and has an SQL index.

The test data used in this chapter to test the four performance approachesTable 15.1

Table Books Review BookAuthor Authors BookTags Tags

35174,405868156,958546,023100,000Number of rows

http://mng.bz/XdlG

466 CHAPTER 15 Master class on performance-tuning database queries
 Sort by date—Sorts by the date of publication of the book, which is a sort on a
known property that has an SQL index. All the approaches provide good per-
formance, with some subtle differences between the Good LINQ approach and
the SQL+UDFs and Dapper SQL approaches.

Although these four approaches are applied to the Book App, they define four gen-
eral approaches to performance-tuning EF Core database queries. The explanation of
each approach details the application of the performance improvements in the Book
App, but then pulls out the learning from each approach so that you can decide
whether it would work in your EF Core application.

15.2 Good LINQ approach: Using an EF Core Select query
This approach is close to the book query you created in chapter 2. The great thing
about this approach is that it’s simple: the query uses only LINQ to build this version,
whereas the LINQ+SQL and Dapper versions require you to use raw SQL, and the
cached SQL requires some serious code to make it work.

 First, I should say that the current LINQ query is fast enough with only 700 books;
it takes about 70 ms to sort on votes and displays 100 books. The reason is that the
query from chapter 2 already uses some good practices. I didn’t call out these good
practices in chapter 2 because that chapter was early in the book, but now we can
explore this query in detail.

Time to display HTML page of 100 books for three sort/filter queries

620

480

60

375 350 345

85

68 63 63

0

100

200

300

400

500

600

700

800

900

1000

LINQ+cachingDapper SQLLINQ+UDFsGood LINQ

M
ill

is
e

c
o

n
d

s

Filter votes+sort priceSort by votes Sort by date

840

Figure 15.2 The chart shows the time it took to display a page containing 100 books for three
different sorts/filters. The database contains 100,000 books and a half-million reviews (see
table 15.1 for full details). The timings were done on my local PC, using a localdb SQL Server
running on the same PC; all the queries are async.

467Good LINQ approach: Using an EF Core Select query

w

t

NOTE If you download and run the Part3 branch Book App, you can see the
SQL generated by each approach by selecting the approach and type of fil-
ter/sort and then clicking the Logs menu item, which will show you the SQL
as used in the query you executed.

The following listing shows the part of the query that gathers all the data needed, with
comments on various parts that make this query a good LINQ query.

public static IQueryable<BookListDto>
public static IQueryable<BookListDto>
 MapBookToDto(this IQueryable<Book> books)
{
 return books.Select(p => new BookListDto
 {
 BookId = p.BookId,
 Title = p.Title,
 PublishedOn = p.PublishedOn,
 EstimatedDate = p.EstimatedDate,
 OrgPrice = p.OrgPrice,
 ActualPrice = p.ActualPrice,
 PromotionText = p.PromotionalText,
 AuthorsOrdered = string.Join(", ",
 p.AuthorsLink
 .OrderBy(q => q.Order)
 .Select(q => q.Author.Name)),
 TagStrings = p.Tags
 .Select(x => x.TagId).ToArray(),
 ReviewsCount = p.Reviews.Count(),
 ReviewsAverageVotes =
 p.Reviews.Select(y =>
 (double?)y.NumStars).Average(),
 ManningBookUrl = p.ManningBookUrl
 });
}

Next, let’s look at what is going in the MapBookToDto extension method so that you
can understand and apply these good practices to your own applications.

LOADING ONLY THE PROPERTIES YOU NEED FOR THE QUERY

You could have loaded the whole Book entity, but that would mean loading data you
didn’t need. The Manning Publications book data contains large strings summarizing
the book’s content, what technology it covers, and so on. The book display doesn’t
need that data, however, and loading it would make the query slower, so you don’t
load it.

 In line with the recommendation that you don’t performance-tune too early, you
might start with a simple query that reads in the entity classes, and performance-tune
later. In the Book App, it was obvious that the book display query was a key query,
especially with respect to sorting by votes, so I started with a Select query. But for you,

Listing 15.1 MapBookToDto method that selects what to show in the book display query

Good practice: Load
only the properties
you need.

Good practice: Use indexed
properties to sort/filter on
(in this case, the ActualPrice).

Good practice:
Don’t load the

hole entity of each
relationships, only
he parts you need.

Good practice: The
ReviewsCount and
ReviewsAverageVotes are
calculated in the database.

468 CHAPTER 15 Master class on performance-tuning database queries

if a query is slow and you are loading the whole entity class, consider changing to the
LINQ Select method and loading only the properties you need.

DON’T LOAD WHOLE RELATIONSHIPS—ONLY THE PARTS YOU NEED

There are many ways to load relationships, including eager loading, explicit loading,
and lazy loading. The problem is that these three approaches to reading relationships
load the whole entity class of each relationship. Typically, you don’t need to load the
relationship’s whole entity classes.

In listing 15.1, you see that the AuthorLink collection is used to select only the
Author's Name, which minimizes the data returned from the database. Similarly, the
Tags are stripped to return only an array of the TagIds. So to improve the perfor-
mance of a query, if you need data from relationships, try to extract the specific parts
from any relationships. An even better idea is to move calculations into the database if
you can, which I cover next.

IF POSSIBLE, MOVE CALCULATIONS INTO THE DATABASE

If you want good performance, especially for sorting or filtering on values that need
calculating, it’s much better for the calculation to be done inside the database. Calcu-
lating data inside the database has two benefits:

 The data used in the calculation never leaves the database, so less data needs to
be sent back to the application.

 The calculated value can be used in a sort or filter, so you can execute the query
in one command to the database.

If you didn’t calculate the ReviewsAverageVotes value in the database, for example,
you would need to read in all the Reviews NumStars and BookId properties, and work
out the ReviewsAverageVotes value for every book. Only then could you work out
which Books you should read in. That process is going to be slow and take up a lot of
memory because it would have to read in all the Reviews from the database and then
work out the average votes in software before it could read in the Books to display.

I have to say that getting these types of calculations right wasn’t obvious! When I
wrote the first edition of this book, I couldn’t get the ReviewsAverageVotes value
query correct, and it took raising an issue on the EF Core GitHub issues page to get
the right answer. In section 6.1.8, I cover some of the LINQ commands that must be
written in a specific way to work.

IF POSSIBLE, USE INDEXED PROPERTIES TO SORT/FILTER ON

In part 1, I applied a promotion to a Book by adding a PriceOffer entity class. I did that
not only because I wanted to show how one-to-one relationships worked, but also because
using a PriceOffer entity class made it obvious what I was doing. The downside of this
approach is that the query had to include code to look for the PriceOffer entity class.
The following code snippet is from the part 1 version of the MapBookToDto method:

ActualPrice = book.Promotion == null
? book.Price
: book.Promotion.NewPrice,

469LINQ+UDFs approach: Adding some SQL to your LINQ code
PromotionPromotionalText =
 book.Promotion == null
 ? null
 : book.Promotion.PromotionalText,

That code has two negative effects on sorting on price: the LINQ is converted to an
SQL JOIN to find the optional PriceOffers row, which takes time, and you can’t add a
SQL index to this calculation. In part 3, the Book App moved to using DDD, so you
could add or remove a price promotion by using access methods in the Book entity
(see section 13.4.2). The access methods hide the business logic of the promotion,
which means that the ActualPrice property always contains the price that the book is
sold for. Changing the code to not use the PriceOffer entity removes the SQL JOIN,
and you can add an SQL INDEX to the ActualPrice column in the database, signifi-
cantly improving the sort-on-price feature.

 So if you need to query some data, especially if you’re sorting or filtering on that
data, try to precompute the data in your code. Or use a persisted computed column
(see section 10.2) if the property is calculated based on other properties/columns in
the same entity class, such as [TotalPrice] AS (NumBook * BookPrice). That way, you
will get a significant improvement in any sort or filter because of the SQL index on
that column.

15.3 LINQ+UDFs approach: Adding some SQL
to your LINQ code
In the Good LINQ approach, both the LINQ that forms the book display reads in
Authors Names and the Tag’s TagId return collections, because there can be many
Authors and Tags. Before EF Core 3.0, these collections were read in by using an extra
query per collection, so reading in 100 books with Author's Name alone would create
101 accesses to the database (one for the main query and then one per book for
Author's Name) and take about 230 ms.

 Since EF Core 3.0, this query has been reduced to one access to the database by
returning multiple rows per book and extra columns to make sure that the rows are in
the right order. With lots of Books, Author's Names, and TagIds, the end of the SQL
produced by the Good LINQ book display with the default ordering (order on BookId
descending) looks like this:

SELECT [t].[BookId],…
-- other parts of the SQL
ORDER BY [t].[BookId] DESC
 ,[t0].[Order]
 ,[t0].[BookId], [t0].[AuthorId], [t0].[AuthorId0]
 ,[t2].[BookId], [t2].[TagId0], [t2].[TagId]

I’m not going to explain the various tables and columns in ORDER BY (you can see the
whole SQL query by running the Book App and clicking the Logs menu item), but
you can see that there are a lot of ORDER BY parameters. It turns out that if you add the

470 CHAPTER 15 Master class on performance-tuning database queries
sort-on-average-votes LINQ query at the top of the existing ORDER BYs, performance
starts to drop, which is one reason why the Good LINQ book display is so bad (840 ms,
as shown in figure 15.2).

NOTE Before you say that having all those ORDER BY parameters is bad SQL, I
can tell you that without that code, the query would take about twice the time
and would go from one database access to five separate database accesses.
The EF Core 3.0 change has improved most, but not all (see section 6.1.4)
queries containing collections.

Some time ago, I found some SQL code on Stack Overflow that concatenated a series
of strings into a single string inside the database. In section 14.5.6, I described four
ways to enhance a LINQ query by providing SQL that is custom-made for your specific
situation. In this case, I used a scalar UDF to access this code, as shown in the follow-
ing code snippet:

CREATE FUNCTION AuthorsStringUdf (@bookId int)
RETURNS NVARCHAR(4000)
AS
BEGIN
-- Thanks to https://stackoverflow.com/a/194887/1434764
DECLARE @Names AS NVARCHAR(4000)
SELECT @Names = COALESCE(@Names + ', ', '') + a.Name
FROM Authors AS a, Books AS b, BookAuthor AS ba
WHERE ba.BookId = @bookId
 AND ba.AuthorId = a.AuthorId
 AND ba.BookId = b.BookId
ORDER BY ba.[Order]
RETURN @Names
END

NOTE You should add raw SQL only if you have code that does something
better than EF Core. Merely adding SQL that is the same as what EF Core
would have created won’t improve performance.

To use the UDF code AuthorsStringUdf and TagsStringUdf to concatenate the
TagIds, I had to define it (see section 10.1) and add the UDFs to a database by editing
a migration (see section 9.5.2). Then I needed to create a new mapping from the Book
entity to a book-display DTO, as shown in the next listing. See the lines with comments
for the calls to the two UDFs.

public static IQueryable<UdfsBookListDto>
 MapBookUdfsToDto(this IQueryable<Book> books)
{
 return books.Select(p => new UdfsBookListDto
 {
 BookId = p.BookId,
 Title = p.Title,

Listing 15.2 MapBookUdfsToDto using UDFs to concatenate Name/Tag names

Updated MapBookToDto
method, now called
MapBookUdfsToDto

471SQL+Dapper: Creating your own SQL

 PublishedOn = p.PublishedOn,
 EstimatedDate = p.EstimatedDate,
 OrgPrice = p.OrgPrice,
 ActualPrice = p.ActualPrice,
 PromotionText = p.PromotionalText,
 AuthorsOrdered = UdfDefinitions
 .AuthorsStringUdf(p.BookId),
 TagsString = UdfDefinitions
 .TagsStringUdf(p.BookId),
 ReviewsCount = p.Reviews.Count(),
 ReviewsAverageVotes =
 p.Reviews.Select(y =>

The AuthorsOrdered
and TagsString are set
to the strings from
the UDFs.

(double?)y.NumStars).Average(),
ManningBookUrl = p.ManningBookUrl

});
}

When you change the MapBookToDto extension method to use the AuthorsStringUdf

and the TagsStringUdf UDFs, each book returns only one row, and there is no ORDER

BY other than the default ordering on BookId, descending. This change has a small
effect on a nonsorted display of 100 books (improving it by a few milliseconds), but
the big effect is on the sort by average votes, which comes down from 840 ms in the
Good LINQ approach to 620 ms in the LINQ+SQL approach—an improvement of
about 25%.

15.4 SQL+Dapper: Creating your own SQL
The ultimate SQL approach is to stop using EF Core and write your own SQL query. If
you want to do this, you need a library that can execute your SQL code for you. The
best one I have found is Dapper (covered in section 11.5.4). The issue is coming up
with better SQL than EF Core.

I studied the SQL that EF Core produced and did some digging, and found one
place where I could improve the SQL over EF Core. It turns out that you can sort on a
parameter in a SQL SELECT command; see https://stackoverflow.com/a/38750143/
1434764. According to this Stack Overflow page, “ORDER BY is solved after the SELECT

(which means you can use a calculated column from the SELECT), unlike WHERE or
FROM, which are solved before the SELECT and therefore can’t refer to column aliases
in SQL Server.”

EF Core doesn’t take advantage of this feature, so its SQL computes average votes
twice: once in the SELECT and again in the ORDER BY. My tests showed that computing
average votes only once significantly improved the performance in the sort-by-votes
query, so I set about rewriting the various sort, filter, and paging features used by the
Book App, which involved selecting and concatenating SQL strings to form the correct
SQL query. Converting the LINQ features to SQL was quite complicated. Figure 15.3
shows a flow chart depicting how the SQL query was built.

NOTE The SQL that I created uses the two UDFs used in the LINQ+UDFs
approach; otherwise, it would be slower than LINQ+UDFs. If you want to see

https://stackoverflow.com/a/38750143/1434764
https://stackoverflow.com/a/38750143/1434764
https://stackoverflow.com/a/38750143/1434764

472 CHAPTER 15 Master class on performance-tuning database queries
the code that builds and runs the SQL, you can find it at http://mng.bz/
n2Q2.

The performance improvement for the sort-by-votes query is impressive: the Dapper
version is nearly twice as fast as the Good LINQ version (Dapper: 480 ms, Good LINQ:
840 ms). But on every other query that didn’t include a sort on votes, the Dapper ver-
sion wasn’t much faster than LINQ version, especially against LINQ+UDFs. To under-
stand this result, I looked at the simplest query—sort by the date of publication—to
see where the time was going. Figure 15.4 breaks down the time into three parts:

 (Bottom) Database time (important)—Time taken for the SQL to run
 (Middle) HTML time—Time it took to send the HTML page to the browser
 (Top) Software time—Rest of the time, mostly ASP.NET Core

NOTE The SQL timing came from EF Core’s logging, which includes the
time the execution took. For Dapper, I used a stopwatch, starting it before the
call to Dapper and stopping it when the data was returned.

ORDER BY[b].[BookId] DESC
Add SELECT [b].[BookId]...

Add paging

Add SELECT COUNT(*)...

Add AND([b].[SoftDeleted]=0)

ORDER BY[ReviewsAverageVotes]...

ORDER BY[b].[PublishedOn] DESC

ORDER BY[ActualPrice]

ORDER BY[ActualPrice] DESC

What sort?Add sort?
Yes

Add WHERE (SELECT AVG...

Add WHERE (@filterVal IN ...

What filter?

Building an SQL query from its parts: filter, count/select, sort, and paging

Add filter?
Yes

Count
EXIT!

EXIT!

Select or count?

Add WHERE (DATEPART(year

Figure 15.3 The Dapper code consists of a series of string concatenations that produce the final SQL
query. This code isn’t as elegant as the EF Core version, with its four Query Objects, but when you’re
performance-tuning, you often must accept some loss of cleanness from your original code to achieve
the performance you need.

http://mng.bz/n2Q2
http://mng.bz/n2Q2
http://mng.bz/n2Q2

473LINQ+caching approach: Precalculating costly query parts
As you can see from figure 15.4, the differences in the SQL are small, and because of
the ±2 ms variations in the timings, they are essentially the same. The quick perfor-
mance of the Dapper library becomes less and less a factor when the SQL used in the
query takes many milliseconds to execute. And because the only queries you need to
performance-tune typically take many milliseconds to run, ½ or 1 ms saved by Dapper
doesn’t make much of a difference. (It helps that EF Core is getting quicker.)

 The takeaway from figure 15.4 is that it’s worth converting your slow queries to
Dapper only if you can find some SQL that is better than what EF Core produces. It
took me quite a bit of time to build and debug the complex book display, and if I
hadn’t had another way to improve the performance, the effort would have been
worthwhile. The cached SQL approach (section 15.5) provides a much bigger perfor-
mance improvement, but it’s a lot more work.

NOTE To be clear, other than the sort-by-votes issue, I didn’t find any other
part of the EF Core that would be improved by using Dapper, and EF Core
already had issue #16038 to solve this problem.

15.5 LINQ+caching approach: Precalculating costly
query parts
The final approach in this chapter is precalculating the parts of the query that take a
long time to calculate and storing them in extra properties/columns in the Book
entity class. This technique is known as caching or denormalization. Caching works best

Time to display HTML page of 100 books, sort on published date

2424 23 22

9.59.5 9.5 9.5

34.5 31.5 31.5 30.5

0

10

20

30

40

50

60

70

80

90

LINQ+cachingDapper SQLLINQ+UDFsGood LINQ

M
ill

is
e
c
o
n
d
s

SoftwareHTMLSQL

Database time:
This is the part we
are most interested in.

Software time
HTML time

NOTE: SQL timings
has a ±2 ms variation.

Figure 15.4 Breakdown of the sort by the date of publication of the book with
a page of 100 books. The important part to look at is the bottom timings, which
cover the time taken to execute the SQL: ±2 ms on the SQL part, with some
outliers that I left out. The other parts have larger variations. The overall
variation is 10 ms for the Good LINQ version and smaller (say, 5 ms).

474 CHAPTER 15 Master class on performance-tuning database queries
with data that is expensive to generate, such as the average votes for a Book. As you
saw in figure 15.2, caching has the biggest effect on the sort-by-votes query, making it
about 14 times faster than the Good LINQ approach and 8 times faster than the Dap-
per approach.

 But when you’re thinking about using caching, you also need to think about how
often the cached value is updated and how long it takes to update the cache. If the
data that is cached is updated a lot, the cost of updating the cache may move the per-
formance problem from running the query to updating entities. As you will see in sec-
tion 15.5.2, the design of the caching algorithms used in the Book App is quick when
it comes to handling updates.

 But the main problem with caching is that it’s really hard to make sure your
cached values are up to date. Under the caching SQL approach, for example, you
must update the cached ReviewsAverageVotes property every time a Review is added,
updated, or deleted. And what happens if two Reviews are applied to a Book entity
simultaneously, or when the database update of the cached ReviewsAverageVotes
property fails? Here’s a quote from the 1990s stating that cache updates have always
been a problem:

There are only two hard things in computer science: cache invalidation and naming things.

—Phil Karlton (while at Netscape)

I can attest that building a caching system is hard. I built a caching system for the first
edition of the book, and it was good, but now I know about one rare situation in which
it would fail to update a cached properly. (I fixed this problem in the new version for
this book.)

 Studying the SQL query shows that caching the average votes (the average of the
NumStars in all Reviews linked to a specific Book entity) would improve perfor-
mance on sort/filter on average votes. You could stop there, but caching the num-
ber of Reviews, the Book, and the concatenation of Author's Names would provide a
small boost for all displays of books (about a 5 ms performance gain for displaying
100 books).

 Adding a caching system isn’t trivial to implement. Here are the steps:

1 Add a way to detect changes that affect the cached values.
2 Add code to update the cached values.
3 Add the cache properties to the Book entity and provide concurrency code to

handle simultaneous updates of the cached values.
4 Build the book display query to use the cached values.

At the end of the description of this caching system, section 15.5.4 describes a check-
ing/healing system that checks whether the cached values are set properly.

475LINQ+caching approach: Precalculating costly query parts

The
of the
With
need
15.5.1 Adding a way to detect changes that affect the cached values

I have had good results from a domain events approach (see chapter 12) to imple-
ment caching, so this design uses that approach. One positive feature of the domain
events approach is that the change that triggers an update of a cached value is saved
in the same transaction that saves the cached value (see figure 12.3). As a result, both
changes are applied to the database, or if anything fails, none of the updates are
applied to the database. That approach prevents the real data and cached data from
getting out of step (known as a dirty cache).

 As for detecting a change of properties or relationships, we can take advantage of
the fact that the part 3 Book App uses the DDD design approach. So, to update the
two cached values related to the Reviews, you can add code to the Book’s AddReview
and RemoveReview access methods.

 For the cached property called AuthorsOrdered, we are going to use a non-DDD
approach to trigger a domain event in which an Author's Name is changed. This
example shows how you would handle domain events and caching when you’re not
using DDD.

 To speed the development, you are going to use my EfCore.GenericEventRunner
library. This library is well tested and contains other features that will speed develop-
ment. So let’s see what the code would look like, starting with the event-enhanced
BookDbContext, as shown in the following listing.

public class BookDbContext
 : DbContextWithEvents<BookDbContext>
{

 public BookDbContext(
 DbContextOptions<BookDbContext> options,
 IEventsRunner eventRunner = null)
 : base(options, eventRunner)
 { }

 //… rest of BookDbContext is normal, so left out
}

The next stage is adding the events to the Book’s AddReview and RemoveReview access
methods. The following listing shows how these methods create an event.

public class Book : EntityEventsBase,
 ISoftDelete
{

 //… other code left out for clarity

Listing 15.3 BookDbContext updated to use GenericEventRunner

TheListing 15.4 Book entity with the AddReview and RemoveReview methods

The BookDbContext handles
the Books side of the data.

Instead of inheriting EF Core’s
DbContext, you inherit the class
from GenericEventRunner.

DI will provide GenericEventRunner’s
EventRunner. If null, no events are
used (useful for unit tests).

 constructor
 DbContext-
Events class
s the Event-

Runner.

Adding the EntityEventsBase
will provide the methods to
send an event.

476 CHAPTER 15 Master class on performance-tuning database queries

e

R

 public void AddReview(int numStars,
 string comment, string voterName)
 {
 if (_reviews == null)
 throw new InvalidOperationException(
 "The Reviews collection must be loaded");

 _reviews.Add(new Review(
 numStars, comment, voterName));

 AddEvent(new BookReviewAddedEvent(numStars,
 UpdateReviewCachedValues));
 }

 public void RemoveReview(int reviewId)
 {
 if (_reviews == null)
 throw new InvalidOperationException(
 "The Reviews collection must be loaded");

 var localReview = _reviews.SingleOrDefault(
 x => x.ReviewId == reviewId);
 if (localReview == null)
 throw new InvalidOperationException(
 "The review was not found.");

 _reviews.Remove(localReview);

 AddEvent(new BookReviewRemovedEvent(localReview,
 UpdateReviewCachedValues));
 }

 private void UpdateReviewCachedValues
 (int reviewsCount, double reviewsAverageVotes)
 {
 ReviewsCount = reviewsCount;
 ReviewsAverageVotes = reviewsAverageVotes;
 }
}

To catch a change of an Author's Name, we will use a non-DDD approach and inter-
cept the setting of a property. This approach uses EF Core’s backing-field feature so
that we can detect a change in the Author's Name. The modified Author entity class is
shown in the following listing.

public class Author : EntityEventsBase
{
 private string _name;

 public string Name
 {

Listing 15.5 Author entity sending an event when the Name property is changed

The AddReview is the
only way to add a Review
to this Book.

Adds a BookReview-
AddedEvent domain
event with the NumStars
of the new Review

Provides the
vent handler
a secure way

to update the
eview cached

values

The RemoveReview
method is the only way
to remove a Review
from this Book.

Adds a BookReview-
AddedEvent domain
event with the review
that has been deleted

This private method can
be used by the event
handlers to update the
cached values.

Adding the EntityEventsBase
will provide the methods to
send an event.The backing field for the

Name property, which EF
Core will read/write

477LINQ+caching approach: Precalculating costly query parts
 get => _name;
 set
 {
 if (value != _name &&
 AuthorId != default)
 AddEvent(
 new AuthorNameUpdatedEvent());
 _name = value;
 }
 }

 //… other code left out for clarity
}

Note that the test of whether the event should be sent includes a test of whether the
Author’s primary key, AuthorId, is set. Because the Author entity class doesn’t follow
the DDD style, you can’t be sure how the developer might create a new instance of the
Author entity, so you add the extra primary-key test to ensure that events are sent only
when a Author's Name is updated.

15.5.2 Adding code to update the cached values

Now you will create some event handlers to update the cached values when the appro-
priate domain event comes in. These event handlers will be called before SaveChanges/
SaveChangesAsync, so the changes that triggered the events and the subsequent changes
applied by the event handlers will be saved in the same transaction. I am going to
show two styles of updating the cached values within the event handlers:

 The fast delta updates, which work with numeric changes to cached values. When
the AddReview event is received, for example, the event handler will increment
the ReviewsCount cache property. This option is fast, but it needs careful coding
to make sure that it produces the correct result in every situation.

 The more-normal recalculate updates, in which you run a query to recalculate
the cached value. This option is used to update the AuthorsOrdered cache
property.

UPDATING THE REVIEWS CACHED VALUES USING THE DELTA UPDATE STYLE

Adding, updating, or removing Reviews causes specific events, which in turn cause an
event handle linked to each event type to run. In this example, you are going to build
the event handler code that will update the two cached values, ReviewsCount and
ReviewsAverageVotes, in the Book entity. Figure 15.5 shows the stages in the process
of adding a new Review to a Book that already has one Review.

 The main part of the process is in the event handler, which uses a delta style to
update the two Review cached values. Listing 15.6 shows the ReviewAddedHandler
class, which the GenericEventRunner library will run before calling SaveChanges/
SaveChangesAsync.

You make the setting public and override
the setter to add the event test/send.

If the Name has
changed, and it’s not
a new Author, sends
a domain event

478 CHAPTER 15 Master class on performance-tuning database queries

ob
to

typ

acce
public class ReviewAddedHandler :
 IBeforeSaveEventHandler<BookReviewAddedEvent>
{
 public IStatusGeneric Handle(object callingEntity,
 BookReviewAddedEvent domainEvent)
 {
 var book = (Domain.Books.Book) callingEntity;

 var totalStars = Math.Round(
 book.ReviewsAverageVotes
 * book.ReviewsCount) +
 domainEvent.NumStars;
 var numReviews = book.ReviewsCount + 1;

 domainEvent.UpdateReviewCachedValues(
 numReviews,
 totalStars / numReviews);

 return null;
 }
}

This event handler doesn’t access the database and therefore is quick, so the overhead
of updating the ReviewsCount and ReviewsAverageVotes cached values is small.

NOTE The RemoveReview event handler isn’t shown here but works the same
way as the AddReview event handler.

LinkingListing 15.6 ReviewAddedHandler class to the BookReviewAddedEvent

SaveChangesAsync

User

Add review

Review added
event handler

Cached values

- ReviewsCount: 1
- AverageStars: 1.0
- AuthorsOrdered: ...

Book 456

- AddReview(...)
Review 12

- Stars: 1 Cached values

- ReviewsCount: 2

- AverageStars: 3.0

- AuthorsOrdered: ...

Book 456

- Reviews

Review 34

- Stars: 5 New

The event handler updates
the cached values
ReviewsCount and
AverageStars with
the new values.

The domain event is
sent when the Book’s
AddReview access
method is called. AddReview

event

Figure 15.5 When a user adds a new Review, the AddReview access method creates
a domain event, which is picked up by the GenericEventRunner when SaveChanges/
SaveChangesAsync is called. The GenericEventRunner runs the ReviewAddedHandler,
which updates the Review cached values using a delta update-style approach.

Tells the Event Runner that this event should be
called when it finds a BookReviewAddedEvent

The Event Runner
provides the
instance of the
calling entity and
the event.

Casts the
ject back
its actual
e of Book
to make
ss easier

The first part of this calculation
works out how many stars before
adding the new stars.Adds the star

rating from the
new Review

A simple add of 1 gets
the new number of
Reviews.

The entity class provides
a method to update the
cached values.

The first
parameter is

the number of
reviews.

The second parameter
provides the new average
of the NumStars.

Returning null is a
quick way to say that
the event handler is
always successful.

479LINQ+caching approach: Precalculating costly query parts
UPDATING THE BOOK’S AUTHORS’ NAME CACHED VALUE BY RECALCULATION

There are many ways that an Author or Author’s Name could be changed in a Book. At
Book level, someone might have left an Author out. At Author entity level, someone
might have misspelled the author’s name (as John P Smith instead of Jon P Smith, for
example). For any of these changes, the affected Book entity or entities should update
the Book’s AuthorsOrdered cache value. This string isn’t used in a filter or sort, but it
saves some time for the display of author names. For this example, you are going to
implement the update of the Author's Name property, which requires looping through
all the Books that contain that Author entity, as shown in figure 15.6.

The following listing shows the AuthorNameUpdatedHandler that the GenericEvent-
Runner calls when it finds the domain event that was created when an Author's Name
property was changed. This event handler loops through all the Books that have that
Author and recalculates each Book’s AuthorsOrdered cache value.

public class AuthorNameUpdatedHandler :
 IBeforeSaveEventHandler<AuthorNameUpdatedEvent>
{
 private readonly BookDbContext _context;

 public AuthorNameUpdatedHandler
 (BookDbContext context)
 {
 _context = context;
 }

The event handler that manages a change of anListing 15.7 Author’s Name property

Author name
update handler

Author 123

- Name: “New name”

Book 111

-

User

The handler recalculates the
“AuthorsOrdered” string for all
the books that had author 23.1

Cached values

- ReviewsCount: 0
- AverageStars: 0.0
- AuthorsOrdered:

“New name, Author2”

Book 444

-
Cached values

- ReviewsCount: 0
- AverageStars: 0.0
- AuthorsOrdered:

“New name, Author2”

Books and 444 have111

the same authors, 231

and 456, but only
Author 23 is changed.1

Author 456

- Name: “Author2”

e nameChang

entev

Figure 15.6 An admin user changes the Name of an Author that is used in two Books. In this
example, Books 111 and 444 have two Authors—123 and 456—linked to them. Changing the
123 Author’s Name requires the event handler to loop through all the Books that the 123
Author is used in and recalculate the correct AuthorsOrdered string.

Tells the Event Runner that this event should be
called when it finds a AuthorNameUpdatedEvent

The event handler
needs to access
the database.

480 CHAPTER 15 Master class on performance-tuning database queries

p
inst

ca
and

 public IStatusGeneric Handle(object callingEntity,
 AuthorNameUpdatedEvent domainEvent)
 {
 var changedAuthor = (Author) callingEntity;

 foreach (var book in _context.Set<BookAuthor>()
 .Where(x => x.AuthorId == changedAuthor.AuthorId)
 .Select(x => x.Book))
 {
 var allAuthorsInOrder = _context.Books
 .Single(x => x.BookId == book.BookId)
 .AuthorsLink.OrderBy(y => y.Order)
 .Select(y => y.Author).ToList();

 var newAuthorsOrdered =
 string.Join(", ",
 allAuthorsInOrder.Select(x =>
 x.AuthorId == changedAuthor.AuthorId
 ? changedAuthor.Name
 : x.Name));

 book.ResetAuthorsOrdered(newAuthorsOrdered);
 }

 return null;
 }

The Event
Runner

rovides the
ance of the
lling entity
 the event.

Casts the object back to
its actual type of Author
to make access easier

Loops through
all the books

that contain the
Author that has

changed

Gets the Authors,
in the correct order,
linked to this Book

Creates a comma-delimited
string with the names from
the Authors in the Boo

Returns the list of
author names, but

replaces the changed
Author’s Name with the

name provided in the
callingEntity parameter Updates each Book’s

AuthorsOrdered
property

Returning null is a quick
way to say that the event
handler is always successful.

}

As you can see, the Author's Name event handler is much more complex and accesses
the database multiple times, which is much slower than the AddReview/RemoveReview
event handler. Therefore, you need to decide whether caching this value will pro-
vide an overall performance gain. In this case, the likelihood of updating an Author's

Name is small, so on balance, it is worthwhile to cache the list of author names for
a book.

15.5.3 Adding cache properties to the Book entity with concurrency
handling

Adding the three cached value properties—ReviewsCount, ReviewsAverageVotes,
and AuthorsOrdered—is easy to do. But an issue may occur if two Reviews are added
simultaneously (or nearly simultaneously) to the same Book, which could cause the
Review-related cached values to be out of date.

Working out the best way to handle simultaneous updates took the most time to
think through and design. I spent days thinking about all the concurrency issues that
could cause a problem and then even more days coming up with the best way to han-
dle those issues. This part of the caching design is the most complex and needs care-
ful thought.

First, I considered updating the cache values inside a transaction, but the isolation
level needed for totally accurate cache updating required locking a lot of data. Even

481LINQ+caching approach: Precalculating costly query parts
using direct SQL commands to calculate and update the cache wasn’t safe. (See the
fascinating Stack Overflow question/answer “Is a single SQL Server statement atomic
and consistent?” at https://stackoverflow.com/q/21468742/1434764.)

 I found that the best way to handle the simultaneous-updates problem was to
configure the three cache values as concurrency tokens (see section 10.6.2). Two
simultaneous updates of a cache value will throw a DbUpdateConcurrencyException,
which then calls a concurrency handler written to correct the cache values to the
right values.

 Figure 15.7 shows what happens if two Reviews are added simultaneously, which
causes a DbUpdateConcurrencyException to be thrown. Then the concurrency han-
dler comes in to fix the ReviewsCount and ReviewsAverageVotes cache values.

This section shows the following parts of the concurrency handler:

 Code to capture any exception thrown by SaveChanges/SaveChangesAsync
 The top-level concurrency handler that finds the Book(s) that caused the

DbUpdateConcurrencyException

 The concurrency handler for a problem with the Review’s cached values
 The concurrency handler for a problem with the AuthorsString cached value

SaveChanges + events

T
im

e

1. Reads in a Book

2 Adds a new.

eviewR

SaveChanges + events

Events
run

base.
SaveChanges

1. Reads same Book

2 Adds another.

ew Reviewn

SaveChanges + events

Events
run

base.
SaveChanges

ReviewsCount = 1
AverageVotes = 1.0

ReviewsCount = 1
AverageVotes = 5.0

Concurrency

handler

base.
SaveChanges

ReviewsCount = 2
AverageVotes = 3.0

The first thread reads the book and
adds a new Review, with NumStars = 5.

The second thread reads the same book
and adds another Review, with NumStars = .1

The second update fails
with concurrency exception ,
which calls our cache fix
concurrency handler. This
fixes the cache values and

’swrites it out again using
book instance.

Figure 15.7 This figure shows how two simultaneous updates could cause an incorrect
cached value, which is detected by making the ReviewsCount and ReviewsAverageVotes
cache properties configured as concurrency tokens. This example would throw a DbUpdate-
ConcurrencyException, which would be caught and directed to the concurrency handler.
The concurrency handler is designed to handle this type of concurrency issue and correct the
cache values.

https://stackoverflow.com/q/21468742/1434764

482 CHAPTER 15 Master class on performance-tuning database queries

Th
tha

r

CODE TO CAPTURE ANY EXCEPTION THROWN BY SAVECHANGES/SAVECHANGESASYNC
To capture DbUpdateConcurrencyException, you need to add a C# try/catch around
the call to the SaveChanges/SaveChangesAsync methods. This addition allows you to
call an exception handler to try to fix the problem that caused the exception or
rethrow the exception if it can’t fix the problem. If your exception handler managed
to fix the exception, you call SaveChanges/SaveChangesAsync again to update the
database with your fix.

 In this specific case, you need to consider another issue: while you were fixing the
first concurrency update, another concurrency update could have happened. Sure,
this scenario is rather unlikely, but you must handle it; otherwise, the second call to
SaveChanges/SaveChangesAsync would fail. For this reason, you need a C# do/while
outer loop to keep retrying the call to the SaveChanges/SaveChangesAsync method
until it is successful or an exception that can’t be fixed occurs.

 Also, the GenericEventRunner library allows you to register an exception handler
to be called if the SaveChanges/SaveChangesAsync method throws an exception.
Your exception handler must return an IStatusGeneric, and there are three possible
options:

 Status has no errors. Your exception handler has fixed the problem, and the
SaveChanges/SaveChangesAsync method should be called again to update the
database

 Status returns errors. The exception handler has converted the exception to error
message(s). This approach is useful for turning database exceptions into user-
friendly error messages.

 Status returns null. The exception handler can’t handle the exception, and the
exception should be rethrown

The following listing shows the code inside the GenericEventRunner library that calls
SaveChanges, showing the outer do/while and the inner try/catch of the exception.

private IStatusGeneric<int>
 CallSaveChangesWithExceptionHandler
 (DbContext context,
 Func<int> callBaseSaveChanges)
{
 var status = new StatusGenericHandler<int>();

 do
 {
 try
 {
 int numUpdated = callBaseSaveChanges();
 status.SetResult(numUpdated);
 break;
 }

Listing 15.8 A simplified version of the GenericEventRunner’s SaveChanges call

The returned value is a
status, with int returned
from SaveChanges.

The base SaveChanges is
provided to be called.e status

t will be
eturned The call to the

SaveChanges is done
within a do/while.

Calls
the base

SaveChanges

If no exception occurs,
sets the status result
and breaks out of the
do/while

483LINQ+caching approach: Precalculating costly query parts

-

S

entity
hand

en
cas

e
 catch (Exception e)
 {
 IStatusGeneric handlerStatus
 = … YOUR EXCEPTION HANDLER GOES HERE;
 if (handlerStatus == null)
 throw;
 status.CombineStatuses(handlerStatus);
 }

 } while (status.IsValid);

 return status;
}

TOP-LEVEL CONCURRENCY HANDLER THAT FINDS THE BOOK(S) THAT CAUSED THE EXCEPTION

Handling a concurrency issue involves several common parts, so you build a top-level
concurrency handler to manage those parts. The following listing shows the top-
level concurrency handler method HandleCacheValuesConcurrency.

public static IStatusGeneric HandleCacheValuesConcurrency
 (this Exception ex, DbContext context)
{
 var dbUpdateEx = ex as DbUpdateConcurrencyException;
 if (dbUpdateEx == null)
 return null;

 foreach (var entry in dbUpdateEx.Entries)
 {
 if (!(entry.Entity is Book bookBeingWrittenOut))
 return null;

 var bookThatCausedConcurrency = context.Set<Book>()
 .IgnoreQueryFilters()
 .AsNoTracking()
 .SingleOrDefault(p => p.BookId
 == bookBeingWrittenOut.BookId);

 if (bookThatCausedConcurrency == null)
 {
 entry.State = EntityState.Detached;
 continue;
 }

 var handler = new FixConcurrencyMethods(entry, context);

The top-level concurrency handler containing the common exception codeListing 15.9

The catch
caches any
exceptions

that
SaveChanges

throws.

Your exception handler
is called here, and it
returns null or a status.

If the exception handler
returns null, it rethrows
the original exception...

...otherwise, any errors
from your exception
handler are added to
the main status.

If the exception
handler was
successful, it loops
back to try calling
SaveChanges again.

Returns the status

This extension method
handles the Reviews and

Author cached values
concurrency issues.

Casts the exception to a
DbUpdateConcurrency
Exception

If the exception isn’t a
Db.UpdateConcurrencyException,
we return null to say that we can’t
handle that exception

hould be
only one
, but we
le many
tities in

e of bulk
loading

Casts the entity to a
Book. If it isn’t a Book,
we return null to say
the method can’t
handle it.

Reads a nontracked
version of the Book
from the database.
(Note the Ignore-
QueryFilters, becaus
it might have been
soft-deleted.)

If no book was
deleted, marks the

current book as
detached so it

won’t be updated

Creates the class
containing the Reviews and

AuthorsOrdered cached values

484 CHAPTER 15 Master class on performance-tuning database queries

pa
is t

y

,
 handler.CheckFixReviewCacheValues(
 bookThatCausedConcurrency, bookBeingWrittenOut);

 handler.CheckFixAuthorOrdered(
 bookThatCausedConcurrency, bookBeingWrittenOut);
 }

 return new StatusGenericHandler();
}

CONCURRENCY HANDLER FOR A PROBLEM WITH THE REVIEW’S CACHED VALUES

The CheckFixReviewCacheValues concurrency handler method deals only with the
Review cached values. Its job is to combine the Review cached values in the entity that
is being written out and the Review cached values that have been added to the data-
base. This method uses the same delta update style used in the Review cached values
event handler. The following listing shows the CheckFixReviewCacheValues concur-
rency handler.

NOTE If you aren’t familiar with EF Core concurrency handling, I recom-
mend that you look at section 10.6.3, which describes the different types of
data that are involved in handling a concurrency exception.

public void CheckFixReviewCacheValues(
 Book bookThatCausedConcurrency,
 Book bookBeingWrittenOut)
{
 var previousCount = (int)_entry
 .Property(nameof(Book.ReviewsCount))
 .OriginalValue;
 var previousAverageVotes = (double)_entry
 .Property(nameof(Book.ReviewsAverageVotes))
 .OriginalValue;

 if (previousCount ==
 bookThatCausedConcurrency.ReviewsCount
 && previousAverageVotes ==
 bookThatCausedConcurrency.ReviewsAverageVotes)
 return;

 var previousTotalStars = Math.Round(
 previousAverageVotes * previousCount);

 var countChange =
 bookBeingWrittenOut.ReviewsCount
 - previousCount;
 var starsChange = Math.Round(
 bookBeingWrittenOut.ReviewsAverageVotes
 * bookBeingWrittenOut.ReviewsCount)
 - previousTotalStars;

The code to fix a concurrent update of theListing 15.10 Review cached values

Fixes any
concurrency
issues with

the Reviews
cached values

Fixes any
concurrency
issues with the
AuthorsOrdered
cached value

Returns a valid status to say that
the concurrency issue was fixed

This method handles concurrency
errors in the Reviews cached values.

This parameter is the Book from the database
that caused the concurrency issue.This

rameter
he Book
ou were

trying to
update.

Holds the count and
votes in the database
before the events
changed them

If the previous count and
votes match the current
database, there is no
Review concurrency issue
so the method returns.

Works out the stars before
the new update is applied

Gets the change
that the event was
trying to make to
the cached values

485LINQ+caching approach: Precalculating costly query parts

If the
Author

m
current
Authors

th
Author

concurren
so th
 var newCount =
 bookThatCausedConcurrency.ReviewsCount
 + countChange;
 var newTotalStars = Math.Round(
 bookThatCausedConcurrency.ReviewsAverageVotes
 * bookThatCausedConcurrency.ReviewsCount)
 + starsChange;

 _entry.Property(nameof(Book.ReviewsCount))
 .CurrentValue = newCount;
 _entry.Property(nameof(Book.ReviewsAverageVotes))
 .CurrentValue = newCount == 0
 ? 0 : newTotalStars / newCount;

 _entry.Property(nameof(Book.ReviewsCount))
 .OriginalValue = bookThatCausedConcurrency
 .ReviewsCount;
 _entry.Property(nameof(Book.ReviewsAverageVotes))
 .OriginalValue =
 bookThatCausedConcurrency
 .ReviewsAverageVotes;
}

Yes, this code is quite complicated, which is why I give the variables good names. Even
I can get lost in this code if I come back to it months later.

CONCURRENCY HANDLER FOR A PROBLEM WITH THE AUTHORSSTRING CACHED VALUE

The CheckFixAuthorsOrdered concurrency handler method has the same format as
the CheckFixReviewCacheValues method, but it deals with the AuthorsOrdered
cached value. Its job is to combine the AuthorsOrdered cached value in the entity that
is being written out and the AuthorsOrdered cached value that has been added to the
database. As a result, the CheckFixAuthorsOrdered concurrency handler, shown in
the next listing, must use the recalculate update style, because you can’t use the delta
update approach.

public void CheckFixAuthorsOrdered(
 Book bookThatCausedConcurrency,
 Book bookBeingWrittenOut)
{
 var previousAuthorsOrdered = (string)_entry
 .Property(nameof(Book.AuthorsOrdered))
 .OriginalValue;

 if (previousAuthorsOrdered ==
 bookThatCausedConcurrency.AuthorsOrdered)
 return;

The code to fix a concurrent update of theListing 15.11 AuthorsOrdered cached value

Works out the
combined change
from the current
book and the other
updates done to
the database

Sets the Reviews
cached values with
the recalculated
values

Sets the
OriginalValues for
the Review cached
values to the
current database

This method handles
concurrency errors in the

AuthorsOrdered cached value.

This parameter is the Book from
the database that caused the
concurrency issue.

This parameter is the Book
you were trying to update.

Gets the previous
AuthorsOrdered string
before the event updated it

 previous
sOrdered
atch the

database
Ordered,
ere is no
sOrdered
cy issue,

e method
returns.

486 CHAPTER 15 Master class on performance-tuning database queries

Or

Auth
cac
 var allAuthorsIdsInOrder = _context.Set<Book>()
 .IgnoreQueryFilters()
 .Where(x => x.BookId ==
 bookBeingWrittenOut.BookId)
 .Select(x => x.AuthorsLink
 .OrderBy(y => y.Order)
 .Select(y => y.AuthorId)).ToList()
 .Single();

 var namesInOrder = allAuthorsIdsInOrder
 .Select(x => _context.Find<Author>(x).Name);

 var newAuthorsOrdered =
 string.Join(", ", namesInOrder);

 _entry.Property(nameof(Book.AuthorsOrdered))
 .CurrentValue = newAuthorsOrdered;

 _entry.Property(nameof(Book.AuthorsOrdered))
 .OriginalValue =
 bookThatCausedConcurrency.AuthorsOrdered;
}

The important part to point out is that you must read in the Author entity classes by
using the Find method because the Author that created the update to the Authors-
Ordered cached value hasn’t yet been written to the database. Find is the only query
method that will first inspect the current application’s DbContext for tracked entities
to find the entity you want. The Find will load the tracked entity with that AuthorId
instead of loading the version in the database that hasn’t been updated yet.

15.5.4 Adding a checking/healing system to your event system

Since the first edition, I have performance-tuned several client systems and created a
caching system that covers all eventualities I can think of. But I may have missed some-
thing, so I added a separate checking/healing system to run alongside my caching sys-
tem to tell me if there is a problem. That system lets me sleep at night, and my clients
like the fact that they can be certain their data is up to date.

 You may think this approach is overkill, but if you are adding a caching system to
an existing system, you need some way to fill in the cached values of existing data any-
way. Typically, I build some code to add the cached values to the current application’s
production database before releasing a new version of the application that uses the
cached values in a query. It takes only a bit more effort to make that update-cache
code into a useful service that can be used to check and fix cached values.

 As an example, I have built a checking/healing system into the Book App. This ser-
vice, called CheckFixCacheValuesService, is available in the ASP.NET Core app. This
service can be used in checking/healing as required. Rather than detailing the code, I
provided figure 15.8, which shows an overview of what the CheckFixCacheValues-
Service class does.

Gets the AuthorIds
for each Author
linked to this
Book in the
correct order

Gets the Name of each Author,
using the Find method

Creates a comma-
delimited list of authors

From this, you can set
the AuthorsOrdered
cached value with the
combined values.

Sets the
iginalValues

for the
orsOrdered

hed value to
the current

database

487LINQ+caching approach: Precalculating costly query parts

Author

BookAuthor

Recalculate the cached values, using the normal
SQL commands.

var RecalcReviewsCount = book.Reviews.Count();
var RecalcAuthorsOrdered = …

Compare the Recalc… variables with the cache values.
if (RecalcReviewsCount != book.ReviewsCount || ...

If different, log it and fix the cached values.
book.UpdateReviewCachedValues(Recalc…);
_logger.LogWarning($"BookId {book.BookId} was …");

Reviews

Books

Filter
LastUpdated
> timeLastRun

Get BookIds
Select(x =>
x.BookId)

Extract the BookIds from entities that affect the cached
values and have changed since the last time you looked.

Loop through each Book where something has changed.
foreach (var bookId in allBookIds)
{

Figure 15.8 The five stages of the CheckFix service in the Part3 Book
App. This code is run from a background service, which periodically checks
the database for entities that have changed and could potentially change
the cached values. Because this code uses a different way to find and
calculate the cached values, it will find any cached values that are out of
date and correct them for you.

}

NOTE The CheckFixCacheValuesService class and its related classes are in
the GitHub repo associated with this book, inside the folder called CheckFix-
Code in the project called BookApp.Infrastructure.Books.EventHandlers.
You can also find a background service in the project called BookApp.Back-
groundTasks.

The downside of the checking/healing code shown in figure 15.8 is that it adds more
database accesses, which could affect the performance of your system. In the Book
App, for example, an update to an entity class causes a LastUpdatedUtc property to be
updated (see section 11.4.3). The checking/healing code can find all the entities that
were changed in, say, the past 24 hours quite quickly (the test database has 700,000
entities and takes only about 10 ms to scan), but each check of a changed entity takes
5 ms. So if your application has lots of changes per day, the checking/healing code is
going to take some time.

For that reason, this sort of checking/healing system is run at a time when there
aren’t many users on the system—at night or on the weekend, or manually by an admin
person when they suspect a problem. The system isn’t likely to find anything, but if it
does find a bad cache value setting, you know that there is a bug in your cache code.

488 CHAPTER 15 Master class on performance-tuning database queries
 The Part3 Book App has an example of the overnight and manual triggering of its
checking/healing system. An ASP.NET Core background service runs CheckFix-
CacheValuesService at 1:00 every morning (was GMT time zone, but failed on Linux,
so now uses UTC), and you can run the checking/healing service manually by choos-
ing the Admin > Check Cached Vals menu item.

WARNING The design of the Book App’s CheckFixCacheValuesService ser-
vice assumes that no database updates are happening when it is fixing incorrect
cache values. If concurrency exceptions arise, the CheckFixCacheValues-
Service service would need its own concurrency exception handler.

Comparing the four performance approaches with15.6
development effort
At the start of this chapter, I compared the performance improvements of the four
approaches. Although the improvements in performance are undeniable, there are
other factors to consider when considering each performance-tuning approach, such
as how much development effort each approach took, whether any of them needed
specific skills, and how complex the solutions were.

 In this section, I look at these considerations and provide some extra information
to try to answer some development questions. To start, figure 15.9 provides a quick
summary of the four ways to improve your application in terms of performance, skills,
and development time.

??

Good
LINQ

LINQ+
UDFs

SQL+
Dapper

Cached
SQL

Improve your
LINQ query

Combine
LINQ and SQL

Add cached valuesUse raw SQL
using events

Performance

Skills needed

Develop time

SQLLINQ LINQ, SQL LI Q, complex C#N

Four ways to improve the performance of your application
when a query is too slow

NOTE: Depends
on how good/bad
your existing
LINQ query is

NOTE: Only if you
can find better SQL

Figure 15.9 Four approaches to improving the performance of a query. Each approach is scored
for performance improvement (more check marks mean better performance), the skills you need
to apply that approach, and the amount of development time needed to implement the code
associated with the approach.

Table 15.2 provides a textual summary of the four approaches in terms of effort and
skills required.

489Improving database scalability

15.7

The amount of effort needed to apply the four approaches to the Book AppTable 15.2

Approach Effort+skills Comments

Time: Low (built in chap-Good LINQ
ter 2)

Skills: LINQ, DDD

The Select query is the same one I used in chapter 2,
and it works well. The key part was working out how to aver-
age the Review’s NumStars properties inside the data-
base (see section 6.1.8).

Also, the change to a DDD-styled entity class meant that
the price was available as a single property that could have
an SQL index added to it.

Half a dayLINQ+UDFs

LINQ + SQL

I have found that UDFs (see section 10.1) are good ways to
keep a LINQ approach but replace part of a LINQ query that
isn’t working as well as I would like. But UDFs are useful
only if you can find some better SQL to put into a UDF.

SQL+Dapper Half-day of study,
half-day to write

SQL

This approach required studying the SQL generated by EF
Core and working out whether I could do anything to
improve it. I found only one thing to improve (sort on votes),
but that feature is a key one. Rewriting the SQL to have all
the filters, sorts, and paging was a bit tedious—much
harder than using LINQ.

LINQ+caching: about aLINQ+caching
week, but quicker next
time.

Check/heal: 1.5 days

Complex C#, concur-
rency

This approach is definitely hard work but also provides a
fantastic result. It took a lot of time to work out the best
way to handle concurrent updates and testing, but having
implemented this approach once, I’d be quicker next time.
The checking/healing code took a bit more time, but as I
said, I’d normally have to write it anyway if I was perfor-
mance-tuning an existing application that already had
user data.

Another source of time taken to implement a caching sys-
tem was work I did for a client. I took 11 hours to build a
single delta cached values system, but I didn’t need to do
the concurrency handling, as the client’s app stopped all
duplicate user updates of data.

Overall, I’m pleased with the process. EF Core produces great SQL code from the
get-go, but only because you made sure that your LINQ queries were written in a way
that is sympathetic to how EF Core works. The methods and approaches introduced
in the first six chapters are a good starting point for writing good LINQ queries.

As I said in chapter 14, make sure that your standard patterns for queries work
well; otherwise, you’ll be building inefficiencies into your application from the start.
But at some point, you’ll need to performance-tune an EF Core application; this chap-
ter provides lots of ideas and approaches that can help.

Improving database scalability
The four performance-tuning approaches are all about speed: how fast you can return
the result to the user. But the other aspect to consider is scalability: handling large
numbers of concurrent users. To end this chapter, let’s look at database scalability.

490 CHAPTER 15 Master class on performance-tuning database queries

Section 14.7 talks about database scalability in terms of the ability to buy more-
powerful hardware to run your database server on, because this book is about EF
Core. But the overall scalability of the application is what matters most. For that rea-
son, I always show the performance of the whole application, as that’s what the end
user is going to see. Focusing on overall application performance stops you from
spending a lot of time shaving a few milliseconds off database access timings when the
frontend code is taking more than 100 ms to display the data.

The first thing you should do to improve scalability is use async database accesses.
Async commands used in an ASP.NET Core application will release a thread that can
be used by another user, thus saving the ASP.NET Core thread pool from being used
up (see section 5.10.1). Async commands have a small downside—they take a bit lon-
ger to run (see section 14.7.2 for detailed timings)—but overall, async is the way to go
in any application that has lots of simultaneous users. The Part3 Book App uses async
commands throughout.

The other helpful whole-application changes you can make with applications such
as ASP.NET Core are running more-powerful instances of the application (known as
scaling up) and running more instances of the application (known as scaling out). You
might like to pay for more-powerful hardware to run your database server on, too.

NOTE All the approaches used in this chapter will work on an application
using multiple instances of ASP.NET Core, including the LINQ+caching
approach. The overnight check/heal service, however, would need to be run
on a single WebJob instead of as a ASP.NET Core background service.

One basic fact about database scalability is that the quicker you make the database
accesses, the more concurrent accesses the database can handle. Reducing the num-
ber of round trips to the database also reduces the load on the database (see section
14.5.1). Fortunately, since EF Core 3, the default query type has loaded any collections
within one database access. Also, lazy loading might feel like a great time-saver, but it
adds all those individual database accesses back in, and both scalability and perfor-
mance suffer.

But some large applications will have high concurrent database accesses, and you
need a way out of this situation. The first, and easiest, approach is to pay for a more pow-
erful database. If that solution isn’t going to cut it, here are some ideas to consider:

 Split your data over multiple databases: Sharding your data
If your data is segregated in some way (if you have a financial application that
many small businesses use, for example), you could spread each business’s data
over a different database—that is, one database for each business. This
approach is called sharding (see http://mng.bz/veN4). Section 11.7 shows a
simple way to implement sharing by using EF Core.

 Split your database reads from your writes: CQRS architecture
Command and Query Responsibility Segregation (CQRS) architecture (see
https://martinfowler.com/bliki/CQRS.html) splits the database reads from the

http://mng.bz/veN4
https://martinfowler.com/bliki/CQRS.html

491Summary
database writes. This approach allows you to optimize your reads and possibly use
a separate database, or multiple read-only databases, on the CQRS read side.

 Mix NoSQL and SQL databases: Polyglot persistence
The cached SQL approach makes the Book entity look like a complete defini-
tion of a book that a JSON structure would hold. With a CQRS architecture, you
could have used a relational database to handle any writes, but on any write, you
could build a JSON version of the book and write it to a read-side NoSQL data-
base or multiple databases. This approach, which might provide higher read
performance, is one form of polyglot persistence (see http://mng.bz/K4RX).
In section 16.3, you’ll implement a mixed SQL/NoSQL application to gain
even more performance, especially in terms of scalability.

Summary
 If you build your LINQ queries carefully and take advantage of all its features,

EF Core will reward you by producing excellent SQL code.
 You can use EF Core’s DbFunction feature to inject a piece of SQL code held in

an SQL UDF into a LINQ query. This feature allows you to tweak part of an EF
Core query that’s run on the database server.

 If a database query is slow, check the SQL code that EF Core is producing. You
can obtain the SQL code by looking at the Information logged messages that
EF Core produces.

 If you feel that you can produce better SQL for a query than EF Core is produc-
ing, you can use several methods to call SQL from EF Core, or use Dapper to
execute your SQL query directly.

 If all other performance-tuning approaches don’t provide the performance you
need, consider altering the database structure, including adding properties to
hold cached values. But be warned: you need to be careful.

 In addition to improving the time that a query takes, consider the scalability of
your application—that is, supporting lots of simultaneous users. In many applica-
tions, such as ASP.NET Core, using async EF Core commands can improve scal-
ability. Chapter 16 provides another way to improve scalability and performance
by adding a Cosmos DB database to the Book App.

For readers who are familiar with EF6:

 EF6.x doesn’t have EF Core’s DbFunction feature, which makes calling a UDF
so easy in EF Core.

http://mng.bz/K4RX

Cosmos DB, CQRS,
and other database types
The Book App has been a constant theme throughout this book, and up until now,
it has used an SQL Server database to store the books data. In this chapter, we are
going to performance-tune the Book App by combining the original SQL Server
database with another database called Cosmos DB. In chapter 14, we performance-
tuned the Book App to handle 100,000 books. In this chapter, we take the number
of books to 500,000 with the same or better performance by using Cosmos DB. Cos-
mos DB is relatively new (it came out in 2017), and some readers won’t have used it

This chapter covers
 Introducing NoSQL databases and how they differ

from relational databases

 Exploring the features that the NoSQL database
called Cosmos DB

 Performance-tuning the Book App using EF Core
Cosmos DB database provider

 Considering the differences between and
limitations of using Cosmos DB with EF Core 5

 Knowing what issues you might hit when
swapping from one database type to another
492

493The differences between relational and NoSQL databases

16.1

yet. So in addition to using this database to improve performance and scalability, I
point out the differences between Cosmos DB, which is a NoSQL database, and the
more traditional relational databases such as SQL Server.

Cosmos DB and relational databases differ a lot, but there are also some small
changes between various relational databases that EF Core supports. So at the end of
the chapter, there is a list of things to check and change if you’re swapping from one
relational database type to another.

The differences between relational
and NoSQL databases

TIME-SAVER Skip this section if you already know about NoSQL databases.

Cosmos DB isn’t like the databases described so far in the book, such as SQL Server,
PostgreSQL, and SQLite. Cosmos DB is what is referred to as a NoSQL database,
whereas SQL Server, PostgreSQL, and SQLite (along with many others) are referred
to as relational databases.

As you have already read, relational databases use primary keys and foreign keys to
form links between tables, which EF Core turns into navigational properties. Rela-
tional databases excel at relationships with lots of database rules (called constraints)
to make sure that these relationships follow the design you decided on for your data-
base, which is why they are called relational databases.

Relational databases have been around for decades, and nearly all of them use the
SQL language, which means that each implementation of a relational database is sim-
ilar to every other. So swapping from, say, SQL Server to PostgreSQL isn’t too hard,
especially if you are using EF Core, which hides some of the differences. The long life
of relational databases also means that you can find many relational implementations,
lots of tools, and expertise on relational databases.

On the other hand, NoSQL databases are designed to be high-performance in
terms of speed, scalability, and availability (the ability to swap to another database if
one fails). There is no common language, such as SQL, so each implementation goes
its own way to maximize the features it wants to focus on. To achieve these perfor-
mance goals, the NoSQL databases give up some of the rules that the relational data-
bases apply.

Many NoSQL databases allow multiple instances of the same database to provide
scalability and availability, for example. To do so, NoSQL databases drop the rela-
tional rule that the data is always consistent—that is, you will always get the latest data.
NoSQL databases are eventually consistent, which means that an update to one database
instance may take some time (ideally, seconds or less) to be applied to another data-
base instance.

MORE INFORMATION If you want to look into the types of and differences
between relational and NoSQL databases, I recommend the Microsoft article
“Relational vs. NoSQL data” at http://mng.bz/9Nzj.

http://mng.bz/9Nzj

494 CHAPTER 16 Cosmos DB, CQRS, and other database types
16.2 Introduction to Cosmos DB and its EF Core provider
As I’ve already said, Cosmos DB doesn’t follow the way that relational databases work.
Sure, it has a database, and it even has some pseudo-SQL commands, but otherwise,
it’s quite different from relational databases. EF Core’s support of Cosmos DB, how-
ever, provides a common frontend that makes it easier for someone who already
knows EF Core to use Cosmos DB.

 In this chapter, you are going to look at features of both Cosmos DB itself and EF
Core’s current Cosmos DB database provider. You should note that I say current Cos-
mos DB database provider because the EF Core 5 Cosmos DB database provider is far
from finished, as I cover in detail in this chapter.

 To understand why EF Core’s Cosmos DB database provider hasn’t been improved,
you need only look at this statistic: the number of Cosmos DB downloads is only 1% of
all SQL Server downloads. The EF Core team is driven by what the developers need,
and being a small team, it can’t do everything. Therefore, the Cosmos DB database
provider hasn’t been improved in EF Core 5. But as you will see, I successfully used the
EF Core 5 Cosmos DB database provider to improve the Book App’s performance.

 So why am I dedicating this chapter to Cosmos DB if EF Core’s database provider
has limitations, and why should you read it? Fundamentally, for some applications,
using a NoSQL database is going to provide better performance and scalability than a
similarly priced relational database. Also, the plan for EF Core 6 (see http://mng.bz/
Wreg) has a section on improving EF Core’s support of Cosmos DB, so I am hopeful
that some (if not many) of the limitations in this chapter will be removed.

 Because EF Core’s current Cosmos DB database provider is likely to improve, I am
careful to separate the differences between the Cosmos DB and a relational database
and the limitations of the EF Core Cosmos DB database provider. This convention
ensures that this chapter will still be useful when improved versions of the Cosmos DB
database provider are released.

NOTE This SQL/NoSQL comparison doesn’t say that one is better than the
other; each has its own strengths and weaknesses. Also, Cosmos DB is one
implementation of a NoSQL database, so its limitations are going to be differ-
ent from other NoSQL implementations. The comparison is here to point
out the parts of the Cosmos DB that work differently from the relational data-
bases that have been around for years.

The other reason for looking at the differences between a Cosmos DB database and
relational databases is to give you some pointers about when you could use Cosmos
DB instead of an SQL database. Section 16.6.1 covers many of the differences between
Cosmos DB and relational databases, with a few other differences identified by notes
starting with COSMOS DB DIFFERENCE; see the following example.

COSMOS DB DIFFERENCE This feature of the Cosmos DB database doesn’t
work the same way as relational databases.

http://mng.bz/Wreg
http://mng.bz/Wreg
http://mng.bz/Wreg

495Building a Command and Query Responsibility Segregation (CQRS) system using Cosmos DB
The other area I want to highlight is the limitations of the EF Core 5 Cosmos DB data-
base provider. These are areas where EF Core 5 doesn’t implement code to take
advantage of all the features of Cosmos DB (but be aware that future releases of EF
Core may well remove some of these limitations). Section 16.6.3 covers many of the
limitations of the EF Core 5 Cosmos DB database provider, with a few other limitations
identified by notes starting with EF CORE 5 LIMITATION; see the following example.

EF CORE 5 LIMITATION This limitation applies to the current EF Core 5 Cos-
mos DB database provider.

16.3 Building a Command and Query Responsibility
Segregation (CQRS) system using Cosmos DB
To get a good feel for Cosmos DB, we need to build something real; that’s the way I
learn. I suggested in section 15.7 that a CQRS architecture could provide better scal-
ability performance. Adding a CQRS system that uses Cosmos DB isn’t trivial, so this
example will reveal many differences between the NoSQL Cosmos DB and relational
databases. I hope that it will also provide another technique you can use to performance-
tune your own applications.

 In this section, you are going to build a CQRS architecture by using a polyglot
database structure that will provide better performance and scalability.

DEFINITION A CQRS architecture segregates query operations from opera-
tions that update data by using separate interfaces. This architecture can max-
imize performance, scalability, and security, and supports the evolution of the
system over time through higher flexibility. See http://mng.bz/Ix8D.

DEFINITION A polyglot database structure uses a combination of storage
types: relational databases, NoSQL databases, flat files, and so on. The idea is
that each database type has strengths and weaknesses, and by using two or
more, you can obtain a better overall system. See http://mng.bz/6r1W.

The CQRS architecture acknowledges that the read side of an application is different
from the write side. Reads are often complicated, drawing in data from multiple places,
whereas in many applications (but not all), the write side can be simpler and less oner-
ous. You can see in the current Book App that listing the books is complex but adding a
review is fairly trivial. Separating the code for each part can help you focus on the spe-
cific features of each part—another application of the SoC software principle.

 In chapter 15, you produced the performance version, in which you cached values
(see section 15.5). It struck me then that the final query didn’t access any relation-
ships and could be stored in a simpler database, such as a NoSQL database. In this
example, you’ll use a polyglot database structure, with a mixture of SQL and NoSQL
databases, for the following reasons:

 Using an SQL write-side database makes sense because business applications
often use relational data. Think about a real book-selling site, which would have

http://mng.bz/Ix8D
http://mng.bz/6r1W

496 CHAPTER 16 Cosmos DB, CQRS, and other database types

a lot of complex, linked data to handle business aspects such as suppliers, inven-
tory, pricing, orders, payment, delivery, tracking, and audits. I think that a well-
known relational/SQL database, with its superior level of data integrity, would
be a good choice for many business problems.

 But those relationships and some aspects of an SQL database, such as the need
to dynamically calculate some values, can make it slow in retrieving data. So a
NoSQL database with precalculated values such as average review votes can
improve performance considerably over an SQL database. The CQRS read-side
projection is what Mateusz Stasch calls “a legitimate cache” in his article at
http://mng.bz/A7eC.

As a result of these design inputs, you’ll develop what I refer to as a two-database
CQRS architecture, as shown in figure 16.1.

SQL

{ }

Projection

Cosmos DB

DTOs

DTOsCommands

User

interface

Write domain

model

Read side

Write side

Queries

The conceptual CQRS architecture, which separates reads from writes. You
use two databases: SQL for the write side and NoSQL for the read side.

The write side writes a projection to the read-side database;
the data is in a form that’s ready to display to the user.

User

Figure 16.1 A conceptual view of a CQRS architecture: an SQL database for the write side and a
NoSQL database for the read side. A write takes a bit more work because it writes to two databases:
the normal SQL database and the new NoSQL read-side database. In this arrangement, the read-side
database is writing in the exact format needed by the user, so reads are fast.

Because the CQRS architecture separates read and write operations, using one data-
base for read operations and another for write operations is a logical step. The write
side holds the data in a relational form, with no duplication of data—a process known
as normalization—and the read side holds the data in a form that is appropriate for the
user interface.

In the Book App, the read side would contain the data already converted to match
what the book display needs; these prebuild entities are known as projections. These
projections are built with the same code as the MapBookToDto method in section 2.6.
What you are doing is prebuilding the views you need and writing them to the read-
side database.

This design creates good performance gains for reads but a performance cost on
writes, making the two-database CQRS architecture appropriate when your business
application has more reads of the data than writes. Many business applications have

http://mng.bz/A7eC

497The design of a two-database CQRS architecture application

16.4

more reads than writes (e-commerce applications are good examples), so this archi-
tecture fits our Book App well.

The design of a two-database CQRS architecture
application
The fundamental issue in building any CQRS system is making sure that any changes to
the data change the associated projection in the read-side CQRS database. If you get
that part wrong, you will show the wrong data to the user. This issue is the same cache
invalidation issue I worked so hard to get right in the cached SQL approach described
in section 15.5. The trick is to capture every change to the SQL Book entity and its asso-
ciated entities and to make sure that the read-side CQRS database is updated.

In the first edition of this book, I detected changes to Book and associated entities
by looking at the State of tracked entities within the call to the SaveChanges/
SaveChangesAsync methods. These States and entities were decoded to define
whether a projection to the NoSQL database should be added, updated, or deleted.
That approach is valid (I show an example in section 12.5), but using the State of
multiple entities can be quite complex.

Another approach is using integration events (section 12.1.2) triggered by the
DDD access methods (see section 13.4.2). Here are some benefits of this approach:

 More robust—Using integration events ensures that the SQL database is
updated only when the Cosmos DB database has successfully updated its data-
base. Applying both database updates within a transaction reduces the possi-
bility that the Cosmos DB database will get out of step with the SQL write side.
(The design in the first edition of this book could get out of step if a RavenDb
update failed.)

 More obvious—You trigger integration events inside the DDD methods that
change the data. Each event tells the event handler whether it’s an Add, Update,
or Delete (soft delete, in this case) of a Book. Then it’s easy to write the event
handler to Add, Update, or Delete a Book projection in the Cosmos DB.

 Simpler—As already stated, sending integration events is much simpler than
making detected changes via the State of the tracked entities. (See section 12.5
for a description of that approach.)

Figure 16.2 shows what happens when an admin person adds a new Book and how that
new Book gets added to the Cosmos DB database so that the user can see it.

To implement the CQRS system shown in figure 16.2, you must take the follow-
ing steps:

1 Create an event to trigger when the SQL Book entity changes.
2 Add events to the Book entity to send Add, Update, or Delete integration events.
3 Use the EfCore.GenericEventRunner to override your BookDbContext.
4 Create the Cosmos entity classes and DbContext.
5 Create the Cosmos Add, Update, and Delete event handlers.

498 CHAPTER 16 Cosmos DB, CQRS, and other database types
16.4.1 Creating an event to trigger when the SQL Book entity changes

In this design, you want to update the Cosmos DB database when an Add, Update, or
Delete integration event is found. But it’s possible that when you add a Book, which
creates an Add event, you may trigger an Update event too (that happens when seed-
ing the database). Also, some complex updates, such as changing multiple parts of the
entity, might trigger multiple Update events. At minimum, multiple events are ineffi-
cient, as you would update the Cosmos DB database multiple times, and, in certain
cases, make your code more complex. The problem is that the event handler has no
knowledge of other events, so you can’t detect that the update is not needed. How do
you reduce multiple events to one?

 For this type of problem, the GenericEventRunner provides the RemoveDuplicate-
Events attribute to remove duplicate events that are the same event type, and linked
to the same class instance (as determined by the ReferenceEquals method). The fol-
lowing listing shows the BookChangedEvent with the RemoveDuplicateEvents attri-
bute added.

BookDbContext’s SaveChangesAsync

CosmosDbContext

BookChangeHandlerAsync

Write

Admin

4. AddBookEvent triggers the
BookAddHandler, which adds
a projection of the new Book
to the Cosmos datatbase.

new Book class

...AddEvent(
AddBook event

Read side

Write side

User

1. Creating a new Book
triggers an AddBook event.

2. A transaction is started
on the write-side database.

3. The new Book is written
to the database and
gets primary key.

5. If the Cosmos update is
successful, the SQL’s
transaction is committed.

SQL

{ }

Cosmos DB

Book display comes from Cosmos DB.

Write

var trans = ...BeginTransaction()
{
context.SaveChangesAsync();
Call transaction event handler
trans.Commit();

}

await _service.
AddCosmosBook(bookId);

Figure 16.2 Adding a new Book entity. The Book’s static factory adds an Add Book integration
event; this event is picked up by the BookDbContext, which handles access to the SQL database.
SaveChanges/SaveChangesAsync has been overridden by the EfCore.GenericEvent-
Runner. Because the event is an integration event, the library starts a transaction and writes out
the new Book, which obtains the SQL primary key. Then the Add Book integration event calls the
BookChange event handler, which creates a projection of the new Book and adds it to the Cosmos
DB database. If the write to the Cosmos DB database is successful, the transaction is committed,
and both databases are in step. If the Cosmos DB fails, the SQL transaction is rolled back, and the
admin person is alerted that the add of the new Book failed.

499The design of a two-database CQRS architecture application

er
public enum BookChangeTypes { Added, Updated, Deleted }

[RemoveDuplicateEvents]
public class BookChangedEvent : IEntityEvent
{
 public BookChangedEvent(BookChangeTypes bookChangeType)
 {
 BookChangeType = bookChangeType;
 }

 public BookChangeTypes BookChangeType { get; }
}

As well as being more efficient, this listing makes the code that updates the Cosmos
DB simpler, because an Add followed by an Update would cause problems with updat-
ing an entity with the same key that is already being tracked. This problem could be
solved in the Add/Update Cosmos code, but removing duplicate events is easier, espe-
cially as that feature is built into the GenericEventRunner library.

16.4.2 Adding events to the Book entity send integration events

Because you are using DDD-styled entity classes, it is reasonably easy to spot all the
places where a Book entity is created or updated. You simply add an Added event in
the Book’s static factory and lots of Update events in any DDD access methods. The
following listing shows an Update event being added via the AddEvent method (see
section 12.4.2) if the update isn’t rejected because of a user input error.

public IStatusGeneric AddPromotion(
 decimal actualPrice, string promotionalText)
{
 var status = new StatusGenericHandler();
 if (string.IsNullOrWhiteSpace(promotionalText))
 {
 return status.AddError(
 "You must provide text to go with the promotion.",
 nameof(PromotionalText));
 }

 ActualPrice = actualPrice;
 PromotionalText = promotionalText;

 if (status.IsValid)
 AddEvent(new BookChangedEvent(
 BookChangeTypes.Updated),
 EventToSend.DuringSave);

TheListing 16.1 BookChangedEvent sending Add, Update, and Delete changes

Adding aListing 16.2 BookUpdate to a Book’s AddPromotion method

The three types of changes
that need mapping to the

Cosmos DB database

This attribute causes the GenericEventRunner
to remove duplicate events from the same
Book instance. When an event is

created, you must
say what type of
change the Book has
gone through.

Used by the event handl
to work out whether to
add, update, or delete
the CosmosBook

Holds the type of change for
the event handler to use

You don’t want to trigger unnecessary
updates, so you trigger only if the
change was valid.

Adds a BookChangedEvent event
with the Update setting as a
During (integration) event

500 CHAPTER 16 Cosmos DB, CQRS, and other database types
 return status;
}

For the delete event, you are using a soft delete, so you capture a change to the Soft-
Deleted property via its access method. The options are

 If the SoftDeleted value isn’t changed, no event is sent.
 If the SoftDeleted value is changed to true, a Deleted event is sent.
 If the SoftDeleted value is changed to false, an Added event is sent.

The following listing shows this example.

public void AlterSoftDelete(bool softDeleted)
{
 if (SoftDeleted != softDeleted)
 {
 var eventType = softDeleted
 ? BookChangeTypes.Deleted
 : BookChangeTypes.Added;

 AddEvent(new BookChangedEvent(eventType)
 , EventToSend.DuringSave);
 }
 SoftDeleted = softDeleted;
}

16.4.3 Using the EfCore.GenericEventRunner to override your
BookDbContext

In section 15.5.1, you used the Cached SQL performance-tuning approach. The
SQL (+cache) approach uses domain events, but this CQRS approach uses integra-
tion events. The Cached SQL approach and this CQRS approach can coexist, with
each part having no knowledge of the other—another example of applying the SoC
principle.

16.4.4 Creating the Cosmos entity classes and DbContext

The projection of the SQL Book needs to contain the normal properties, such as
Title and AcualPrice, plus the values that take a lot of time to calculate, such as the
count of the Reviews linked to the Book. The idea of the CQRS read side is to build a
ready-to-display version, known as a projection, of the SQL Book so that it’s quick to dis-
play. The following two listings show the CosmosBook class and the CosmosTag class
that are used to hold the projection of the SQL Book.

public class CosmosBook
{
 public int BookId { get; set; }

A change ofListing 16.3 SoftDeleted that triggers an AddBook or DeleteBook event

TheListing 16.4 CosmosBook that holds the projection of the SQL Book

You don’t trigger unnecessary updates,
so you trigger only if there was a
change to the SoftDeleted property.

The type of event to
send depends on the
new SoftDelete setting.

Adds the BookChangedEvent
event as a During
(integration) event

We use the BookId used in the
SQL database to link this entity
to the SQL entity.

501The design of a two-database CQRS architecture application
 public string Title { get; set; }
 public DateTime PublishedOn { get; set; }
 public bool EstimatedDate { get; set; }
 public int YearPublished { get; set; }
 public decimal OrgPrice { get; set; }
 public decimal ActualPrice { get; set; }
 public string PromotionalText { get; set; }
 public string ManningBookUrl { get; set; }

 public string AuthorsOrdered { get; set; }
 public int ReviewsCount { get; set; }
 public double? ReviewsAverageVotes { get; set; }

 public List<CosmosTag> Tags { get; set; }
 public string TagsString { get; set; }
}

public class CosmosTag
{
 public string TagId { get; set; }
}

As you can see in listing 16.5, the CosmosTag class contains one property: TagId. This
class mimics the Tag class used in the SQL database, but it will be added as an owned
type (see section 8.9.1). Then the CosmosBook’s Tags collection holds each Tag string
for the Book, allowing you to filter Books by a Tag, such as Books about "Databases".
The CosmosTag class is registered as an owned type (see section 8.9.1), so it is embed-
ded in the data sent to Cosmos DB (see listing 16.10).

 In fact, a common way to save data to Cosmos DB is to contain collections of other
classes within the main class (Cosmos DB calls this approach nesting), which is what EF
Core’s owned types do. Consider using nested owned type classes when building data
to be stored in a Cosmos DB.

 The EF Core Cosmos DbContext is small and simple, as shown in listing 16.6,
because many of the EF Core configuration commands don’t work with a Cosmos DB
database. You can’t set the type of the data stored, as each property is converted to a
JSON key/value, and other settings, such as indexing, are handled by Cosmos itself.

public class CosmosDbContext : DbContext
{
 public CosmosDbContext(
 DbContextOptions<CosmosDbContext> options)
 : base(options)
 { }

 public DbSet<CosmosBook> Books { get; set; }

TheListing 16.5 CosmosTag class that holds the TagId from the SQL Book

TheListing 16.6 DbContext class needed to access the Cosmos DB database

Normal
properties that
are needed to
display the Book

Precalculated
values used for
display and filtering

To allow filtering on
TagIds we provide a list
of CosmosTags, which are
configured as Owned Types.

This string is used later to overcome a limitation
of EF Core’s current Cosmos DB provider.

The Cosmos DB DbContext
has the same structure as
any other DbContext.

For this use, you need
to read/write only the
CosmosBooks.

502 CHAPTER 16 Cosmos DB, CQRS, and other database types

Bo

e
ice

d of
 protected override void OnModelCreating(
 ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<CosmosBook>()
 .HasKey(x => x.BookId);

 modelBuilder.Entity<CosmosBook>()
 .OwnsMany(p => p.Tags);
 }
}

NOTE For a full list of Cosmos DB-specific Fluent API commands, please see
the EF Core documentation on the Cosmos database provider at http://mng
.bz/8WyK.

16.4.5 Creating the Cosmos event handlers

The BookChangedEvent integration event comes into the BookDbContext, and you need
a matching event handler. A BookChangeType property says whether the event is an Add,
Update, or Delete, so it uses a C# switch to call the correct code. Because adding,
updating, and deleting entries in the Cosmos database use similar code, you build a ser-
vice that contains three methods, one for each type of update. Putting all the update
code in a service makes the event handler simple, as the following listing shows.

public class BookChangeHandlerAsync
 : IDuringSaveEventHandlerAsync<BookChangedEvent>
{
 private readonly IBookToCosmosBookService _service;

 public BookChangeHandlerAsync(
 IBookToCosmosBookService service)
 {
 _service = service;
 }

 public async Task<IStatusGeneric> HandleAsync(
 object callingEntity, BookChangedEvent domainEvent,
 Guid uniqueKey)
 {
 var bookId = ((Book)callingEntity).BookId;
 switch (domainEvent.BookChangeType)
 {
 case BookChangeTypes.Added:
 await _service.AddCosmosBookAsync(bookId);
 break;
 case BookChangeTypes.Updated:
 await _service.UpdateCosmosBookAsync(bookId);
 break;
 case BookChangeTypes.Deleted:
 await _service.DeleteCosmosBookAsync(bookId);
 break;

An example Cosmos event handler that handles anListing 16.7 Add event

BookId doesn’t match the By
Convention rules, so you need
to configure it manually.

The collection of CosmosTags is
owned by the CosmosBook.

Defines the class as a
During (integration)
event for the
BookChanged event

This service provides the
code to Add, Update, and
Delete a CosmosBook.

The event handler uses
async, as Cosmos DB
uses async.

Extracts the BookId
from the calling entity,
which is a Book

The
okChangeType
can be added,

updated, or
deleted.

Calls the Add part
of the service
with the BookId
of the SQL Book

Calls the Update
part of the service
with the BookId of

the SQL Book

Calls the Delet
part of the serv
with the BookI
the SQL Book

http://mng.bz/8WyK
http://mng.bz/8WyK
http://mng.bz/8WyK

503The design of a two-database CQRS architecture application
 default:
 throw new ArgumentOutOfRangeException();
 }

 return null;
 }
}

Remember that if the update to the Cosmos database fails, the SQL update, which was
executed in a transaction, is rolled back so the databases are kept in step. But you
want to minimize throwing an exception if the service can fix the problem itself, mak-
ing some extra checks to catch states that it can fix.

 The following listing shows the MapBookToCosmosBookAsync method that handles
updating a Book. It’s unlikely to happen, but in the time it took the Update event han-
dler to trigger that SQL, Book might have been (soft-) deleted. Therefore, if the Map-
BookToCosmosBookAsync method returns null, it assumes that the Book has been
deleted and will delete any existing CosmosBook with that BookId. Note the use of EF
Core’s Update in the code.

public async Task UpdateCosmosBookAsync(int bookId)
{
 if (CosmosNotConfigured)
 return;

 var cosmosBook = await MapBookToCosmosBookAsync(bookId);

 if (cosmosBook != null)
 {
 _cosmosContext.Update(cosmosBook);
 await CosmosSaveChangesWithChecksAsync(
 WhatDoing.Updating, bookId);
 }
 else
 {
 await DeleteCosmosBookAsync(bookId);
 }
}

COSMOS DB DIFFERENCE The Cosmos DB database always updates the whole
of the entry for the given key in one go, unlike a relational database, which
can change individual columns in a row. The EF Core Update method is more
efficient because it saves a read of the Cosmos database.

The CosmosSaveChangesWithChecksAsync method is also designed to capture and fix
any states that it might find. An update that doesn’t find a CosmosBook to update, for

Creating a projection of the SQLListing 16.8 Book and adding it to the Cosmos database

Retuning null tells the
GenericEventRunner
that this method is
always successful.

This method is called by the BookUpdated event
handler with the BookId of the SQL book.

The Book App can be run without
access to Cosmos DB, in which
case it exits immediately.

This method uses
a Select method
similar to the one
in chapter 2 on a
CosmosBook
entity class.

If the CosmosBook is successfully filled,
the Cosmos update code is executed.

Updates the CosmosBook to the
cosmosContext and then calls a
method to save it to the database

If the SQL book wasn’t found,
we ensure that the Cosmos
database version was removed.

504 CHAPTER 16 Cosmos DB, CQRS, and other database types
example, will be turned into a new CosmosBook instead. These situations are rare but
could happen due to concurrent updates to the same CosmosBook entity.

 Listing 16.9 shows part of the CosmosSaveChangesWithChecksAsync method that
detects errors, possibly caused by concurrency issues, making sure that the Cosmos
database is up to date. The catch part of the code in the listing covers the following
situations:

 CosmosException:
– An Update in which the corresponding entity has been Deleted, turning the

Update into an Add.
– A Delete in which the corresponding entity was already Deleted (job done).
– If not fixed, rethrow the exception.

 DbUpdateException:
– An Add of a new entity when a corresponding entity already exists there, turn-

ing the Add into an Update.

This code shows another useful difference when using the Cosmos DB provider.

private async Task CosmosSaveChangesWithChecksAsync
 (WhatDoing whatDoing, int bookId)
{
 try
 {
 await _cosmosContext.SaveChangesAsync();
 }
 catch (CosmosException e)
 {
 if (e.StatusCode == HttpStatusCode.NotFound
 && whatDoing == WhatDoing.Updating)
 {
 var updateVersion = _cosmosContext
 .Find<CosmosBook>(bookId);
 _cosmosContext.Entry(updateVersion)
 .State = EntityState.Detached;

 await AddCosmosBookAsync(bookId);
 }
 else if (e.StatusCode == HttpStatusCode.NotFound
 && whatDoing == WhatDoing.Deleting)
 {
 //Do nothing as already deleted
 }
 else
 {
 throw;
 }
 }
 catch (DbUpdateException e)

Part of the handling ofListing 16.9 SaveChanges exceptions with Cosmos DB

Calls SaveChanges and
handles certain states

The whatDoing parameter tells
the code whether this is an Add,
Update, or Delete.

Catches any
CosmosExceptions Catches an attempt to

update a CosmosBook
that wasn’t there

You need to remove
the attempted update;
otherwise, EF Core will
throw an exception.Turns the

Update
into an Add

Catches the
state where the
CosmosBook was
already deleted...

...otherwise, not an
exception state you can
handle, so rethrow the
exception If you try to add a new CosmosBook

that’s already there, you get a
DbUpdateException.

505Understanding the structure and data of a Cosmos DB account

exc
the Co

 {
 var cosmosException = e.InnerException as CosmosException;
 if (cosmosException?.StatusCode == HttpStatusCode.Conflict
 && whatDoing == WhatDoing.Adding)
 //… rest of code left out as nothing new there
 }
}

The inner
eption contains
smosException.

Catches an Add where there is already a
CosmosBook with the same key

COSMOS DB DIFFERENCE I found the CosmosException to be helpful for diag-
nosing Cosmos database issues. The CosmosException contains a StatusCode
property that uses HTTTP status codes, such as NotFound and Conflict, to
describe what went wrong.

16.5 Understanding the structure and data of a Cosmos DB
account
Before moving on to the query of the CosmosBook class, it is worth looking at how Cos-
mos DB is organized and what the data looks like when EF Core writes to a database.
These sections explain how to use a Cosmos DB database account to access a Cosmos
database in your application and look at the JSON data stored in the Cosmos database.

NOTE The EF Core Cosmos DB provider uses the Cosmos SQL API. which
presents a traditional NoSQL document store using JSON. But Cosmos DB
has multiple ways to handle data, such as column store; key-value and graph;
and multiple APIs, such as MongoDB, Cassandra, Azure Table, and Gremlin
(graph).

16.5.1 The Cosmos DB structure as seen from EF Core

This section provides a quick summary of the various parts of the Cosmos DB struc-
ture. It isn’t a detailed explanation (the Azure documentation offers one), but it pro-
vides the terms you need to use Cosmos DB with EF Core.

Azure provides an Azure Cosmos DB account, which is like a database server, as
you can have multiple databases in one Azure Cosmos DB account. This account can
be accessed via a connection string, made up of two parts: the URI to access the Cos-
mos DB account and an account key. This combination allows you to access your
Azure Cosmos DB account.

NOTE An Azure Cosmos DB Emulator provides a local (and free) version of
the Cosmos DB account. It also contains a feature that allows you to read and
manage databases that it has stored locally. I cover Azure Cosmos DB Emula-
tor in section 17.8.

A Cosmos DB account can have many Cosmos DB databases; each database can have
many Cosmos DB containers; and containers are where the data is held. Figure 16.3
shows how the EF Core code maps onto the Cosmos DB structure.

Having configured the DbContextOptionsBuilder<T> class (or registered the Cos-
mos DbContext via the AddDbContext method), you can obtain an instance of the
application’s DbContext and are ready to access the Cosmos DB database.

506 CHAPTER 16 Cosmos DB, CQRS, and other database types
16.5.2 How the CosmosClass is stored in Cosmos DB

When you have a correctly configured application DbContext for a Cosmos DB data-
base, you can read and write to its database—strictly, the Cosmos DB’s container, but
to keep the discussion EF Core-centric I’m going to use the word database. For normal
read/writes, you don’t need to know how the data is stored in the Cosmos database,
but sometimes that information is useful, as it gives you an idea of what is being
stored.

 The next listing shows the data stored when you write a CosmosBook to the data-
base. As you will see, extra properties at the end aren’t in the CosmosBook class but are
critical for making Cosmos DB work.

{
 "BookId": 214,
 "ActualPrice": 59.99,
 "AuthorsOrdered": "Jon P Smith",
 "EstimatedDate": true,

"ManningBookUrl": "
 "OrgPrice": 59.99,
 "PromotionalText": null,
 "PublishedOn": "2021-05-15T05:00:00+01:00",
 "ReviewsAverageVotes": 5,
 "ReviewsCount": 1,
 "Title": "Entity Framework Core in Action, Second Edition",

 "Tags": [
 {
 "TagId": "Databases"
 },
 {
 "TagId": "Microsoft & .NET"
 }
],

TheListing 16.10 CosmosBook data stored as JSON in Cosmos DB

MyTestAccount

MyDatabase

MyDbContext

var builder = new

DbContextOptionsBuilder

<MyDbContext>()

.UseCosmos(

"connection string...",

"MyDatabase");

Azure Cosmos DB account

Cosmos DB database

Cosmos DB container

Figure 16.3 Mapping the EF Core setup of a Cosmos DB database provider to the
three levels in the Cosmos DB system. The Azure Cosmos DB account can have many
Cosmos databases, but this figure shows only one. The database’s name is defined in
the UseCosmos method. A Cosmos DB database can have many containers, but
when used by EF Core, it allows only one container per EF Core application DbContext.
By default, the container is given the name of the application DbContext’s class.

The standard
properties from
the CosmosBook
class

Holds the
collection of
Tags, which are
configured as an
owned type

507Displaying books via Cosmos DB
 "YearPublished": 2021,
 "TagsString": "| Databases | Microsoft & .NET |",

 "Discriminator": "CosmosBook",

 "id": "CosmosBook|214",

 "_rid": "QmRlAMizcQmwAg…",
 "_self": "dbs/QmRlAA==/colls/QmRlAMizcQk=…",
 "_etag": "\"1e01b788-0000-1100-0000-5facfa2f0000\"",
 "_ts": 1605171759,
 "_attachments": "attachments/"
}

The first set of JSON key/values comes from the properties and relationships in the
CosmosBook class, including the Tags collection:

 The id key/value is the unique key used to define this data. EF Core fills the
unique key with a value—by default, a combination of the Discriminator value
and the value from the property(s) that you told EF Core is the primary key of
this entity class.

 The _etag key/value can be used with the UseETagConcurrency Fluent API
method to provide a concurrency token covering any change in the data.

 The _ts key/value contains the time of the last Add/Update in Unix format and
is useful for finding when an entry last changed. The _ts value can be con-
verted to C# DateTime format by using the UnixDateTimeConverter class.

 The _rid and _self key/value are unique identifiers used internally for naviga-
tion and resources.

 The _attachments key/value is depreciated and is there only for old systems.

16.6 Displaying books via Cosmos DB
Having built a system that copies changes in the SQL Book entity class to a Cosmos
database, we are ready to implement the book-display features of the original Book
App by getting data from the Cosmos DB database. Implementing all the book-display
features exposes several interesting Cosmos DB differences from the way a relational
database works.

 In the end, I could match the original book display, but it is interesting to under-
stand the differences, which tell me what I can achieve by using a Cosmos DB data-
base. I also built the display with direct Cosmos DB commands by using its .NET SDK
(software development kit), which I refer to as Cosmos (Direct). The Cosmos (Direct)

These two properties are
added to overcome some
limitations in the EF Core 5
Cosmos provider.

EF Core adds the discriminator to differentiate this class
from other classes saved In the same Cosmos container.

The id is the database’s primary key and must be
unique. This id is set by EF Core, using the EF Core
designated primary key and the discriminator.

Cosmos-specific
properties; see
the following
notes

508 CHAPTER 16 Cosmos DB, CQRS, and other database types

code allowed me to differentiate between EF Core 5 Cosmos database provider limita-
tions and differences in the way that Cosmos DB natively queries a database.

EF CORE 5 LIMITATION EF Core’s raw SQL commands, such as FromSqlRaw
and FromSqlInterpolated, don’t work. But you can get a CosmosClient
instance via var cosmosClient = context.Database.GetCosmosClient().
This technique allows you to use the Cosmos DB .NET SDK commands.

Here are the variations from relational databases and the EF Core 5 limitations that I
found while implementing the two-database CQRS architecture:

 Cosmos DB differences from relational databases
 Cosmos DB/EF Core difference: Migrating a Cosmos database
 EF Core 5 Cosmos DB database provider limitations

NOTE If you want to try running the Book App with Cosmos DB, download
the associated GitHub repo (http://mng.bz/XdlG), run the BookApp.UI proj-
ect, and look for the Chapter 16 Setup link on the home page for more info.

16.6.1 Cosmos DB differences from relational databases

This section covers the differences between a Cosmos DB (NoSQL) database and a rela-
tional (SQL Server) database. This information is useful for developers who haven’t
worked with NoSQL and, more specifically, a Cosmos DB database before. Here is a
summary of the various differences:

 The Cosmos DB provides only async methods.
 There are no database-created primary keys.
 Complex queries may need breaking up.
 Skip is slow and expensive.
 By default, all properties are indexed.

THE COSMOS DB PROVIDES ONLY ASYNC METHODS

Because Cosmos DB uses HTTP to access databases, all the methods in the Cosmos DB
.NET SDK use async/await, and there are no sync versions. EF Core does provide access
to Cosmos DB via EF Core’s sync methods, such as ToList and SaveChanges, but these
methods currently use the Task’s Wait method, which can have deadlock problems.

I strongly suggest that you use only async EF Core methods when working with the
Cosmos database provider. In addition to getting a more robust application, you will
get better scalability in multiuser situations, such as ASP.NET Core.

COSMOS DIFFERENCE: THERE ARE NO DATABASE-CREATED PRIMARY KEYS

With a relational database, you are used to having the database provide a unique value
for its primary key when a new row is added to a table. But in Cosmos and many other
NoSQL databases, by default, the key for an item (item is Cosmos’s name for each
JSON entry) must be generated by the software before you add an item.

NOTE The Cosmos DB has a way to create a unique key for you, but this key
will be stored in the id key/value.

http://mng.bz/XdlG

509Displaying books via Cosmos DB

The key for an item must be unique, and Cosmos will reject (with the HTTP code
Conflict) a new item if its key was already used. Also, after you have added an item
with a key, you can’t change the key.

 One easy choice for a Cosmos DB key is a C# Guid type, which is designed to be
unique. EF Core also makes using a Guid type as a key simple, as it has a built-in value
generator (see section 10.3.2) that will provide a new Guid value if the designated pri-
mary key is a Guid and its value is default. You can configure composite keys with EF
Core, which will combine their values into a string that Cosmos DB needs for its id
key/value. When using Cosmos in the Book App, I used an int as the key for the
CosmosBook entity, but the int’s value came from the primary key that the SQL write-
side database created.

NOTE Cosmos DB talks about a partition key and logical and physical parti-
tions. I’m not covering these topics here, as they’re big topics, and I’m not
sure I understand them well enough. EF Core 5 defaults to not having a parti-
tion key, but you can change that setting.

COMPLEX QUERIES MAY NEED BREAKING UP

In the filter-by-year option in the book display, the FilterDropdownService finds all
the years when books were published. This task requires a series of steps:

1 Filter out any books that haven’t yet been published.
2 Extract the Year part of the Book’s PublishedOn DateTime property.
3 Apply the LINQ Distinct command to obtain the years for all the published books.
4 Order the years.

This complex query works in SQL, but Cosmos DB can’t handle it. Figure 16.4 shows a
side-by-side view of the two queries.

var n xtYeare
var al await_db

.Se

.Di

var re
.W ere(x > xh
.O derByDescending(xr
.Se new Dr pdownTupleo
{

Va uel
Te tx

}) ToList();.

var n xtYeare
var re

.W ere(xh

.Se

.Di

.W ere(x > xh

.O derByDescending(xr

.Se new Dr pdownTupleo
{

Va uel
Te tx

}) ToList();.

Cosmos DB example SQL Server example

This shows the two versions of the FilterDropdownService
that finds all the years when books were published.

Figure 16.4 Two versions of the FilterDropdownService that finds all the years when books were
published. The Cosmos DB example simplifies the query that is run in the Cosmos DB, with the second part
done in the software. This example shows that Cosmos DB doesn’t have the wide range of query features that
relational databases have.

510 CHAPTER 16 Cosmos DB, CQRS, and other database types
When I ran the code I was using in SQL Server (see the right side of figure 16.4), I got
an exception in Cosmos DB, with a link to EF Core issue #16156, which says that Cos-
mos DB has some limitations on queries. Cosmos doesn’t have the massive depth of
query features that relational databases have gained over decades of improvement, so
you may have to alter some of your more complex queries when dealing with Cosmos
DB. Here is what I did to make the filter drop-down query work in Cosmos DB:

 I added a new property called YearPublished that had the year as an integer. (I
tried using a Cosmos DB user-defined function to extract the year, but it wouldn’t
work with the Distinct command.) This property is filled in during the pro-
jection of the SQL Book entity by the Year part of the DateTime PublishedOn
property.

 I ran the Distinct query by using the YearPublished value in Cosmos and
then ordered the returned years in software.

My two changes to the code makes the Cosmos query work, but it’s slow (section 16.7.2).
But the takeaway from this section is that you shouldn’t be applying queries with mul-
tiple parts to the Cosmos DB database whether you’re using EF Core or not. The
strength of a Cosmos DB database is its scalability and availability, not its ability to han-
dle complex queries.

SKIP IS SLOW AND EXPENSIVE

In the Book App, I used paging to allow the user to move through the books display. This
type of query uses the LINQ Skip and Take methods to provide paging. The query
context.Books.Skip(100).Take(10), for example, would return the 101st to 111th
books in a sequence. Cosmos DB can do this too, but the Skip part gets slower as the skip
value gets bigger (another difference from relational databases) and is expensive too.

COSMOS REQUEST UNITS Azure’s Cosmos DB database uses request units (RUs)
to manage provisioning the throughput of a container. You have various ways
to provision your Cosmos DB container: fixed provisioning (fixedish price),
serverless (pay as you use), and autoscale (scales to use). In the end, however,
you are going to pay for every access to the Cosmos DB service.

It seems that if you Skip 100 items, Cosmos still reads them. But even though Cosmos
doesn’t send the Skipped items to the application, there is a time and cost in RUs. In
the Book App, you can see performance go down as the user goes farther down the
list of books (see figure 16.8).

 Whether the Skip performance is a problem depends on your application. In the
Book App, I doubt that people would read much past the first 100 books. But this
example suggests that showing 100 books at a time is better than showing 10 books
and having the user page, as paging isn’t free.

BY DEFAULT, ALL PROPERTIES ARE INDEXED

We know that adding an index to a property in a relational database significantly
improves the time it takes to filter or sort on that property, with a (small) performance

511Displaying books via Cosmos DB

cost when you update the indexed property. Cosmos DB’s default setup is to index all
the key/values, included nested key values. (The CosmosBook entity has the Tags.TagId

key/values indexed too, for example.) You can change the Cosmos DB indexing pol-
icy, but “index all” is a good starting point.

NOTE EF Core’s indexing configuration features, including a unique index,
don’t work in Cosmos DB. But you can define indexes via the Cosmos DB
setup section of the container.

You should also remember that Cosmos DB saves data by using JSON string format,
and Cosmos indexes knows about only three index types: numbers, strings, and geog-
raphy. C#’s DateTime and TimeSpan types are stored in a string format that can be
sorted or filtered by means of a string, so date and time are stored with the more sig-
nificant time parts first, as in YYYY-MM-DDTHH:MM:SS. EF Core handles time-to-string
conversions for you, but if you use EF Core’s value converters (see section 7.8) or raw
SQL queries, you need to understand the various JSON formats that Cosmos DB uses.

16.6.2 Cosmos DB/EF Core difference: Migrating a Cosmos database

Cosmos DB is a schemaless database, meaning that each item doesn’t have to have the
same properties or nested data in each item. Each item is a JSON object, and it’s up to
you what keys/values you put in the JSON object. This database is different from a
relational database, in which the schema is important and requires some effort to
change (see chapter 9).

At some point, you are going to change or add properties to an entity class
mapped to a Cosmos DB database. You must be careful, though; otherwise, you could
break some of your existing Cosmos DB queries. This example shows what can go
wrong and how to fix it:

1 You have a CosmosBook entity class, and you have written data to a Cosmos DB
database.

2 You decide that you need an additional property called NewProperty of type
int (but it could be any non-nullable type).

3 You read back old data that was added before the NewProperty property was
added to the CosmosBook entity class.

4 At this point, you get an exception saying something like object must have a

value.

Cosmos DB doesn’t mind your having different data in every item, but EF Core does.
EF Core expects a NewProperty of type int, and it’s not there. The way around this
problem is to make sure that any new properties are nullable; then reading the old
data will return a null value for the new properties. If you want the new property to
be non-nullable, start with a nullable version and then update every item in the data-
base with a non-null value for the new property. After that, you can change the new
property back to a non-nullable type, and because there is a value for that property in
every item, all your queries will work.

512 CHAPTER 16 Cosmos DB, CQRS, and other database types
 Another point is that you can’t use the Migrate command to create a new Cosmos
DB database, because EF Core doesn’t support migrations for a Cosmos DB database.
You need to use the EnsureCreatedAsync method instead. The EnsureCreatedAsync
method is normally used for unit testing, but it’s the recommended way to create a
database (Cosmos DB container) when working with Cosmos DB.

16.6.3 EF Core 5 Cosmos DB database provider limitations

This section covers the limitations of the EF Core 5 Cosmos DB database provider.
This information is useful if you want to use EF Core 5 to access a Cosmos DB data-
base; it’ll also be useful when future releases of EF Core remove some of these limita-
tions, making the workarounds I had to apply to the part 3 Book App unnecessary.
Here is a summary of the various limitations:

 Counting the number of books in Cosmos DB is slow!
 Many database functions are not implemented.
 EF Core 5 cannot do subqueries on a Cosmos DB database.
 There are no relationships or Includes.

COUNTING THE NUMBER OF BOOKS IN COSMOS DB IS SLOW

Almost the first thing I noticed when I added a Cosmos version to the Book App was
that counting the CosmosBooks, which I used for paging, was extremely slow via EF
Core. I built a mini version of this Book App in late 2019, and there were two reasons
for the poor performance:

 Cosmos DB’s aggregates (Count, Sum, and so on) were slow and took a lot of
RUs to run.

 EF Core didn’t use Cosmos DB’s aggregates, so I needed to read every Cosmos-
Book in to count them (a EF Core 5 limitation).

Fortunately, the first issue was fixed in April 2020. Cosmos DB’s aggregates are much
quicker and uses a lot less resources. (Example: the original Cosmos Count took
12,000 RUs, whereas the new Count used only 25 RUs.) But EF Core 5 didn’t get any
quicker, because it was reading all the books in the Cosmos database to count them.
Not to be thwarted, I changed the way the Cosmos EF book display worked and moved
over to using a Next/Previous approach to paging. Figure 16.5 shows this format.

 Changing to the Next/Previous approach was trivial; the main problem was set-
ting up the ASP.NET Core Razor page. Many e-commerce sites, including Amazon,
use this approach, so this change might be a good one to make anyway.

 In the Cosmos (Direct) version, I kept the normal paging, with its count of all fil-
tered books. It turns out that the direct Cosmos Count command, SELECT value
COUNT(c) FROM c, is fast (~25 ms to count 500,000 Cosmos books) even compared with
the SQL version (90 ms to count 500,000 SQL books).

513Displaying books via Cosmos DB

MANY DATABASE FUNCTIONS ARE NOT IMPLEMENTED

EF Core 5 has mapped LINQ to a small set of five Cosmos functions, so you may have
to alter your LINQ to work around these issues. One filter I tried failed because EF
Core knew that it should convert the method DateTime.UtcNow to a UTC date from
the database server, but that Cosmos DB function hadn’t been mapped in EF Core 5.
The problem was easy to fix: I created a variable to hold the value given by Date-
Time.UtcNow. Figure 16.6 shows the failed (left) and the fixed (right) query, with the
differences in bold.

Because the EF Core 5 Count of books in a
Cosmos database is so slow, the paging was
changed to use a Next/Previous approach.

Figure 16.5 The page where the Cosmos DB is accessed via EF Core 5. To overcome the slow speed
of counting the number of books, I changed the controls to use a Next/Previous approach.

var now = DateTime.UtcNow;
var filterYear = int.Parse(filterValue);
var result = _db.books.Where(x =>

x.PublishedOn.Year == filterYear &&

x.PublishedOn <= now

FAILED Cosmos DB query

var filterYear = int.Parse(filterValue);
var result = _db.books.Where(x =>

x.PublishedOn.Year == filterYear &&

x.PublishedOn <= DateTime.UtcNow

FIXED Cosmos DB query

Figure 16.6 The original query on the right failed, because EF Core 5 knew that it should convert the
DateTime.UtcNow method (left, in bold) to the UTC time provided by the database server, but that
part of the mapping had not been done. The solution was to put the value from the DateTime.UtcNow
method in a variable (top right, in bold) and feed that variable into the query.

EF CORE 5 CANNOT DO SUBQUERIES ON A COSMOS DB DATABASE

The Book App provides a way to filter books by their Tags, such as looking only at
books with a Tag called "Databases". This solution requires a subquery in the main
query, like the Cosmos DB SQL command shown in the following code snippet:

SELECT DISTINCT value f.TagId FROM c JOIN f in c.Tags

This EF Core 5 limitation precludes querying any nested parts of the Cosmos JSON,
such as any owned types that are saved with the main entity class. You can get that data

514 CHAPTER 16 Cosmos DB, CQRS, and other database types
by reading the entity, of course, but you can’t filter, sort, or select nested parts on their
own via EF Core. In section 16.7.2, I show you a way to get around this problem.

THERE ARE NO RELATIONSHIPS OR INCLUDES

The EF Core 5 Cosmos database provider doesn’t support relationships between entity
classes (other than via owned types embedded in the main entity class). Although this
lack of support seems to be a big missing feature, when it comes to Cosmos entities,
owned types are the way to go, so maybe this feature doesn’t matter so much.

 The design approach of a Cosmos DB item is more about embedding (Cosmos
calls it nesting), which you can do with owned types, such as the Tags collection in
CosmosBook. In fact, the Cosmos DB documentation (http://mng.bz/EVnq) says

Because there is currently no concept of a constraint, foreign-key or otherwise, any inter-
document relationships that you have in documents are effectively “weak links” and will
not be verified by the database itself.

Most NoSQL databases are like Cosmos DB in not supporting relationships between
items. Personally, I’m not sure that EF Core should add relationships across different
items in a Cosmos database, as they aren’t going to work in the way we expect with
relational databases, but we will see.

Was using Cosmos DB16.7 worth the effort? Yes!
You built a CQRS two-database system to improve the performance and scalability of
the Book App. Also, implementing the CQRS system with Cosmos DB taught you a lot
about what Cosmos can and can’t do, as well as the limitations of the EF Core 5 Cos-
mos provider. In this section, you are going to look at three topics:

 The performance of the two-database CQRS in the Book App
 The features that the EF Core 5 Cosmos DB database provider can’t handle
 How difficult it would be to use this two-database CQRS design in your

application

To compare performance and features, you use four types of queries:

 Cosmos (EF)—Uses EF Core’s Cosmos DB database provider
 Cosmos (Direct)—Uses the Cosmos DB .NET SDK
 SQL (+cache)—Uses the cached values in the SQL database (see section 15.5)
 SQL (Dapper)—Uses the best SQL to access the SQL database (see section 15.4)

NOTE I left out the original book-display code developed in chapter 2
because it was so slow that it wasn’t useful. Also, it threw an exception on que-
ries that exceeded the database timeout of 30 seconds.

The aim is to compare the performance, features, and development effort, as I did in
section 15.6 for four levels of SQL performance tuning.

http://mng.bz/EVnq

515Was using Cosmos DB worth the effort? Yes!

16.7.1 Evaluating the performance of the two-database CQRS
in the Book App

To compare the performance of the SQL approaches in chapter 15 and the Cosmos
CQRS system in this chapter, I had two types of Cosmos DB queries, using EF Core
and direct via the Cosmos SQL API, and two SQL queries from chapter 15, using SQL
(+cache) and SQL (Dapper). Having these four ways of displaying the books allowed
me to compare the performance of the two types of databases.

 To make the comparison fair, the two databases need to be

 Located in the same place so that the travel time (latency) is the same. I achieved
this by creating both databases on the Azure site in London, which is about 50
miles from my location.

 Similar in price because price defines the performance of the two databases. The
databases are close in price and cheap enough to test without spending lots of
money. Table 16.1 shows details on the two databases.

The two databases used to compare the performance of an SQL database and a Cosmos DBTable 16.1
database

Database type Azure service name Performance units Price/month

$3720 DTUsStandardAzure SQL Server

$47Manual scale, 800 RUsPay as you goCosmos DB

NOTE Both Azure SQL Server and Cosmos DB have a serverless version, in
which the performance of the database can rise and fall based on demand.
That version might have been cheaper for me, but I wanted specific perfor-
mance to compare SQL queries with Cosmos DB queries.

The following list shows the levels of Books (both SQL Book and CosmosBook) in the
databases that were used in the performance tests. It also shows the number of
Reviews in the database, as sorting or filtering by votes is one of the most challenging
queries:

 100,000 Books, which has 546,000 Reviews
 250,000 Books, which has 1,365,000 Reviews
 500,000 Books, which has 2,740,000 Reviews

My first attempt at measuring the performance at different sizes of databases included
the SQL (+cache) and SQL (Dapper) queries described in chapter 15. But it turns out
that performance in counting the number of Books in a query is slow. At 500,000
Books, a simple display of the first 100 books took 230 ms. I felt that this evaluation
between Cosmos (EF) and SQL (EF) wasn’t fair, so I created SQL (+cacheNC) and
SQL (DapperNC) versions. (NC stands for no count.) The first performance chart,
which looks at performance as the database grows, contains only Cosmos DB (EF) and
Cosmos DB (Direct), as shown in figure 16.7.

516 CHAPTER 16 Cosmos DB, CQRS, and other database types

250,000100,000 500,000
Typical time
variation

-

20

40

60

80

100

120

Cosmos (Direct)Cosmos (EF)

M
ili

s
e

c
o

n
d

s

List first 100 books - Cosmos, increasing amounts of books

No count version

irect)smos (DThe Co
is slower because it

kss the boocount
anhfaster ts(but i

unt).oSQL c

Count version

Figure 16.7 Time taken to display an HTML page containing the first 100 books
(ordered by primary key, descending) in the Cosmos DB container for three sizes of the
database. This figure shows that the size of the database has little effect on the time
taken. Note that these timings were done days apart, and the variation is fairly large
(~ 35 ms), so this chart might look different if I ran the test again.

NOTE All timings were taken from the ASP.NET Core’s RequestFinished
log, which contains the total time to the HTTP request. The time for a query
is obtained by running the query at least seven times and taking the average
of the last five times. To access this data, choose the Admin > Timings com-
mand in the Book App.

The main feature difference between Cosmos DB (EF) and Cosmos DB (Direct) is
that the Cosmos DB (Direct) uses the original paging approach, which means that it
had to count the number of Books in the overall query. Figure 16.7 shows that Cosmos
DB is fast at counting—in fact, about twice as fast as SQL for 500,000 Books. In this
case, speed doesn’t matter too much, but in some applications, Cosmos’s fast counting
could make a big difference. The next performance tests were on most of the key sorts
and filters across the four types of queries: Cosmos DB (EF), Cosmos DB (Direct),
SQL (+cacheNC), and SQL (DapperNC) at 500,000 Books, as shown in figure 16.8.

NOTE I discuss the effect of extracting the tags from 500,000 CosmosBooks in
section 16.7.2, in the sidebar titled “Interesting things happen when you over-
load a Cosmos DB database.”

Figure 16.8 and the SQL count information provide the information to make some
conclusions, which are presented in the following list with the important facts first.

 Even the best SQL version, SQL (DapperNC), doesn’t work in this application
because any sort or filter on the Reviews took so long that the connection
timed out at 30 seconds.

 The SQL (+cacheNC) version was at parity or better with Cosmos DB (EF) on
the first two queries, but as the query got more complex, it fell behind in
performance.

517Was using Cosmos DB worth the effort? Yes!
 The Cosmos DB (Direct), with its Book count, was ~25% slower than the Cos-
mos DB (EF) with no count, but it’s still about twice as fast as an SQL count.

Overall, I think this test shows a good win for Cosmos DB, especially when you add the
fact that implementing this CQRS was easier and quicker than building the original
SQL (+cache) version. Also, Cosmos DB’s concurrency handling (see section 16.4.5)
is easier than the SQL (+cache) version.

 The CQRS/Cosmos DB approach has some downsides, of course. First, adding and
updating a book take a bit longer because the CQRS requires four database accesses:
two to update the SQL database and two to update the Cosmos database. These updates
add up to about 110 ms, which is more than double the time a single SQL database
would take. So if your application does lots of writes to the database, this approach on
its own might not work for you.

ADVANCED NOTE There are several ways to improve the write performance of
the CQRS approach at the expense of more-complex code. I describe some of
these approaches in one of my articles; see http://mng.bz/N8dE.

The second downside is a feature of Cosmos DB: using the LINQ Skip method is slow
and expensive (see section 16.6.4). Figure 16.9 shows that the more books you Skip,
the more time the process takes. Time shouldn’t be a problem with the Book App, as
many people would give up after a few pages, but if your application needs deep skip-
ping through data, Cosmos DB is not a good fit.

0

50

100

150

200

250

Filter by tagsFilter by yearPrice↑, votesSort by votesAll books

M
ili

s
e

c
o

n
d

s

A mixture of queries - 500,000 books

Cosmos (EF) Cosmos (Direct) SQL (+cacheNC) SQL (DapperNC)

The Cosmos (Direct) filter by tags is fast,
but extracting the tags from 500,000
CosmosBooks takes 400 ms.

Typical time
variation

Dapper queries on votes

time out at 30 seconds!

Figure 16.8 Time taken for five key queries on databases containing 500,000
Books. The four types of database access are Cosmos DB (EF), Cosmos DB (Direct),
SQL (+cacheNC), and SQL (DapperNC).

http://mng.bz/N8dE

518 CHAPTER 16 Cosmos DB, CQRS, and other database types
16.7.2 Fixing the features that EF Core 5 Cosmos DB database provider
couldn’t handle

In creating the original implementation of querying the Cosmos DB via the EF Core 5
Cosmos DB database provider, I limited myself to using only the features that EF
Core 5 provided. But when you are building a real application, you use what you have
and then improvise, because making the application work is what you are paid for. In
this section, you are going to fix the problems already highlighted in this chapter:

 Couldn’t count the number of books in Cosmos DB quickly
 Couldn’t create the By Years Published drop-down filter in a reasonable time
 Couldn’t create the By Tags drop-down filter
 Couldn’t filter by TagIds because EF Core 5 Cosmos doesn’t support the IN

command

NOTE This section is only about handling limitations in the EF Core 5 Cos-
mos DB database provider. It does not cover Cosmos DB limitations, such as
the need to break up complex queries (see section 16.6.3).

COULDN’T COUNT THE NUMBER OF BOOKS IN COSMOS DB QUICKLY

This issue is covered in section 16.6.8. Swapping to a Next/Previous form of paging is
quite acceptable in many places. Amazon uses the Next/Previous paging approach,
so it should work for selling books.

Figure 16.9 The more books you Skip, the more execution time increases. The chart
shows the maximum and minimum ranges of the five timings that were used. As you
can see, the more items Skipped, the more the variation increased.

519Was using Cosmos DB worth the effort? Yes!

Soon
execu

single v
wheth

future
COULDN’T CREATE THE BY YEARS PUBLISHED DROP-DOWN FILTER IN A REASONABLE TIME

When you select the By Years Published drop-down filter, the code must look through
all the books to find the YearPublished property and use the Distinct method to
obtain all the years. The problem here wasn’t that the LINQ query couldn’t be run,
but it was quite slow (25 seconds on 500,000 books). I suspect that it was slow because
the Distinct method is run in software, but I can’t be sure.

 But I do know that using direct Cosmos SQL commands can work. In fact, the
direct Cosmos SQL is quicker than the SQL version. For 500,000 books, Cosmos SQL
took ~400 ms, whereas SQL took ~2.5 seconds. So the solution is to use a direct Cos-
mos SQL command to get the distinct years, which requires getting the Cosmos DB
container via the Cosmos DB context, as shown in the following listing.

//… other parts of the switch removed for clarity
case BooksFilterBy.ByPublicationYear:

 var container = _db.GetCosmosContainerFromDbContext(
 _settings.CosmosDatabaseName);

 var now = DateTime.UtcNow;
 var comingSoonResultSet =
 container.GetItemQueryIterator<int>(
 new QueryDefinition(
 "SELECT value Count(c) FROM c WHERE" +
 $" c.YearPublished > {now:yyyy-MM-dd} " +
 "OFFSET 0 LIMIT 1"));
 var comingSoon = (await
 comingSoonResultSet.ReadNextAsync())
 .First() > 0;

 var resultSet = container.GetItemQueryIterator<int>(
 new QueryDefinition(
 "SELECT DISTINCT VALUE c.YearPublished FROM c" +
 $" WHERE c.YearPublished > {now:yyyy-mm-dd}"));

 var years = (await resultSet.ReadNextAsync()).ToList();

 //… the code turns the ‘years’ into a drop-down tuple

But be warned: the query shown in listing 16.11 is another high-RUs query, coming
out about the same as TagIds at 2,321 RUs. This chapter may be a place for a static list,
as technical books more than five years old normally aren’t useful (except for Eric
Evan’s Domain-Driven Design, of course!).

Listing 16.11 The Filter Drop-down service showing the use of direct Cosmos SQL

This code covers only the section that
handles filtering by publication year.

Obtains a Cosmos DB
container via the Cosmos
DB context plus the
name of the database

This query is designed
to see whether there
are any publications
that aren’t out yet.

The coming-
ResultSet is
ted, and its
alue tells us
er there are
publications

in the list.

This query gets the
distinct years for
all books already
published.

Executes the
query and gets
a list of years
when books
were published

520 CHAPTER 16 Cosmos DB, CQRS, and other database types
COULDN’T CREATE THE BY TAGS DROP-DOWN FILTER

EF Core 5 couldn’t get a distinct set of TagIds from the Tags collection of each
CosmosBook because EF Core 5’s Cosmos database provider doesn’t support subque-
ries. Again, you can use direct Cosmos SQL commands instead—Cosmos (Direct)
takes only ~350 ms—but doing so is costly. Getting the list of TagIds from the SQL
database is simple because it has a table called Tags, with only 35 rows. So instead of
looking through 500,000 CosmosBooks and extracting all the TagIds, we can simply
run the following SQL code, which takes only ~30 ms:

var drop-down = _sqlContext.Tags
 .Select(x => new Drop-downTuple
 {
 Value = x.TagId,
 Text = x.TagId
 }).ToList();

COULDN’T FILTER BY TAGIDS BECAUSE EF CORE 5 COSMOS DOESN’T SUPPORT THE IN COMMAND

The last issue to overcome is filtering the books by their TagIds because EF Core 5’s
Cosmos DB database provider doesn’t support the IN command. Although you could
use a direct Cosmos SQL command, EF Core 5 supports the LINQ Contains method
for strings.

EF CORE 5 LIMITATION EF Core 5 doesn’t support the Cosmos equivalent of
the SQL IN command to filter on the Tags collection. The LINQ query
Books.Where(x => x.Tags.Any(y => y == “some tag name”)) would throw a
could not be translated exception. I get around this problem by using
string Contains.

Interesting things happen when you overload a Cosmos DB database
In building the Cosmos (Direct) to filter by tags, I decided to extract the TagIds by
using a Cosmos SQL command:

SELECT DISTINCT value f.TagId FROM c JOIN f in c.Tags

This command works but takes a long time (~400 ms) and costs a lot of RUs—2,445
RUs, to be exact. Because that command exceeds the 800 RUs provisioned for my
database (Cosmos container), Cosmos penalizes any queries that come after it.

In this case, Cosmos seemed to go slow for a few seconds, and I was charged more
money for going over the 800 RUs I paid for. Try to keep the cost of your queries
within the allocated provision if you don’t want subsequent queries to be slow.

I should say that asking Cosmos DB to extract all the TagIds from all 500,000
CosmosBooks and returning the 35 distinct TagIds isn’t a good design, but it did
uncover what happens if you exceed your allotted RUs.

521Was using Cosmos DB worth the effort? Yes!
By adding a string called TagsString and putting in each TagId, plus extra delimiting
characters, we can use string Contains to filter by TagIds. The following code snippet
shows the TagsString key/value taken from the CosmosBook JSON in listing 16.10:

"TagsString": "| Databases | Microsoft & .NET |"

NOTE The delimiting | character in TagsString ensures that the filter-by-tag
feature matches the whole TagId string; otherwise, the Tag "Data" would
match "Data" and "Databases".

This technique makes filtering by Tag easy. To select all the Books with Tag "C#", for
example, you would write

context.Books
 .Where(x => x.TagsString.Contains("| C# |"))
 .ToListAsync();

This approach is quite acceptable in Cosmos DB, which has a page about Contains
and strings. In fact, the Contains string method is faster than the IN/subquery
method. For 500,000 books, the string Contains took ~125 ms, whereas the JOIN/
WHERE version had a large variation in timings, up to 3 seconds.

16.7.3 How difficult would it be to use this two-database CQRS design
in your application?

There is no doubt that the Cosmos DB version provides an excellent performance for
the Book App when the numbers of Books and Reviews increase. But how hard would
it be to add this approach to an existing application, and would doing that have a neg-
ative effect on further development of the application? I added this CQRS design to
the existing Book App, so I am in a good position to answer these questions.

 On reflection, most of the time was taken up by understanding how the Cosmos
DB worked and adjusting things to fit its style. Looking at the GitHub commits, it took
me about two weeks to add the two-database CQRS enhancement to the existing Book
App, but that time included a lot of research and building the extra Cosmos (Direct)
version. As I said earlier, I think that the two-database CQRS design was a bit easier to
build and test than the SQL (+cache) version.

NOTE The two-database CQRS enhancement was implemented as an addi-
tional query approach while leaving all the original book-display systems; also,
I altered the SQL (+cache) and SQL (Dapper) code to have a no-count ver-
sion. Building all these versions allowed me to compare the performance of
the two-database CQRS system with the original SQL book-display systems.

Here is a breakdown of the parts, with my views on how difficult they were:

 Detecting changes to an SQL Book—This part was made easy by the use of DDD
classes, as I could add an event to each access method in the Book entity class. If

522 CHAPTER 16 Cosmos DB, CQRS, and other database types
you aren’t using DDD classes, you would need to detect changes to entities
during SaveChangesAsync, but as I say in section 16.4, that approach is harder.

 Running the event code within a transaction—My GenericEventRunner library
made this part significantly quicker to write. You don’t need to use this library,
but it would take longer to develop.

 Writing to the Cosmos DB database—That part was fairly easy, with some straight-
forward Add, Update, and Delete methods. (See listing 16.8 for an example.) I
spent some time making the write more robust by handing possible causes by
concurrent updates.

 Querying the Cosmos DB database—This part took the most time, mainly because
there are limitations in EF Core and in Cosmos DB.

When it came to the effects of adding the CQRS design to the existing Book App, I
would say that the Cosmos DB part had little effect on the Book App’s structure. Here
are the changes I needed to make to the existing code:

 Registering the Cosmos DbContext on startup
 Adding integration events to the Book entity class
 Altering the SQL (+cache) and SQL (Dapper) code to have no-count versions

All the existing code still works the same way that it always did. Clearly, changes to the
Book entity could require changes to the CosmosBook entity and its associated Map-
BookToCosmosBook extension method. Except for changes to the Book entity, a change
to the SQL code should have no effect on the Cosmos DB code, and a change to the
Cosmos DB code should have no effect on the SQL code of the application.

Differences in other database types16.8
Most of this chapter is about Cosmos DB, which is different from the relational data-
bases that this book covers. But at the end of this chapter, we look at relational data-
bases again. Different types of relational databases are similar, mainly because there is
an official standard for the SQL language, but many small differences exist. This sec-
tion is useful if you want to move from one relational database to another, such as SQL
Server to PostgreSQL.

 EF Core will handle many of the differences between relational database types,
such as how table names should be wrapped in the SQL commands, but you have to
handle some things yourself, such as the different formats of UDFs (see section 10.1).
Here is a list of typical things to check and change if you are moving from one rela-
tional database to another:

1 Download the NuGet database provider, and change the registration of your
DbContext.

The first thing you need to do is install the specific EF Core database pro-
vider via NuGet, such as Microsoft.EntityFrameworkCore.SqlServer or Npgsql
.EntityFrameworkCore.PostgreSQL. Then you need to change the way you

523Differences in other database types
register that database provider to your DbContext. In ASP.NET Core, you would
have something like this for a MySQL database provider:

services.AddDbContext<MyDbContext>(
 options => options.UseMySql(connection));

2 Rerun the Add-Migration command for the new database provider.
EF Core migrations are database-provider-specific and are not transferrable

between databases. You need to throw away your old migrations and run the
Add-Migration command, using your new database provider.

NOTE You can have migrations for multiple database types as long as you
keep them in different projects. You must add the MigrationsAssembly
method to the registration of each DbContext to tell EF Core where the
migrations are located.

3 Fix any type mapping between .NET and the database that has changed.
You need to rerun your LINQ queries and see whether anything has

changed. In the first edition of this book, I converted the Book App from SQL
Server to MySQL, and the main Select book display query (see listing 2.12)
threw an exception. It turns out that the returned type of the SQL AVG command
in MySQL is a nullable decimal rather than the nullable double in SQL Server.
To overcome this problem, you need to change the BookListDto’s Average-
ReviewVotes property .NET type to decimal? to match the way MySQL works.

Other, subtler type differences exist between database servers that might go
unnoticed. Typical things to look at are

a Concurrency timestamp types—In SQL Server, it’s a byte[] type; in PostgreSQL,
you use a uint type (and you need to configure it when your register your
DbContext); and MySQL uses a DateTime type, so check that you have the
correct type for your database type.

b String queries and collation (see section 2.8.3)—By default, SQL Server and
MySQL use a case-insensitive match between strings, and PostgreSQL is by
default case-sensitive. Setting a Collation on the database, table, or column
has different names and effects.

c DateTime precision—Most databases have moved to DateTime2, with its time
precision at 100 ns, but it’s worth checking. SQLite stores DateTime as a
string, using ISO8601 format: "YYYY-MM-DD HH:MM:SS.SSS".

4 Check and change any raw SQL that you are using.
This step is where things get more complex, because EF Core isn’t covering

any changes in the way that the database type uses SQL. Standard SQL code
should work, but the way of referring to tables and columns might change.
More-complex SQL such as UDFs and stored procedures seem to have slightly
different formats between database types.

524 CHAPTER 16 Cosmos DB, CQRS, and other database types
Summary
 A NoSQL database is designed to be high-performance in terms of speed, scal-

ability, and availability. It achieves this performance by dropping relational-
database features such as strongly linked relationships between tables.

 A CQRS architecture separates the read operations from the write operations,
which allows you to improve the read side’s performance by storing the data in
a form that matches the query, known as a projection.

 The Book App has been augmented by the ability to store a projection of the
SQL Book on the read side of the CQRS architecture, which uses a Cosmos DB
database. This approach improves performance, especially with lots of entries.

 The design used to implement the SQL/Cosmos DB CQRS architecture uses an
integration event (see chapter 12).

 The Cosmos DB database works differently from relational databases, and
the process of adding this database to the Book App exposes many of these
differences.

 The EF Core 5 Cosmos DB database provider has many limitations, which are
discussed and overcome in this chapter. But it is still possible to implement a
useful app with Cosmos DB.

 The updated Book App shows that the Cosmos DB database can provide supe-
rior read performance over a similarly priced SQL Server database.

 The SQL/Cosmos DB CQRS design is suitable for adding to an existing applica-
tion where read-side performance needs a boost, but it does add a time cost to
every addition or update of data.

 Relational databases are more like one another than they are like NoSQL data-
bases, due to the standardization of the SQL language. But you need to make
some changes and checks if you change from one type of relational database to
another.

Unit testing
EF Core applications
This chapter is about unit testing applications that use EF Core for database access.
You’ll learn what unit testing approaches are available for working with EF Core
and how to choose the correct tools for your specific needs. I also describe numer-
ous methods and techniques to make your unit testing both comprehensive and
efficient. Personally, I think unit testing is useful, and I use it a lot. It makes me a
better developer because I can catch bugs both when I develop the code and, more
important, when I refactor the code.

 But although I really like unit testing, I’m also aware that writing unit tests takes
development effort, including refactoring unit tests as the application grows. Over

This chapter covers
 Simulating a database for unit testing

 Using the database type as your production app
for unit testing

 Using an SQLite in-memory database for unit
testing

 Solving the problem of one database access
breaking another part of your test

 Capturing logging information while unit testing
525

526 CHAPTER 17 Unit testing EF Core applications

the years, I have learned a lot of tips and techniques for unit testing, and I have built a
library called EfCore.TestSupport to help me, and you, write unit tests quickly and
efficiently.

Unit testing is a big subject, with whole books dedicated to the topic. I focus on the
narrow but important area of unit testing applications that use EF Core for database
accesses. To make this chapter focused, I don’t explain the basics of unit testing, but
leap right in. Therefore, I recommend skipping this chapter if you’re new to unit test-
ing and coming back to it after you’ve read up on the subject. This chapter won’t
make any sense without that background, and I don’t want to discourage you from
unit testing because I make it look too hard.

MORE INFO For an introduction to unit testing in .NET, try this video: http://
mng.bz/K44E. For much more in-depth coverage of unit testing, I recom-
mend Vladimir Khorikov’s Unit Testing Principles, Practices, and Patterns (Man-
ning, 2020; https://www.manning.com/books/unit-testing).

OK, if you’re still with me, I assume that you know what unit testing is and have at least
written some unit tests. I’m not going to cover the differences between unit tests and
integration tests, acceptance tests, and so on. I’m also not here to persuade you that
unit tests are useful; I assume that you’re convinced of their usefulness and want to
learn tips and techniques for unit testing an EF Core application.

NOTE I call all of my tests unit tests, but some people use the term integration
tests for tests that use a real database.

As I said, I use unit tests a lot. I have more than 700 unit tests in this book’s GitHub
repo, some to check that my Book App works and some to check that what I say in the
book is correct. Those tests make me much more confident that what the book says is
correct and that the Book App runs properly. Some of the code in the part 3 Book
App is pretty complex, which is where unit tests become most useful.

NOTE Arthur Vickers, who is the engineering manager of EF Core, put out a
tweet to say that EF Core has more than 70,000 unit tests (using xUnit). See
http://mng.bz/D18y for the facts and timings.

One other thing I have learned is that I want my unit tests to run as quickly as possible,
because a quick test-debug cycle makes developing and refactoring an application a
much nicer experience. Also, I’m much more likely to run all my unit tests if those
tests are quick, which might catch bugs in places I didn’t think would be affected by
my new code. I summarize these two aspects of unit testing in figure 17.1.

The rest of the chapter starts with the basics, looks at ways you could write your
unit tests, and finally presents specific tips and problems you might have when testing
your EF Core code. The sections in this chapter are

 An introduction to the unit test setup
 Getting your application’s DbContext ready for unit testing

http://mng.bz/K44E
http://mng.bz/K44E
http://mng.bz/K44E
https://www.manning.com/books/unit-testing
http://mng.bz/D18y

527An introduction to the unit test setup
 Three ways to simulate the database when testing EF Core applications
– Using a production-type database in your unit tests
– Using an SQLite in-memory database for unit testing
– Stubbing or mocking an EF Core database

 Unit testing a Cosmos DB database
 Seeding a database with test data to test your code correctly
 Solving the problem of one database access breaking another part of your test
 Capturing the database commands sent to a database

17.1 An introduction to the unit test setup
Before I start explaining the techniques, I need to introduce our unit test setup; oth-
erwise, the examples won’t make any sense. I use a fairly standard approach, but as
you’ll see, I’ve also created tools to help with the EF Core and database side of unit
testing. Figure 17.2 shows a unit test that uses some of the features and methods cov-
ered in this chapter.

NOTE All the unit tests in this chapter (apart from the Cosmos DB section,
17.8) use sync methods; they call SaveChanges, not SaveChangesAsync, for
example. I do that partly because the code is a little bit easier to understand
without the await code, but in real life, I use sync methods whenever I can
because sync code provides better exception StackTrace results and is easier
to debug when using breakpoints.

This section covers

 The test environment you’ll be using: the xUnit unit test library
 A NuGet package I created to help with unit testing EF Core applications

The quicker your unit

tests run, the more

you will use unit tests.

• When developing a class,

yo may run one set of unitu

tests 10 or 20 times.

• The faster the whole test

su ru the moite ns, re likely

yo a o ru a teru re t n it f

a change.

Of course you want to

develop unit tests quickly,

but that needs planning.

Think about:

• t u f nd toWha tools can yo i

ma yo ike u more eff cient?

• Wil hl t e way you simulate

yo dur atabase still work

a you as r pplication grows?

[Te
pub
{

//SETUP
var

//ATTEMPT
var

//VERIFY
result.ShouldEqual(2);

}

Fa t to runs

Th two aspects of efficiency in unit testinge

Fa t to develops

My
unit
test

Figure 17.1 I believe wholeheartedly in unit tests, but that doesn’t mean I want to spend a lot of
time developing or running them. My approach is to try to be efficient at using them, which splits
into developing quickly and not having to hang around while the tests run.

528 CHAPTER 17 Unit testing EF Core applications

17.1.1 The test environment: xUnit unit test library

I’m using the xUnit unit test library (see https://xunit.net) because Microsoft sup-
ports it well and because the EF Core team uses it. Also, xUnit is quicker than some
other unit test frameworks, such as NUnit (which I used to use), because xUnit can
run unit test classes in parallel. Running tests in parallel has a downside, which I show
you how to get around, but it does mean that you can run your complete unit test
suite a lot quicker.

 I also use fluent validation, which uses a series of extension methods that flow one after
another ; see row 1 in table 17.1. I find the fluent validation style to be much easier to
work with than the static Assert methods approach; it’s slightly shorter, and Intelli-
sense can suggest the fluent validation methods that are appropriate.

Table 17.1 Two approaches to checking that two books were loaded by the previous query that was
under test. The static Assert methods are built into XUnit; the fluent validation style has to be added
as an extra step.

Type Example code

Fluent validation style books.Count().ShouldEqual(2);

Static Assert method style Assert.Equal(2, books.Count());

[Fact]
public void TestExample()
{

//SETUP
var o tionsp

.C eateOptions<r BookDbContext>()

using var c ntext =o new BookDbContext(o tions);p

co text.Database.EnsureCreated();n

co text.SeedDatabaseFourBooks();n

//ATTEMPT
var te new DateTime(20
var q eryu

.W ere(xh

var b okso

//VERIFY
_o tput.WriteLine(query.ToQueryString());u

bo ks.Count.ShouldEqual(3);o

}

This is a xUnit
unit test.

This method creates
options for an SQLite
in-memory database.
See section 7.6.1

Creates an instance
of the DbContext
with a using var
variable

This creates an empty
database with the
correct schema.

Typically, I will create
extension methods to
set up the database.
See section 7.9.1

This holds the
query in a variable
so you can see
what SQL EF
Core will create. This runs the query.

This outputs the
SQL that EF Core
uses.
See section 7. .2.1 11

Finally, you check
that the number of
books returned is
what you think it
should be.

Figure 17.2 A unit test with three parts: Setup, Attempt, and Verify (also known as Arrange, Act, and
Assert). The figure also shows some EF Core techniques that will be explained in this chapter.

You can find these fluent validation extension methods at http://mng.bz/l2Ej, but
you can create your own; they are normal C# extension methods. I’ve included the

https://xunit.net/
http://mng.bz/l2Ej

529An introduction to the unit test setup

T
w

sample xUnit fluent validation extension methods, plus a few extra fluent validations,
in the NuGet package called EfCore.TestSupport that I’ve built. See section 17.1.2.

 The following listing shows a simple unit test that employs the xUnit unit test pack-
age and the fluent validation extensions. This example uses a three-stage pattern of
Setup, Attempt, and Verify, shown as //SETUP, //ATTEMPT, and //VERIFY in the unit
test code in this chapter. Setup, Attempt, and Verify are also known as Arrange, Act,
and Assert, but because I’m dyslexic, I prefer //SETUP, //ATTEMPT, and //VERIFY in my
code because they look quite different.

[Fact]
public void DemoTest()
{
 //SETUP
 const int someValue = 1;

 //ATTEMPT
 var result = someValue * 2;

 //VERIFY
 result.ShouldEqual(2);
}

You can run your unit tests by using Visual Studio’s built-in Test Explorer, which you
access from the Test menu. If you’re using Visual Studio Code (VS Code), the test run-
ner is also built in, but you need to set up the build and test tasks in the VS Code
tasks.json file, which allows you to run all the tests via the Task > Test command.

17.1.2 A library I created to help with unit testing EF Core applications

I learned a lot about unit testing EF Core applications as I built the software that went
with the first edition of this book. As a result, I built an open source library called
EfCore.TestSupport (see https://github.com/JonPSmith/EfCore.TestSupport) that
contains lots of methods that are useful in the Setup stage of a unit test method.

 The EfCore.TestSupport library differentiate between EF Core 2 and EF Core 3,
using the netstandard they used, but now that EF Core 5 is out, that differentiation
doesn’t work anymore. Therefore, I aligned the EfCore.TestSupport library to EF
Core via the first part of the version number. For EF Core 5, for example, you need
EfCore.TestSupport version 5.

NOTE Readers who are already using my EfCore.TestSupport library should
be aware that I also took the opportunity to tidy up the EfCore.TestSupport
library, which introduced breaking changes. The SqliteInMemory has changes
(see section 17.6), some methods are now obsolete, and I moved the EfSchema-
Compare code to another library. See http://mng.bz/BK5v for more details.

Listing 17.1 A simple example xUnit unit test method

The [Fact] attribute tells the unit test runner that
this method is an xUnit unit test that should be run.

The method must be public. It
should return void or, if you’re
running async methods, a Task.

Typically, you put code here
that sets up the data and/or
environment for the unit test.

his line is
here you

run the
code you
want to

test.

Here is where you put the
test(s) to check that the
result of your test is correct.

http://mng.bz/BK5v
https://github.com/JonPSmith/EfCore.TestSupport

530 CHAPTER 17 Unit testing EF Core applications
This chapter uses many of the methods in the EfCore.TestSupport library, but I don’t
detail their signatures because the EfCore.TestSupport wiki (see http://mng.bz/dmND)
contains documentation for this library. But I’ll explain the how and why of unit test-
ing by using some of the methods from my EfCore.TestSupport library and showing
some of the code I developed too.

17.2 Getting your application’s DbContext ready
for unit testing
Before you can unit test your application’s DbContext with a database, you need to
ensure that you can alter the database connection string. Otherwise, you can’t provide
a different database(s) for unit testing. The technique you use depends on how the
application’s DbContext expects the options to be set. The two approaches that EF
Core provides for setting the options are as follows:

 The application’s DbContext expects the options to be provided via its con-
structor. This approach is recommended for ASP.NET Core and .NET Generic
Host applications.

 The application’s DbContext sets the options internally in the OnConfiguring
method. This approach is recommended for applications that don’t use depen-
dency injection.

17.2.1 The application’s DbContext options are provided
via its constructor

If the options are provided via the application’s DbContext constructor, you don’t
need any changes to the application’s DbContext to work with the unit test. You
already have total control of the options given to the application’s DbContext con-
structor; you can change the database connection string, the type of database provider
it uses, and so on. The following listing shows the format of an application’s DbCon-
text that uses a constructor to obtain its options. The constructor is shown in bold.

public class EfCoreContext : DbContext
{
 public EfCoreContext(
 DbContextOptions<EfCoreContext> options)
 : base(options) {}

 public DbSet<Book> Books { get; set; }
 public DbSet<Author> Authors { get; set; }

 //… rest of the class left out
}

For this type of application’s DbContext, the unit test can create the options variable
and provide that value as a parameter in the application’s DbContext constructor. The

An application DbContext that uses a constructor for option settingListing 17.2

http://mng.bz/dmND

531Getting your application’s DbContext ready for unit testing
next listing shows an example of creating an instance of your application’s DbContext
in a unit test that will access an SQL Server database, with a specific connection string.

const string connectionString
 = "Server= … content removed as too long to show";
var builder = new
 DbContextOptionsBuilder<EfCoreContext>();
builder.UseSqlServer(connectionString);
var options = builder.Options;
using (var context = new EfCoreContext(options))
{
 //… unit test starts here

17.2.2 Setting an application’s DbContext options via OnConfiguring

If the database options are set in the OnConfiguring method inside the application’s
DbContext, you must modify your application’s DbContext before you can use it in
unit testing. But before you change the application’s DbContext, I want to show you
the normal arrangement of using the OnConfiguring method to set the options (see
the bold text in the following listing).

public class DbContextOnConfiguring : DbContext
{
 private const string connectionString
 = "Server=(localdb)\\... shortened to fit";

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 optionsBuilder.UseSqlServer(connectionString);
 base.OnConfiguring(optionsBuilder);
 }
 // … other code removed
}

The next listing shows Microsoft’s recommended way to change a DbContext that uses
the OnConfiguring method to set up the options. As you’ll see, this technique adds
the same sort of constructor setup that ASP.NET Core uses while making sure that the
OnConfiguring method still works in the normal application.

Creating a DbContext by providing the options via a constructorListing 17.3

A DbContext that uses theListing 17.4 OnConfiguring method to set options

Holds the connection string
for the SQL Server database

You need to create the
DbContextOptionsBuilder
<T> class to build the
options.

Defines that you want to use the
SQL Server database provider

Builds the final DbContextOptions
<EfCoreContext> options that
the application’s DbContext needs

Allows you to create an instance
for your unit tests

532 CHAPTER 17 Unit testing EF Core applications
public class DbContextOnConfiguring : DbContext
{
 private const string ConnectionString
 = "Server=(localdb)\\ … shortened to fit";

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 if (!optionsBuilder.IsConfigured)
 {
 optionsBuilder
 .UseSqlServer(ConnectionString);
 }
 }

 public DbContextOnConfiguring(
 DbContextOptions<DbContextOnConfiguring>
 options)
 : base(options) { }

 public DbContextOnConfiguring() { }
 // … other code removed
}

To use this modified form, you can provide options in the same way you did with the
ASP.NET Core version, as shown in the following listing.

const string connectionString
 = "Server=(localdb)\\... shortened to fit";
var builder = new
 DbContextOptionsBuilder
 <DbContextOnConfiguring>();
builder.UseSqlServer(connectionString);
var options = builder.Options;
using (var context = new
 DbContextOnConfiguring(options)
{
 //… unit test starts here

Now you’re good to go for unit testing.

Three ways to simulate17.3 the database when testing
EF Core applications
If you unit test your application, and it includes accesses to a database, you have sev-
eral ways to simulate the database. Over the years, I’ve tried several approaches to sim-
ulating the database in a unit test, ranging from a library that mocks the DbContext in

An altered DbContext allowing the connection string to be set by the unit testListing 17.5

A unit test providing a different connection string to the DbContextListing 17.6

Changes the OnConfigured
method to run its normal
setup code only if the
options aren’t already
configured

Adds the same constructor-based
options settings that the ASP.NET
Core version has, which allows you
to set any options you want

Adds a public, parameterless
constructor so that this DbContext
works normally with the application

Holds the connection string for the
database to be used for the unit test

Sets up the
options you
want to use

Provides the options to the
DbContext via a new, one-
parameter constructor

533Three ways to simulate the database when testing EF Core applications
EF6 called Effort (see https://entityframework-effort.net/overview) to using real data-
bases. This chapter covers some of those approaches and a few new tactics that EF
Core offers.

NOTE I cover stubbing and mocking in much more detail in section 17.7.

Early consideration of how to unit test with a database can save you a lot of pain later,
especially if you’re using EF Core. When I started writing the first edition of this book,
I found that the unit testing approach I used at the start didn’t work with the more
SQL-based parts of the book, so I had to refactor some of my early unit tests, and that
was a bit of a pain.

 But that experience wasn’t new. In some of my projects, I later regretted my early
decisions on unit testing, as the tests started to fall apart as the projects grew. Although
some reworking of early unit tests is inevitable, you want to minimize rework, because
it slows you down. Therefore, I want to describe different ways to unit test code with
EF Core so that you can make an informed decision about how to write your unit
tests. Figure 17.3 summarizes the three main ways you can test code that contains
database accesses.

DEFINITION The term production database refers to the database type/provider
used by your application in production. If you are running an ASP.NET Core
web application using EF Core, for example, and that application uses an
SQL Server database, a production database type is SQL Server. In that case,
using the same database type as production means that SQL Server databases
will be used in your unit tests.

Use same db

type as

production

Use SQLite

in-memory db

Stubbing the

database

PROS:

CONS:

BEST FOR:

Three ways unit test your EF Core code, with pros and cons

• Perfect match to
production db

• Handles SQL features

• Needs unique db per
unit test class

• Takes time to create
schema/empty db

• Quick to run

• Has correct schema

• Starts empty

• Doesn’t support some
SQL commands

• Doesn’t work like the
production db

• Gives total control
of the data access

• Quick to run

• Can’t test some db
code, like relationships

• You need to write
more code.

When your code includes

raw SQL features

When your code uses only

LINQ commands

When you want to test

complex business logic

Figure 17.3 You have three main ways to provide access to a database when you are testing
your code. Each approach has pros and cons, and the main ones are listed in the figure.

https://entityframework-effort.net/overview

534 CHAPTER 17 Unit testing EF Core applications

17.4

There is no right answer as to which approach is best for you—only a series of trade-
offs between your unit tests running in the same way as your production application
and the time to write and run your unit tests. The safe solution is to use a database
that is the same as your production database type. But I often use a mixture of all
three of these approaches when I am unit testing some applications.

Before I describe the three approaches to simulating the database, section 17.4
digs deeper into the differences between the first two approaches. This section gives
you more information to help you decide whether you can test your application with
the SQLite in-memory database or need to use unit test databases of the same type as
your production database.

Choosing between a production-type database
and an SQLite in-memory database
In this section, I give you the information you need to decide whether to use a
production-type database or an SQLite in-memory database. You should consider
using an SQLite in-memory database because it is easier for unit testing, creating a
new database every time. As a result

 The database schema is always up to date.
 The database is empty, which is a good starting point for a unit test.
 Running your unit tests in parallel works because each database is held locally

in each test.
 Your unit tests will run successfully in the Test part of a DevOps pipeline without

any other settings.
 Your unit tests are faster.

The downside is that the SQLite database doesn’t support and/or match some SQL
commands in your production database, so your unit tests will fail or, in a few cases,
give you incorrect results. If this possibility worries you, you should ignore SQLite
and use the same database type as your production database for unit testing (see sec-
tion 17.5).

If you want to consider using SQLite for unit testing, you need to know how differ-
ent it might be from your production database. The simple answer is “a lot,” but to
help you understand what might cause problems, I’ve prepared table 17.2. This table
lists the features that could cause problems when you use SQLite for unit testing. The
far-right column lists the possible outcome of using the feature:

 Wrong answer—The feature might work but give you the wrong answer (which,
in unit testing, is the worst result). You must be careful to run the test with a
production-type database or make sure that you understand the limitations and
work around them.

 Might break—The feature might work correctly in your unit test code, but in
some cases, it might throw an exception. You can test this feature with SQLite,
but you might have to change to a production-type database if a unit test fails.

535Choosing between a production-type database and an SQLite in-memory database
 Will break—The feature is likely to fail when the database is set up (but might
work if the SQL is basic). This result rules out using an SQLite in-memory
database.

Also, the following C# types aren’t natively supported by SQLite, so they could pro-
duce the wrong value:

 Decimal

 UInt64

 DateTimeOffset

 TimeSpan

EF Core will throw an exception if you sort/filter on a property that is of type Decimal
while running on SQLite, for example. If you still want to unit test with SQLite, you
can add a value converter to convert the Decimal to a double (see section 7.13), but
that approach might not return the exact Decimal value you saved to the database.

 So if you use any of the features in table 17.2 that will break, you definitely don’t
want to use SQLite for unit testing. But you also need to consider what you plan to
add to your application, because if you add code that uses “will break” features, you
are going to have to change all your unit tests to use a database of the same type as
your production database, which can be a real pain.

 If you’re not using, and are unlikely to use, the “will break” features shown in table
17.2, SQLite could be a good choice for most of your unit tests. You can switch to
using a production-type test database for the “might break” features, which is what I
do for EF Core applications that don’t use much raw SQL features.

NOTE I haven’t yet covered the pros and cons of the third option in figure 17.3:
stubbing the database (see section 17.7). Stubbing the database is a different
approach from using SQLite or a production-type database because stub-
bing tries to remove all the database code from the unit test. For that reason,

Table 17.2 The SQL features that EF Core can control but that aren’t going to work with SQLite,
because SQLite doesn’t support the feature or because SQLite uses a different format from SQL Server,
MySQL, and so on

SQL feature See section SQLite support? Breaks?

Wrong answerWorks but provides different results2.8.3String compare and collations

Wrong answerNot supported; ignores config7.12.2Different schemas

Might breakC# constants work; SQL is likely to fail10.3SQL column default value

Will breakSQL is different; likely to fail10.2SQL computed columns

Will breakSQL is different; very likely to fail11.5Any raw SQL

Will breakNot supported exception10.4SQL sequences

536 CHAPTER 17 Unit testing EF Core applications

stubbing the database doesn’t test any of your EF Core code. Therefore, I
start with the two approaches that do include EF Core: using an SQLite
in-memory database and using a production-type database.

17.5 Using a production-type database in your unit tests
This section covers using a production-type database for your unit testing, which is the
best way to unit test because your unit test databases are fully compatible with your
production database. The downside is that the database is more complex to set up
than in the SQLite in-memory database approach (see section 17.6), as well as slightly
slower to run. You need to solve four issues to use a production-type database in your
unit tests:

 Providing a connection string to the database to use for the unit test
 Providing a database per test class to allow xUnit to run tests in parallel
 Making sure that the database’s schema is up to date and the database is empty
 Mimicking the database setup that the EF Core’s migrations would deliver

Interestingly, the SQLite in-memory approach overcomes the first three items in the
list by its design alone, and the last item, which deals with SQL embedded in your
migrations, is something that the SQLite in-memory approach can’t handle because
the SQL code is likely to be different. The list of four issues you must meet to run a unit
test is a good indication of the extra work involved in finding the best way to unit test
code that includes database accesses. But help is on hand via my EfCore.TestSupport
library, which provides extension methods that help you set up the database options,
deal with the “database per test class” problem, and make sure that the database
schema is up to date and empty of data.

NOTE The following examples use an SQL Server database, but the approaches
work equally well with database types other than Cosmos DB, which has its
own section (17.8).

17.5.1 Providing a connection string to the database to use
for the unit test

To access any database, you need a connection string (see section 5.4.1). You could
define a connection string as a constant and use that, but as you’ll see, that approach
isn’t as flexible as you’d want. Therefore, in this section you’ll mimic what ASP.NET
Core does by adding to your test project a simple appsettings.json file that holds the
connection string. Then you’ll use some of the .NET configuration packages to access
the connection string in your application. The appsettings.json file looks something
like this:

{
"ConnectionStrings": {

"UnitTestConnection": "Server=(localdb)\\mssqllocaldb;Database=... etc"
}

}

537Using a production-type database in your unit tests

WARNING You should not put a connection string that contain private keys,
passwords, and so on in the appsetting.json file, as those elements may leak
when you store your code in source control. .NET has a feature called user
secrets that is built into ASP.NET Core (see http://mng.bz/rmYg), and you
can use user secrets in your unit tests by using the AddUserSecrets method.

Listing 17.7 shows the GetConfiguration method from my EfCore.TestSupport
library. This method loads an appsettings.json file from the top-level directory of the
assembly that calls it, which would be the assembly in which you’re running your unit
tests.

public static IConfigurationRoot GetConfiguration()
{
 var callingProjectPath =
 TestData.GetCallingAssemblyTopLevelDir();
 var builder = new ConfigurationBuilder()
 .SetBasePath(callingProjectPath)
 .AddJsonFile("appsettings.json", optional: true);
 return builder.Build();
}

Listing 17.7 GetConfiguration method allowing access to the appsettings.json file

Returns IConfigurationRoot, from which you can use methods
such as GetConnectionString("ConnectionName") to access
the configuration information

In the TestSupport library, a
method returns the absolute
path of the calling assembly’s
top-level directory (the
assembly that you’re
running your tests in).

Uses ASP.NET Core’s ConfigurationBuilder
to read that appsettings.json file. It’s
optional, so no error is thrown if the

configuration file doesn’t exist.
Calls the Build method, which
returns the IConfigurationRoot type

You can use the GetConfigration method to access the connection string and then
use this code to create an application’s DbContext:

var config = AppSettings.GetConfiguration();
config.GetConnectionString("UnitTestConnection");
var builder = new DbContextOptionsBuilder<EfCoreContext>();
builder.UseSqlServer(connectionString);
using var context = new EfCoreContext(builder.Options);
// … rest of unit test left out

That code solves the problem of getting a connection string, but you still have the
problem of having different databases for each test class because by default, xUnit
runs unit tests in parallel. This topic is covered in section 17.5.2.

17.5.2 Providing a database per test class to allow xUnit to run tests
in parallel

Because xUnit can run each class of unit tests in parallel, using one database for all
your tests wouldn’t work. Good unit tests need a known starting point and should
return a known result, which rules out using one database, as different tests will simul-
taneously change the database.

http://mng.bz/rmYg

538 CHAPTER 17 Unit testing EF Core applications

NOTE You can run xUnit sequentially (see the “Changing Default Behavior”
section of this xUnit documentation at https://xunit.net/docs/running-tests-
in-parallel), but I don’t recommend doing that because it will slow the run-
ning of your unit tests.

One common solution is to have separately named databases for each unit test class or
possibly each unit test method. The EfCore.TestSupport library contains methods that
produce an SQL Server DbContextOptions<T> result in which the database name is
unique to a test class or method. Figure 17.4 shows the two methods. The first method
creates a database with a name unique to this class, and the second one produces a
database with a name that’s unique to that class and method.

 The result of using either of these classes is that each test class or method has its
own uniquely named database. So when unit tests are run in parallel, each test class
has its own database to test against.

pu lic class MyTestClassb
{

[Fact]
public void MyTest1()
{

//SETUP
var options

<Ef.CreateUniqueClassOptions
)using(var

{
//...etc.

}
}

[Fact]
public void MyTest2
{

//SETUP
var options=

<Ef.CreateUniqueMethodOptions
)using

{
//...

}
}

}

{
"ConnectionStrings":

":"UnitTestConnection
"Server=(localdb)\\mssqllocaldb;
Database=MyApp-Test;
Tru
MultipleActiveResultSets=true"
}

}

The EfCore.TestSupport library needs an
appsettings.json file in the top level of your
unit test project. It must contain a connection
string called UnitTestConnection.
That connection string must have a database
name ending in Test.

The CreateUniqueClassOptions
method takes the database
name from the appsettings.json
file and combines that with the
class name to create a database
name unique to this test class:
MyApp-Test.MyTestClass

The CreateUniqueMethodOptions
method takes the database name
from the appsettings.json file, the
class name, and the method name
to create a database name unique
to this test class:
MyApp-Test.MyTestClass.MyTest2

1

2

3

Figure 17.4 Two methods that set up the database options for an SQL Server database but alter the
database name to be class-unique or class-and-method-unique. When you run multiple unit test
classes, they have their own databases, so they won’t interfere with each other.

https://xunit.net/docs/running-tests-in-parallel
https://xunit.net/docs/running-tests-in-parallel

539Using a production-type database in your unit tests

Calls a

method
betwe

method
CreateU

MethodO

ns,
t

Ret
co

string
appset

file, but
databa
modifie

the
Cla

name a

TIP xUnit runs each test class in parallel; but within a class, it runs each test
serially. For this reason, I normally use a class-unique database. I use a class-
and-method-unique database rarely, but it’s there if I need it.

The next listing shows the code inside the CreateUniqueClassOptions extension
method. This code encapsulates all the settings of the DbContext options to save you
from having to include them in every unit test.

public static DbContextOptions<T>
 CreateUniqueClassOptions<T>(
 this object callingClass,
 Action<DbContextOptionsBuilder<T>> builder = null)
 where T : DbContext
{
 return CreateOptionWithDatabaseName<T>
 (callingClass, builder);
}

private static DbContextOptions<T>
 CreateOptionWithDatabaseName<T>(
 object callingClass,
 Action<DbContextOptionsBuilder<T>> extraOptions,
 string callingMember = null)
 where T : DbContext
{
 var connectionString = callingClass
 .GetUniqueDatabaseConnectionString(callingMember);
 var builder = new DbContextOptionsBuilder<T>();
 builder.UseSqlServer(connectionString);
 builder.ApplyOtherOptionSettings();
 extraOptions?.Invoke(builder);
 return builder.Options;
}

xUnit’s parallel-running feature has some other constraints. The use of static variables
(static constants are fine) to carry information causes problems, for example, as differ-
ent tests may set a static variable to different values in parallel. Nowadays, we don’t
use statics much because dependency injection fills that gap. But if you use static vari-
ables in your code, you should turn off parallel running in xUnit so that you run unit
tests serially.

Listing 17.8 CreateUniqueClassOptions extension method with a helper

Returns options for an SQL Server database with
a name starting with the database name in the
original connection string in the appsettings.json
file, but with the name of the class of the
instance provided in the first parameter

It’s expected that the object instance
provided will be this—the class in
which the unit test is running.

This parameter
allows you to
add more option
methods while
building the
options.

 private
 shared
en this

and the
nique-
ptions

options

Builds the SQL
Server part of the
options, with the
correct database
name

These parameters are
passed from Create-
UniqueClassOptions. For
CreateUniqueClassOptio
the calling method is lef
as null.

urns the
nnection
from the
ting.json
 with the
se name
d to use
 calling-

ss’s type
s a suffix

Sets up OptionsBuilder
and creates an SQL Server
database provider with
the connection string

Calls a general method used on all your
option builders, enabling sensitive
logging and better error messages

Applies any extra option methods
that the caller provided

Returns the
DbContextOptions<T> to
configure the application’s

DbContext

540 CHAPTER 17 Unit testing EF Core applications

17.5.3 Making sure that the database’s schema is up to date and the
database is empty

Section 17.5.2 shows how to create unique databases for your tests, but you still have
the problem of making sure that a database’s schema is up to date and empty when
you rerun a test. When I say that the “database’s schema is up to date,” I mean that the
database’s schema matches the database model that EF Core creates by scanning your
entity classes and any EF Core configuration code you have applied to your applica-
tion’s DbContext.

 Unlike your application, which will use some form of migration to update the
entity classes or EF Core configuration, your unit tests will use EF Core’s Ensure-
Create/EnsureCreatedAsync methods to make sure that you have a database to work
with. These methods create a database with an up-to-date schema using the current
entity classes and configuration of your application’s DbContext, but only if there isn’t
an existing database of the same name. After the first run of the unit test, the data-
base’s schema is fixed, so its schema will be out of date if you change the EF Core con-
figuration or any of the entity classes. Therefore, you need a way to make sure that the
database has an up-to-date schema and, at the same time, provide an empty database
as a starting point for a unit test.

 Let’s start with a foolproof but slow method. Listing 17.9 shows Microsoft’s recom-
mended way to create an empty database with the correct schema without using
migrations. These two EF Core methods delete and create databases; the create-
database method builds the database schema up by using the current EF Core config-
uration and entity classes. The following listing shows a call to the EnsureDeleted
method first to delete the database and then calls EnsureCreated to build the correct
schema with no data in it.

[Fact]
public void TestExampleSqlDatabaseOk()
{
 //SETUP
 var options = this
 .CreateUniqueClassOptions<EfCoreContext>();
 using (var context = new EfCoreContext(options))
 {
 context.Database.EnsureDeleted();
 context.Database.EnsureCreated();
 //… rest of test removed

The foolproof way to create a database that’s up to date and emptyListing 17.9

Deletes the current
database (if present)

Creates a new database, using
the configuration inside your
application’s DbContext

Because listing 17.9 uses EfCore.testSupport’s CreateUniqueClassOptions method,
each unit test in that class uses the same database, but each unit test method deletes
and re-creates the database in the Setup stage of the test.

This approach used to be slow (~10 seconds) for an SQL Server database, but since
the new SqlClient library came out in .NET 5, it’s been much quicker (~ 1.5 seconds),

541Using a production-type database in your unit tests
which makes a big difference in how long a unit test would take to run with the
EnsureDeleted/EnsureCreated version.

NOTE How long EnsureDeleted/EnsureCreated takes depends on the data-
base. When I was writing the first edition of this book, a delete/create of an
SQL Server database used to take about 10 seconds, but a MySQL database
took only 1 second. You need to test your own database types to see how long
it takes to delete and re-create the database.

Another approach, suggested by Arthur Vickers of the EF Core team, is a method that
the team uses in its unit tests: EnsureClean. This clever method removes the current
schema of the database by deleting all the SQL indexes, constraints, tables, sequences,
UDFs, and so on in the database. Then, by default, it calls the EnsureCreated method
to return a database that has the correct schema and is empty of data.

 The EnsureClean method is deep inside EF Core’s unit tests, but I extracted that
code and built the other parts needed to make it useful; it is available in the
EfCore.TestSupport version 5. The following listing shows how to use this method in
your unit tests.

[Fact]
public void TestExampleSqlServerEnsureClean()
{
 //SETUP
 var options = this.
 CreateUniqueClassOptions<BookDbContext>();

 using var context = new BookDbContext(options);

 context.Database.EnsureClean();

 //… rest of test removed
}

EnsureClean approach is faster, maybe twice as fast as the EnsureDeleted/Ensure-
Created version, which could make a big difference in how long your unit tests take to
run. It’s also better when your database server doesn’t allow you to delete or create
new databases but does allow you to read/write a database, such as when your test
databases are on an SQL server on which you don’t have admin privileges.

NOTE At the moment, the EnsuredClean method works only for SQL Server,
but the method could be improved to handle other database types. If a data-
base type already has a quick EnsureDeleted/EnsureCreated run time, how-
ever, it’s not worth extending.

The final approach to obtaining a database for use in a unit test is unusual but can be
useful in some situations. It works by applying changes to the database only within a

Using theListing 17.10 EnsureClean method to update the database’s schema

Wipes the data and schema in the
database and then calls EnsureCreated
to set up the correct schema

542 CHAPTER 17 Unit testing EF Core applications

transaction. This approach works because when the transaction is disposed, if you
haven’t called the transaction.Commit method, it rolls back all the changes made in
a database while the transaction is active. As a result, each unit test starts with the same
data every time.

 This approach is useful if you have an example database, maybe copied from the
production database (with personal data anonymized, of course), that you want to test
against, but you don’t want the example database to be changed. I used this approach
for a client who had an example database (1 TB in size and held in Azure). Using the
transaction version allowed me to run some of the client’s code to understand what it
changed in the database without changing the database’s content.

 To use this transaction version, you must create a transaction immediately after
you create the application’s DbContext, and you must hold the transaction in a vari-
able that will be disposed at the end of the unit test. In the following listing, I achieve
that effect via the using var keywords.

[Fact]
public void TestUsingTransactionToRollBackChanges()
{
 //SETUP
 var builder = new
 DbContextOptionsBuilder<BookDbContext>();
 builder.UseSqlServer(_connectionString);
 using var context =
 new BookDbContext(builder.Options);

 using var transaction =
 context.Database.BeginTransaction();

 //ATTEMPT
 var newBooks = BookTestData
 .CreateDummyBooks(10);
 context.AddRange(newBooks);
 context.SaveChanges();

 //VERIFY
 context.Books.Count().ShouldEqual(4+10);

}

Using a transaction to roll back any database changes made in the testListing 17.11

You most likely
will link to a
database via a
connection string.

The transaction is held in a user
var variable, which means that it
will be disposed when the current
block ends.

Run your
test ...

… and check
whether it worked.

When the unit test method ends, the
transaction will be disposed and will roll back
the changes made in the unit test. In this case,
four books were already in the database.

17.5.4 Mimicking the database setup that EF Core migration
would deliver

One problem I came across in unit testing occurred when my database had extra SQL
commands that EF Core didn’t add. If you use a UDF in your code, for example, how
do you get that SQL into your unit test database? You have three solutions:

543Using a production-type database in your unit tests

Ad
user-de

functio
the data
 For simple SQL, such as a UDF, you can execute a script file after the Ensure-
Created method.

 If you’ve added your SQL to the EF Core migration files (see section 9.5.2), you
should call context.Database.Migrate instead of ….EnsureCreated.

 If you’re using script-based migrations (see section 11.4), instead of calling
EnsureCreated, you should execute the scripts to build the database.

The last two items have the solution detailed in the list, but the first item needs some
code. I created a method called ExecuteScriptFileInTransaction in my EfCore
.TestSupport library. This method executes the SQL inside an SQL script file on the
database that the application’s DbContext is connected to. The format of the script is
in a Microsoft SQL Server Management Studio format: a set of SQL commands, each
ending with a single line containing the SQL command GO. The following listing
shows an SQL change script file that adds a UDF to a database.

IF OBJECT_ID('dbo.AuthorsStringUdf') IS NOT NULL
 DROP FUNCTION dbo.AuthorsStringUdf
GO

CREATE FUNCTION AuthorsStringUdf (@bookId int)
RETURNS NVARCHAR(4000)
-- … SQL commands removed to make the example shorter
RETURN @Names
END
GO

The ExecuteScriptFileInTransaction extension method can apply an SQL script to
a database by using the format in listing 17.12. Listing 17.13 shows a typical way to
apply this script to a unit test database.

NOTE The TestData.GetFilePath method in the following listing is another
EfCore.TestSupport library method; it allows you to access files in a top-level
directory called TestData in your Test project.

[Fact]
public void TestApplyScriptExampleOk()
{
 var options = this
 .CreateUniqueClassOptions<EfCoreContext>();
 var filepath = TestData.GetFilePath(
 "AddUserDefinedFunctions.sql");
 using (var context = new EfCoreContext(options))
 {
 context.Database.EnsureDeleted();
 context.Database.EnsureCreated();

An example SQL script file withListing 17.12 GO at the end of each SQL command

An example of applying an SQL script to a unit test databaseListing 17.13

Removes existing version of the UDF you want to add.
If you don’t do this, the create function will fail.

ExecuteScriptFileInTransaction
looks for a line starting with
GO to split out each SQL
command to send to the
database.

ds a
fined
n to
base

Gets the file path of the
SQL script file via your
TestData’s GetFilePath
method

544 CHAPTER 17 Unit testing EF Core applications

This m
bu

in-m
o

e
 context
 .ExecuteScriptFileInTransaction(
 filepath);

 //… the rest of the unit test left out
 }
}

Using an SQLite in-memor17.6 y database for unit testing
SQLite has a useful option for creating an in-memory database. This option allows a
unit test to create a new database in-memory, which means that it’s isolated from any
other database. This approach solves all the problems of running parallel tests, having
an up-to-date schema, and ensuring that the database is empty, and it’s fast. But see
section 17.4 for potential problems.

 To make an SQLite database in-memory, you need to set DataSource to ":memory:",
as shown here. The code in listing 17.14 comes from the SqliteInMemory.Create-
Options method in my EfCore.TestSupport library.

NOTE The CreateOptions method in listing 17.14 returns a class called
DbContextOptionsDisposable<T>. This class implements the DbContext-
OptionsBuilder<T> type needed for creating an instance of your applica-
tion’s DbContext, and the IDisposable interface, which is used to dispose
the SQLite connection when the application’s DbContext is disposed. I cover
this topic toward the end of this section.

public static DbContextOptionsDisposable<T> CreateOptions<T>
 (Action<DbContextOptionsBuilder<T>> builder = null)
 where T : DbContext
{
 return new DbContextOptionsDisposable<T>
 (SetupConnectionAndBuilderOptions<T>(builder)
 .Options);
}

private static DbContextOptionsBuilder<T>
 SetupConnectionAndBuilderOptions<T>
 (Action<DbContextOptionsBuilder<T>> applyExtraOption)
 where T : DbContext
{
 var connectionStringBuilder =
 new SqliteConnectionStringBuilder
 { DataSource = ":memory:" };
 var connectionString = connectionStringBuilder.ToString();

Creating SQLlite in-memory databaseListing 17.14 DbContextOptions<T> options

Applies your script to the database by
using the ExecuteScriptFileInTransaction
method

A class containing the SQLite in-memory
options, which is also disposable

This parameter allows you to add more
option methods while building the options.

Gets the
DbContextOptions<T> and
returns a disposable versionethod

ilds the
SQLite
emory
ptions.

Contains any extra
option methods th
user provided

Creates an SQLite connection
string with the DataSource set
to ":memory:"

Turns the SQLiteConnectionStringBuilder
into a connection string

545Using an SQLite in-memory database for unit testing

a
co

by
co

Uses th
to cr

app
D

 var connection = new SqliteConnection(connectionString);
 connection.Open();

 // create in-memory context
 var builder = new DbContextOptionsBuilder<T>();
 builder.UseSqlite(connection);
 builder.ApplyOtherOptionSettings();
 applyExtraOption?.Invoke(builder);

 return builder;
}

Then you can use the SQLiteInMemory.CreateOptions method in one of your unit
tests, as shown in the next listing. You should note that in this case, you need to call
only the EnsureCreated method, because no database currently exists.

[Fact]
public void TestSQLiteOk()
{
 //SETUP
 var options = SQLiteInMemory
 .CreateOptions<EfCoreContext>();

 using var context = new BookDbContext(options);

 context.Database.EnsureCreated();

 //ATTEMPT
 context.SeedDatabaseFourBooks();

 //VERIFY
 context.Books.Count().ShouldEqual(4);
}

At the end of the unit test, the context is disposed because you used a using var state-
ment to hold the application’s DbContext instance. Disposing the context in turn
disposes the options variable, which deletes the database by disposing the Sqlite-
Connection connection. Disposing the SqliteConnection connection follows the rec-
ommended practice in the EF Core documentation; see http://mng.bz/VG7X.

NOTE If you are using multiple instances of the application’s DbContext,
you need to postpone disposing the SqliteConnection connection by using
the options.StopNextDispose or options.TurnOffDispose method (see
section 17.10.2 for one way).

Using an SQLite in-memory database in an xUnit unit testListing 17.15

Forms
n SQLite
nnection
using the
nnection

string

You must open the SQLite
connection. If you don’t,
the in-memory database
won’t work.

Builds a DbContextOptions<T>
with the SQLite database
provider and the open
connection

Calls a general method used
on all your option builders,
enabling sensitive logging
and better error messages

Adds any extra
options the
user added

Returns the
DbContextOptions<T> to
use in the creation of your

application’s DbContext

The SQLiteInMemory.CreateOptions
provides the options for an
in-memory database. The options
are also IDisposable.

at option
eate your
lication’s
bContext

You call context.Database
.EnsureCreated to create
the database.

Runs a test method you’ve
written that adds four test
books to the database

Checks that your SeedDatabaseFourBooks
worked and adds four books to the database

http://mng.bz/VG7X

546 CHAPTER 17 Unit testing EF Core applications

What about EF Core’s in-memory database provider for unit testing?
EF Core has an in-memory database provider that the team uses in its testing, but the
documentation states that this database is “not suitable for testing applications that
use EF Core” (http://mng.bz/xGO8). Therefore, the team was surprised to get feed-
back that lots of people are using the in-memory database provider for unit testing.

When I wrote the first edition of this book, I used the in-memory database provider
and quickly found its limitations. For one thing, it doesn’t work like a real relational
database; therefore, it doesn’t catch all the problems. When I found that SQLite had
an in-memory mode, I swapped over to that database. It’s not perfect, but it’s much
better than the EF Core in-memory database provider.

17.7 Stubbing or mocking an EF Core database
Moving away from using an actual database, let’s look at the third approach depicted
in figure 17.3: stubbing or mocking the database. Here are the definitions of the two
approaches:

 Stubbing a database means creating some code that replaces the current database.
Stubbing works well when you are using a repository pattern (see section 13.5.1).

 Mocking usually requires a mocking library such as Moq (see https://github
.com/moq/moq4), which you use to take control of the class you are mocking.
This task is basically impossible for EF Core; the closest library to mocking EF
Core is EF Core’s in-memory database provider.

NOTE This article provides more information on stubbing and mocking:
http://mng.bz/A1Wp.

Having said that mocking isn’t going to work, now I’ll show an example that I use with
the complex business logic described in section 4.2. In this pattern, I use a per-business
logic repository pattern. Because business logic can be complex, often with compli-
cated validation rules, I find stubbing to be a useful approach to replacing the data-
base access. The stub provides a lot more control of the database access, and you can
more easily simulate various error conditions, but it does take longer to write the
mocking and unit tests.

As an example of this approach, I am going to stub the database when testing the
business logic that handles orders for books. The book-order business logic method
uses the repository pattern to separate database access code from the business logic
because it makes the business logic code simpler; it also helps with unit testing
because I can replace the database access code with a test class that can replace the
database with a stub that matches the repository interface. I find that stubbing gives
me much better control of the data going into, and out of, the method I’m testing.

This next example is taken from my unit tests in the book’s GitHub repo; here, you
want to test the PlaceOrderAction method developed in chapter 4. The PlaceOrder-

Action class’s constructor requires one parameter of type IPlaceOrderDbAccess,

https://github.com/moq/moq4
https://github.com/moq/moq4
https://github.com/moq/moq4
http://mng.bz/xGO8
http://mng.bz/A1Wp

547Stubbing or mocking an EF Core database
which is normally the PlaceOrderDbAccess class that handles the database accesses.
But for testing, you replace the PlaceOrderDbAccess class with our test class—our
stub that implements the same IPlaceOrderDbAccess interface. This stub class allows
you to control what the PlaceOrderAction class can read from the database and cap-
ture what it attempts to write to the database. The following listing shows a unit test
that uses this mock, which captures the order that the PlaceOrderAction method pro-
duces so that you can check whether the user’s ID was set properly.

[Fact]
public void ExampleOfStubbingOk()
{
 //SETUP
 var lineItems = new List<OrderLineItem>
 {
 new OrderLineItem {BookId = 1, NumBooks = 4}
 };
 var userId = Guid.NewGuid();
 var input = new PlaceOrderInDto(true, userId,
 lineItems.ToImmutableList());

 var stubDbA = new StubPlaceOrderDbAccess();
 var service = new PlaceOrderAction(stubDbA);

 //ATTEMPT
 service.Action(input);

 //VERIFY
 service.Errors.Any().ShouldEqual(false);
 mockDbA.AddedOrder.CustomerId
 .ShouldEqual(userId);
}

The stub class, StubPlaceOrderDbAccess, doesn’t access the database, but it has prop-
erties or methods that you can use to control every part of the reading of data from
the database. This class also captures anything the PlaceOrderAction method tries to
write to the database, so you can check that too. Listing 17.17 shows the stub database
class, StubPlaceOrderDbAccess. Note that I created a static method called Create-
DummyBooks to generate a known set of Books to use in this test (see section 17.9).

A unit test providing a stub instance to theListing 17.16 BizLogic

Creates the
input to the
PlaceOrderAction
method

Creates an instance of the mock database access code. This instance
has numerous controls, but in this case, you use the default settings.

Creates your
PlaceOrderAction
instance, providing it a
mock of the database
access code

Runs the PlaceOrderAction’s method
called Action, which takes in the input
data and outputs an order

Checks that the order
placement completed
successfully

Your mock database access code
has captured the order that the
PlaceOrderAction’s method “wrote”
to the database, so you can check
whether it was formed properly.

548 CHAPTER 17 Unit testing EF Core applications

Wil
t

bu
Pla

cr
s

Simila
origin
case re

Dumm
public class StubPlaceOrderDbAccess
 : IPlaceOrderDbAccess
{
 public ImmutableList<Book> DummyBooks
 { get; private set; }

 public Order AddedOrder { get; private set; }

 public StubPlaceOrderDbAccess(
 bool createLastInFuture = false,
 int? promoPriceFirstBook = null)
 {
 var numBooks = createLastInFuture
 ? DateTime.UtcNow.Year -
 EfTestData.DummyBookStartDate.Year + 2
 : 10;
 var books = EfTestData.CreateDummyBooks
 (numBooks, createLastInFuture);
 if (promotionPriceForFirstBook != null)
 books.First().Promotion = new PriceOffer
 {
 NewPrice = (int) promoPriceFirstBook,
 PromotionalText = "Unit Test"
 };
 DummyBooks = books.ToImmutableList();
 }

 public IDictionary<int, Book>
 FindBooksByIdsWithPriceOffers
 (IEnumerable<int> bookIds)
 {
 return DummyBooks.AsQueryable()
 .Where(x => bookIds.Contains(x.BookId))
 .ToDictionary(key => key.BookId);
 }

 public void Add(Order newOrder)
 {
 AddedOrder = newOrder;
 }
}

As I said earlier, the stubbing code is long and a bit complicated to write, but because
you copied the real PlaceOrderDbAccess class and then edited it, the job isn’t too hard.

Listing 17.17 The stub database access code used for unit testing

Mock MockPlaceOrderDbAccess implements the IPlaceOrderDbAccess,
which allows it to replace the normal PlaceOrderDbAccess class.

Holds the dummy books that the
mock uses, which can be useful if
the test wants to compare the
output with the dummy database

l contain
he Order
ilt by the
ceOrder-
Action’s
method

In this case, you set up the
mock via its constructor.

Allows you to check that
a book that hasn’t been
published yet won’t be
accepted in an order

Allows you to add a
PriceOffer to the first
book so you can check
that the correct price is
recorded on the order

Works out how to
eate enough books
o that the last one
isn’t published yet

Creates a method
to create dummy
books for your test

Adds a
PriceOffer to

the first book,
if required

Called to get the books that
the input selected; uses the
DummyBooks generated in
the constructor

r code to the
al, but in this
ads from the
yBooks, not

the database

Called by the PlaceOrderAction’s method
to write the Order to the database. In this
case, you capture the Order so that the
unit test can inspect it.

549Unit testing a Cosmos DB database
Unit testing a Cosmos DB database17.8
Unit testing a Cosmos DB database doesn’t fit any of the three approaches described
in section 17.4, but it’s closest to mocking the database because Microsoft has created
an application called Azure Cosmos DB Emulator, which you can run on your devel-
opment PC and test against. Microsoft’s documentation at http://mng.bz/RK8j says

The Azure Cosmos DB Emulator provides a high-fidelity emulation of the Azure Cosmos
DB service. It supports equivalent functionality as the Azure Cosmos DB, which includes
creating data, querying data, provisioning and scaling containers, and executing stored
procedures and triggers.

You need to download the Azure Cosmos DB Emulator from http://mng.bz/4MOj
and run it locally. When you run the emulator, it provides a URL that takes you to
the emulator’s quick-start web page, which contains details on accessing this Cosmos
DB service. The emulator’s website also has a useful Explorer (see figure 17.5) that
provides full access and configuration of the databases, containers, and items within
a container.

NOTE The Azure Cosmos DB Emulator is available only for Windows.

Databases

Container

The content of an item
added to the container

Figure 17.5 When you run the Azure Cosmos DB Emulator, it gives you a URL to access information
about the Cosmos DB emulator settings on the quick-start page, as well as access to the emulated
Cosmos DB databases and containers via the Explorer page, as shown in this figure. The Explorer
page provides full access to and configuration of the databases, containers, and items within a
container.

http://mng.bz/RK8j
http://mng.bz/4MOj
http://mng.bz/4MOj

550 CHAPTER 17 Unit testing EF Core applications

op
Cosm
 In section 16.5, you learned that to access a Cosmos DB service, you need a con-
nection string, and the Emulator’s quick-start page provides the connection string for
you. The following listing shows how.

public async Task AccessCosmosEmulatorViaConnectionString()
{
 //SETUP
 var connectionString =
 "AccountEndpoint=https://localhost… rest left out”
 var builder = new
 DbContextOptionsBuilder<CosmosDbContext>()
 .UseCosmos(
 connectionString,
 "MyCosmosDatabase");
 using var context = new CosmosDbContext(builder.Options);

 //… rest of the unit test left out
}

That approach works fine, but because the connection string is the same wherever you
run the emulator, you can build a method to set up the options automatically. I added
methods of that type to the EfCore.TestSupport version 5 NuGet packages. These
methods follow the same approach as the EfCore.TestSupport SQL Server methods
(see figure 17.4), where the class name (and optionally the method name) is used to
form the database name.

 The following listing shows the use of EfCore.TestSupport’s CreateUniqueClass-
CosmosDbEmulator method to set up the options for an application DbContext called
CosmosDbContext. This code creates a Cosmos database with the same name as the
unit test class type, which makes the database unique in your project.

[Fact]
public async Task TestAccessCosmosEmulator()
{
 //SETUP
 var options = this.
 CreateUniqueClassCosmosDbEmulator
 <CosmosDbContext>();

 using var context = new CosmosDbContext(options);

 await context.Database.EnsureDeletedAsync();
 await context.Database.EnsureCreatedAsync();

Setting up EF Core to access a Cosmos DB databaseListing 17.18

Unit testing Cosmos DB code by using the Cosmos DB EmulatorListing 17.19

The connection
string taken from
the quick-start
page of the
emulator’ websiteBuilds the

tions for the
osDbContext

UseCosmos method is found in the
Microsoft.EntityFrameworkCore.Cosmos
NuGet package.

The connection string
is provided first.

The name you want
for the database

Creates an instance of the
application’s DbContext

This method sets up the
Cosmos DB database
options with the database
name taken from the
class name.

Creates the DbContext
to access that
database

Creates an empty database
with the correct structure

551Seeding a database with test data to test your code correctly
 //… rest of unit test left out
}

As I stated in section 16.6.6, the EnsureCreatedAsync method is the recommended
way to create an empty Cosmos DB database. Therefore, using the EnsureDeleted-
Async and then EnsureCreatedAsync method is the correct way to delete and re-create
a Cosmos DB database. Fortunately, the process is quick.

17.9 Seeding a database with test data
to test your code correctly
Often, a unit test needs certain data in the database before you can run a test. To
test the code that handles orders for books, for example, you need some Books in
the database before you run the test. In cases like this one, you would add some
code in the Setup stage of the unit test to add those books before you test the order
code in the Verify stage.

 My experience is that setting up the database with data to test some feature in a
real application can quite complex. In fact, setting up the database with the right type
can be much harder than running and verifying the test’s results. Here are some tips
on seeding a unit test database:

 It’s OK at the start to write the setup code in the unit test, but as soon as you
find yourself copying that setup code, it’s time to turn that code into a method.

 I created two types of help methods in my Test project to help me set up test
data, and I gave them good names so I can quickly identify what they do. The
two types are
– Ones that return the test data, with names such as CreateFourBooks() and

CreateDummyBooks(int numBooks = 10). I use these methods when I want to
test adding these types to the database.

– Ones that write the test data to the database, with names such as SeedData-
baseFourBooks() and AddDummyBooksToDb(). These methods write the test
data to the database and normally return the added data so that I can get
their primary keys to use in a test.

 Keep your test-data setup methods up to date, refactoring them as you come
across different scenarios.

 Consider storing complex test data in a JSON file. I created a method to serial-
ize data from a production system to a JSON file and have another method that
will deserialize that data and write it to the database. But make sure that you
anonymize any personal data before you save the JSON.

 The EnsureCreated method will also seed the database with data configured via
the HasData configuration (see section 9.4.3).

552 CHAPTER 17 Unit testing EF Core applications
17.10 Solving the problem of one database access breaking
another stage of your test
In section 17.9, I describe how to add data to the test database, referred to as seeding
your database, before you run your test. But a problem can arise in your test because
of EF Core’s relational fixup stage (see section 6.1.1) in a database query. Every
tracked database query (that is, a query without the AsNoTracking method in it) will
try to reuse the instances of any the entities already tracking by the unit test’s
DbContext. The effect is that any tracked query can affect any tracked query after it,
so it can affect the Attempt and Verify parts of your unit test.

 An example is the best way to understand this concept. Suppose that you want to
test your code for adding a new Review to a Book, and you wrote the code shown in
the following snippet:

var book = context.Books
 .OrderBy(x => x.BookId).Last();
book.Reviews.Add(new Review{NumStars = 5});
context.SaveChanges();

But there’s a problem with this code: it has a bug. The code should have Include(b =>
b.Reviews) added to the first line to ensure that the current Reviews are loaded first.
But if you’re not careful, your unit test will work as it does in the following listing.

[Fact]
public void INCORRECTtestOfDisconnectedState()
{
 //SETUP
 var options = SqliteInMemory
 .CreateOptions<EfCoreContext>();
 using var context = new EfCoreContext(options);

 context.Database.EnsureCreated();
 context.SeedDatabaseFourBooks();

 //ATTEMPT
 var book = context.Books
 .OrderBy(x => x.BookId).Last();
 book.Reviews.Add(new Review { NumStars = 5 });
 context.SaveChanges();

 //VERIFY
 //THIS IS INCORRECT!!!!!
 context.Books
 .OrderBy(x => x.BookId).Last()
 .Reviews.Count.ShouldEqual(3);
}

An INCORRECT simulation of a disconnected state, with the wrong resultListing 17.20

Sets up the test database with test
data consisting of four books

Reads in the last book from your test
set, which you know has two reviews

Adds another Review to the book, which shouldn’t
work but does because the seed data is still being
tracked by the DbContext instance

Saves the Review
to the database

Checks that you have three Reviews,
which works, but the unit test should
have failed with an exception

553Solving the problem of one database access breaking another stage of your test

Chang
.Clea

tr
In fact, this unit test has two errors because of tracked entities:

 Attempt stage—Should have failed because the Reviews navigational property
was null, but works because of relational fixup from the Setup stage

 Verify stage—Should fail if a context.SaveChanges call was left out, but works
because of relational fixup from the Attempt stage

To my mind, the worst outcome—even worse than not having a unit test—is a unit test
that works when it shouldn’t so that you think something is fine when it isn’t. Let’s
look at ways to change the incorrect unit test in listing 17.20 so that it will fail properly.
Previously, there was only one way to handle this problem, but another approach has
been possible since EF Core 5. The two approaches are

 Use EF Core 5’s ChangeTracker.Clear method to clear the tracked entities
 Use multiple instances within using scopes (original approach)

I find the EF Core 5’s ChangeTracker.Clear approach to be quicker to write and
shorter, so I show it first, but I also show the original multiple-instances approach for
comparison purposes.

17.10.1 Test code using ChangeTracker.Clear in a disconnected state

The following listing solves the problem of the seeding data affecting the Attempt
stage and the Attempt stage affecting the Verify stage. In this case, an exception is
thrown, as the Reviews collection is null (assuming that you followed my recommen-
dation in section 6.1.6). If the Attempt stage was fixed, the code in the Verify stage
would be able to detect that SaveChanges wasn’t called.

[Fact]
public void UsingChangeTrackerClear()
{
 //SETUP
 var options = SqliteInMemory
 .CreateOptions<EfCoreContext>();
 using var context = new EfCoreContext(options);

 context.Database.EnsureCreated();
 context.SeedDatabaseFourBooks();

 context.ChangeTracker.Clear();

 //ATTEMPT
 var book = context.Books
 .OrderBy(x => x.BookId).Last();
 book.Reviews.Add(new Review { NumStars = 5 });

UsingListing 17.21 ChangeTracker.Clear to make the unit test work properly

Sets up the test database
with test data consisting
of four books

Calls
eTracker
r to stop

acking all
entities

Reads in the last book from
your test set, which you
know has two reviews

When you try to add the new Review, EF Core throws a NullReferenceException
because the Book’s Review collection isn’t loaded and therefore is null.

554 CHAPTER 17 Unit testing EF Core applications

Chang
.Clea

tr

St

con
from

dispos
t

instanc
appli
DbCo

d

 context.SaveChanges();

 //VERIFY
 context.ChangeTracker.Clear();

 context.Books.Include(b => b.Reviews)
 .OrderBy(x => x.BookId).Last()
 .Reviews.Count.ShouldEqual(3);
}

If you compare listing 17.21 with listing 17.22, you see that the code is shorter by nine
lines, mainly because you don’t need all the scoped using blocks in listing 17.22. I also
find this approach to be slightly easier to read without all the scoped blocks.

17.10.2 Test code by using multiple DbContext instances
in a disconnected state

The following listing uses two instances of the application’s DbContext: one to set up
the database and one to run the test. The test fails because an exception is thrown, as
the Reviews collection is null (assuming that you followed my recommendation in
section 6.1.6).

[Fact]
public void UsingThreeInstancesOfTheDbcontext()
{
 //SETUP
 var options = SqliteInMemory
 .CreateOptions<EfCoreContext>();
 options.StopNextDispose();
 using (var context = new EfCoreContext(options))
 {
 context.Database.EnsureCreated();
 context.SeedDatabaseFourBooks();
 }
 options.StopNextDispose();
 using (var context = new EfCoreContext(options))
 {
 //ATTEMPT
 var book = context.Books
 .Include(x => x.Reviews)
 .OrderBy(x => x.BookId).Last();
 book.Reviews.Add(new Review { NumStars = 5 });

 context.SaveChanges();
 }
 using (var context = new EfCoreContext(options))
 {

Three separate DbContext instances that make the test work properlyListing 17.22

Saves the Review
to the database

Calls
eTracker
r to stop

acking all
entities

Reloads the book with its
Reviews to check whether
there are three Reviews

Creates the in-memory SQLite
options in the same way as the
preceding example

ops the
SQLite

nection
 being

ed after
he next
e of the
cation’s
ntext is
isposed

Creates the first instance
of the application’s
DbContext

Sets up the test database with test data
consisting of four books, but this time
in a separate DbContext instance

Closes that last instance and opens a new instance of the
application’s DbContext. The new instance doesn’t have
any tracked entities that could alter how the test runs.

Reads in the last book
from your test set, which
you know has two Reviews

When you try to
add the new Review,

EF Core throws a
NullReferenceException

because the Book’s
Review collection isn’t
loaded and therefore

is null.

Calls SaveChanges to
update the database

555Capturing the database commands sent to a database
 //VERIFY
 context.Books.Include(b => b.Reviews)
 .OrderBy(x => x.BookId).Last()
 .Reviews.Count.ShouldEqual(3);
 }
}

17.11 Capturing the database commands sent to a database
Sometimes, it’s helpful to see what EF Core is doing when it accesses a real database,
and EF Core provides a couple of ways to do that. Inspecting the EF Core logging
from your running application is one way, but it can be hard to find the exact log
among all the other logs. Another, more focused approach is to write unit tests that
test specific parts of your EF Core queries by capturing SQL commands that EF Core
would use to query the database.

 The EF Core logs often contain the SQL commands but also carry other informa-
tion, such as warnings of possible problems and timings (how long the database access
took). Also, even if you don’t know the SQL language well, it’s not hard to check
whether the configuration changes you made created the expected changes in the
database. EF Core 5 added two new features that make capturing database commands
much easier than in previous versions:

 The LogTo option extension, which makes it easy to filter and capture EF Core
logging

 The ToQueryString method, which shows the SQL generated from a LINQ
query

17.11.1 Using the LogTo option extension to filter and capture
EF Core logging

Before EF Core 5, getting logs out of EF Core required you to build an ILogger-
Provider class and register that logger provider via the UseLoggerFactory options
extension method. This technique wasn’t easy. The EF Core 5’s LogTo option exten-
sion method makes it much easier to get log output and adds some features that filter
the logs you want to see.

 The LogTo method typically returns each log via an Action<string> type, and you
can add the logs to a List<string> variable or output to some console. In xUnit, you
would use the xUnit ITestOutputHelper’s WriteLine method, as shown in the follow-
ing listing.

public class TestLogTo
{
 private readonly ITestOutputHelper _output;

Outputting logs from an xUnit test by using theListing 17.23 LogTo method

Reloads the Book with its
Reviews to check whether
there are three Reviews

The class holding your
unit tests of LogTo

An xUnit interface that allows
output to the unit test runner

556 CHAPTER 17 Unit testing EF Core applications

I

L

 public TestLogTo(ITestOutputHelper output)
 {
 _output = output;
 }

 [Fact]
 public void TestLogToDemoToConsole()
 {
 //SETUP
 var connectionString =
 this.GetUniqueDatabaseConnectionString();
 var builder =
 new DbContextOptionsBuilder<BookDbContext>()
 .UseSqlServer(connectionString)
 .EnableSensitiveDataLogging()
 .LogTo(_output.WriteLine);

 using var context = new BookDbContext(builder.Options);
 // … rest of unit test left out
 }
}

The default has the following format:

 LINE1: <loglevel(4 chars)> <DateTime.Now> <EventId> <Category>
 LINE2: <the log message>

The following code snippet shows one of the logs in this format:

 LINE1: warn: 10/12/2020 11:59:38.658 CoreEventId.SensitiveDataLogging-
EnabledWarning[10400] (Microsoft.EntityFrameworkCore.Infrastructure)

 LINE2: Sensitive data logging is enabled. Log entries and exception mes-
sages may include sensitive application data; this mode should only be
enabled during development.

As well as outputting the logs, the LogTo method can filter by the following types:

 LogLevel, such as LogLevel.Information or LogLevel.Warning
 EventIds, which define a specific log output, such as CoreEventId.Context-

Initialized and RelationalEventId.CommandExecuted
 Category names, which EF Core defines for commands in groups, such as

DbLoggerCategory.Database.Command.Name

 Functions that take in the EventId and the LogLevel and return true for the
logs you want to be output

This method is great, but there are so many options to choose from for adding the
LogTo feature to the EfCore.TestSupport library that I built a class called LogTo-
Options to handle all the settings (along with code to throw an exception if the com-
bination you picked isn’t supported). The LogToOptions class also includes some

xUnit will inject the
ITestOutputHelper via
the class’s constructor.

This method contains
a test of LogTo.

Provides a database
connection where the
database name is
unique to this classSets up the option

builder to an SQL
Server database

t is good to turn on
EnableSensitiveData
ogging in your unit

tests.

Adds the simplest form of the
LogTo method, which calls an
Action<string> method

557Capturing the database commands sent to a database
different defaults from LogTo’s defaults, which are based on my experience with log-
ging in unit tests. The changes are

 The default LogLevel should be Information. (I find Debug LogLevel logs to
be useful only if I am trying to find a bug.)

 I don’t want a DataTime in a log, because that means I can’t compare a log with
a constant string, so I set the DbContextLoggerOptions parameter to None.
(The DbContextLoggerOptions controls the log output and can add extra
information to the log string.)

 Most times, I don’t want to see logs of the Setup stage of the unit test, so I added
a bool ShowLog property (defaults to true) to allow you to control when the
Action<string> parameter is called.

Here is a listing of the LogToOptions class with comments on each property.

public class LogToOptions
{
 public bool ShowLog { get; set; }
 = true;

 public LogLevel LogLevel { get; set; }
 = LogLevel.Information;

 public string[] OnlyShowTheseCategories
 { get; set; }

 public EventId[] OnlyShowTheseEvents
 { get; set; }

 public Func<EventId, LogLevel, bool>
 FilterFunction { get; set; }

 public DbContextLoggerOptions
 LoggerOptions { get; set; }
 = DbContextLoggerOptions.None
}

Now let’s use the LogToOptions class with EfCore.TestSupport’s SqliteInMemory
.CreateOptionsWithLogTo method. In the following listing, you use the ShowLog
property in the LogToOptions class to display the logs only after the Setup stage of the
unit test has finished.

[Fact]
public void TestEfCoreLoggingCheckSqlOutputShowLog()
{
 //SETUP

TheListing 17.24 LogToOptions class with all the settings for the LogTo method

Turning off log output until theListing 17.25 //SETUP stage of the unit test is finished

If false, your Action<string> method
isn’t called; defaults to true

Only logs at or higher than the
LogLevel property will be output;
defaults to LogLevel.Information

If not null, returns only logs
with a Category name in
this array; defaults to null

If not null, returns only logs
with an EventId in this
array; defaults to null

If not null, this function is called, and
logs only where this function returns
true are returned; defaults to null

Controls the format of the EF Core log.
The default setting does not prefix the
log with extra information, such as
LogLevel, DateTime, and so on.

558 CHAPTER 17 Unit testing EF Core applications

Th

Act
 var logToOptions = new LogToOptions
 {
 ShowLog = false
 };
 var options = SqliteInMemory
 .CreateOptionsWithLogTo
 <BookDbContext>(
 _output.WriteLine,
 logToOptions);

 using var context = new BookDbContext(options);
 context.Database.EnsureCreated();
 context.SeedDatabaseFourBooks();

 //ATTEMPT
 logToOptions.ShowLog = true;
 var book = context.Books.Count();

 //VERIFY
}

The result is that instead of wading through the logs from creating the database and
seeding the database, you see only one log output in the xUnit runner’s window, as
shown in the following code snippet:

Executed DbCommand (0ms) [Parameters=[],
 CommandType='Text', CommandTimeout='30']
SELECT COUNT(*)
FROM "Books" AS "b"
WHERE NOT ("b"."SoftDeleted")

17.11.2 Using the ToQueryString method to show the SQL generated
from a LINQ query

The logging output is great and contains lots of useful information, but if you simply
want to see what your query looks like, you have a much simpler way. If you have built
a database query that returns an IQueryable result, you can use the ToQueryString
method. The following listing incorporates the output of the ToQueryString method
in the test.

A unit test containing theListing 17.26 ToQueryString method

In this case, you want to change
the default LogToOptions to set
the ShowLog to false.

This method sets up the SQLite
in-memory options and adds
LogTo to those options.

e parameter
is your

ion<string>
method and

must be
provided.

The second parameter is optional, but
in this case, you want to provide the
logToOptions to control the output.

This setup and seed
section doesn’t produce
any output because the
ShowLog property is false.

Turns on the logging output
by setting the ShowLog
property to true

This query produces one log
output, which will be sent to
the xUnit runner’s window.

[Fact]
public void TestToQueryStringOnLinqQuery()
{

//SETUP
var options = SqliteInMemory.CreateOptions<BookDbContext>();
using var context = new BookDbContext(options);

559Summary

 context.Database.EnsureCreated();
 context.SeedDatabaseFourBooks();

 //ATTEMPT
 var query = context.Books.Select(x => x.BookId);
 var bookIds = query.ToArray();

 //VERIFY
 _output.WriteLine(query.ToQueryString());
 query.ToQueryString().ShouldEqual(
 "SELECT \"b\".\"BookId\"\r\n" +
 "FROM \"Books\" AS \"b\"\r\n" +
 "WHERE NOT (\"b\".\"SoftDeleted\")");
 bookIds.ShouldEqual(new []{1,2,3,4});
}

Summary

You provide the LINQ
query without an

execution part. Then you run the
LINQ query by
adding ToArray
on the end.

Outputs the SQL for
your LINQ query

Tests whether
the SQL is what
you expected

Tests the output
of the query

 Unit testing is a way to test a unit of your code—a small piece of code that can
be logically isolated in your application.

 Unit testing is a great way to catch bugs when you develop your code and, more
important, when you or someone else refactors your code.

 I recommend using xUnit because it is widely used (EF Core uses xUnit and has
~70,000 tests), well supported, and fast. I also have built a library called EfCore
.TestSupport that provides methods to make testing EF Core code in xUnit
easier.

 An application’s DbContext designed to work with an ASP.NET Core applica-
tion is ready for unit testing, but any application’s DbContext that uses the
OnConfiguring method to set options needs to be modified to allow unit testing.

 There are three main ways to simulate a database when unit testing, each with
its own trade-offs:
– Using the same type of database as your production database—This approach is the

safest, but you need to deal with out-of-date database schemas and managing
databases to allow parallel running of unit test classes.

– Using an SQLite in-memory database—This approach is the fastest and easiest,
but it doesn’t mimic every SQL feature of your production database.

– Stubbing the database—When you have a repository pattern for accessing the
database, such as in business logic (see section 4.4.3), stubbing that reposi-
tory gives you fast and comprehensive control of the data for unit testing, but
it typically needs more test code to be written.

 Cosmos DB has a handy Azure Cosmos DB Emulator that you can download
and run locally. This application allows you to unit test Cosmos DB without
needing an Azure Cosmos DB service.

 Many unit tests need the test database to contain some data to be used in the
test, so it’s worth spending time to design a suite of test methods that will create
test data to use in your unit tests.

560 CHAPTER 17 Unit testing EF Core applications
 Your unit tests might say that the code under test is correct when it’s not. This
situation can happen if one section of your unit test is picking up tracked
instances from a previous stage of the test. You have two ways to ensure that this
problem doesn’t happen: use separate DbContext instances or use Change-
Changer.Clear.

 EF Core 5 has added two methods that make capturing the SQL produced from
your code much easier: the LogTo option to capture logging output and the
ToQueryString method to convert LINQ queries to database commands.

appendix A
A brief introduction

to LINQ

A.1

This appendix is for anyone who is new to Microsoft’s Language Integrated Query
(LINQ) feature or anyone who wants a quick recap of how LINQ works. The LINQ
language bridges the gap between the world of objects and the world of data, and is
used by EF Core to build database queries. Understanding the LINQ language is key
to using EF Core to access a database.

This appendix starts with the two syntaxes you can use to write LINQ code.
You’ll also learn the types of commands available in LINQ, with examples of how
those commands can manipulate collections of in-memory data.

Then you’ll explore the related .NET type IQueryable<T>, which holds LINQ
code in a form that can be executed later. This type allows developers to split com-
plex queries into separate parts and change the LINQ query dynamically. The
IQueryable<T> type also allows EF Core to translate the LINQ code into com-
mands that can be run on the database server. Finally, you’ll learn what an EF Core
query, with its LINQ part, looks like.

An introduction to the LINQ language
You can manipulate collections of data by using LINQ’s methods to sort, filter,
select, and so on. These collections can be in-memory data (such as an array of
integers, XML data, or JSON data) and of course databases, via libraries such as
EF Core. The LINQ feature is available in Microsoft’s languages C#, F#, and
Visual Basic; you can create readable code by using LINQ’s functional program-
ming approach.

TIP If you haven’t come across functional programming, it’s worth taking
a look at it. See http://mng.bz/97CY or, for a more in-depth, .NET-focused
561

http://mng.bz/97CY

562 APPENDIX A A brief introduction to LINQ

Or

Fi

in
an

Or
book, Enrico Buonanno’s Functional Programming in C# (Manning, 2017;
http://mng.bz/Q2Qv).

A.1.1 The two ways you can write LINQ queries

LINQ has two syntaxes for writing LINQ queries: the method syntax and the query syn-
tax. This section presents the two syntaxes and points out which one is used in this
book. You’ll write the same LINQ query, a filter, and a sort of array of integers in both
syntaxes.

 Listing A.1 uses what is known as the LINQ method, or lambda, syntax. This code is a
simple LINQ statement. Even if you haven’t seen LINQ before, the names of the
LINQ methods, such as Where and OrderBy, provide a good clue to what’s going on.

int[] nums = new[] {1, 5, 4, 2, 3, 0};

int[] result = nums
 .Where(x => x > 3)
 .OrderBy(x => x)
 .ToArray();

The lambda name comes from lambda syntax, introduced in C# 3. The lambda syntax
allows you to write a method without all the standard method definition syntax. The
x => x > 3 part inside the Where method is equivalent to the following method:

private bool AnonymousFunc(int x)
{
 return x > 3;
}

As you can see, the lambda syntax can save a significant amount of typing. I use lamb-
das in all of my EF Core queries and in lots of other code I wrote for this book.

 The next listing shows the other way of writing LINQ code, called the query syn-
tax. This code achieves the same result as listing A.1 but returns a slightly different
result type.

int[] nums = new[] { 1, 5, 4, 2, 3, 0};

IOrderedEnumerable<int> result =
 from num in nums
 where num > 3
 orderby num
 select num;

Your first look at the LINQ language using the method/lambda syntaxListing A.1

Your first look at the LINQ language using the query syntaxListing A.2

Creates an array of
integers from 0 to 5,
but in a random orderApplies LINQ commands

and returns a new array
of integers

Filters out all the
integers 3 and below

ders the
numbers

Turns the query back into an array.
The result is an array of ints { 4, 5 }.

Creates an array of integers from
0 to 5, but in random order

The result returned here is an
IOrderedEnumerable<int>.

The query syntax starts with a
from <item> in <collection>.

lters out
all the

tegers 3
d below

ders the
numbers

Applies a select to choose what you want. The
result is an IOrderedEnumerable<int> containing { 4, 5 }.

http://mng.bz/Q2Qv

563An introduction to the LINQ language

O
n

You can use either syntax; the choice is up to you. I use the method syntax because it
involves slightly less typing and because I like the way that commands are chained
together, one after the other. The rest of the examples in this book use the method
syntax.

 Before I leave the topic of the LINQ syntax, I want to introduce the concept of pre-
calculating values in a LINQ query. The query syntax has a feature specifically to han-
dle this task: the let keyword. This keyword allows you to calculate a value once and
then use that value multiple times in the query, making the query more efficient. This
listing shows code that converts an integer value to its word/string equivalent and
then uses that string in both the sort and filter parts of the query.

int[] nums = new[] { 1, 5, 4, 2, 3, 0 };
string [] numLookop = new[]
 {"zero","one","two","three","four","five"};

IEnumerable<int> result =
 from num in nums
 let numString = numLookop[num]
 where numString.Length > 3
 orderby numString
 select num;

The equivalent in the method syntax is the LINQ Select operator earlier in the
query, as shown in the following listing. (Section A.1.2 provides more details about
the LINQ Select operator.)

int[] nums = new[] { 1, 5, 4, 2, 3, 0 };
string[] numLookop = new[]
 {"zero","one","two","three","four","five"};

IEnumerable<int> result = nums
 .Select(num => new
 {
 num,
 numString = numLookop[num]
 })
 .Where(r => r.numString.Length > 3)
 .OrderBy(r => r.numString)
 .Select(r => r.num);

Using theListing A.3 let keyword in a LINQ query syntax

Using the LINQListing A.4 Select operator to hold a calculated value

Creates an array of integers from
0 to 5, but in random order

A lookup to convert a
number to its word format

The result returned here is
an IEnumerable<int>.

The query syntax starts with a
from <item> in <collection>.

The let syntax allows you to
calculate a value once and use
it multiple times in the query.

Filters out all the numbers indicating that
the word is shorter than three letters

rders the
umber by
the word

form

Applies a select to choose what you want.
The result is an IEnumerable<int>

containing { 5,4,3,0 }.

Creates an array of integers from
0 to 5, but in random order

A lookup to convert a
number to its word format

The result returned here is
an IEnumerable<int>.

Uses an anonymous type to hold
the original integer value and
your numString word lookup

Filters out all the numbers indicating that
the word is shorter than three letters

Orders the
number by
the word
form

Applies another Select to choose what you want. The
result is an IEnumerable<int> containing { 5,4,3,0 }.

564 APPENDIX A A brief introduction to LINQ
EF6 EF6.x used the let or the Select as a hint to precalculate a value only
once in the database. EF Core doesn’t have that performance feature, so it
recalculates every occurrence of a value.

The data operations you can do with LINQA.1.2

The LINQ feature has many methods, referred to as operators. Most operators have
names and functions that clearly indicate what’s going on. Table A.1 lists some of the
most common LINQ operators; similar operators are grouped to help you see where
they might be used. The list is not exhaustive; the aim is to show you some of the most
common operators to give you a feel for what LINQ can do.

Listing A.4 shows a LINQ query that sorts and filters an array of int numbers. Now we
are going to look at some examples in which the LINQ query works on a C# class.
First, you need to define a new class called Review with data to help with the exam-
ples, as shown in the following listing.

class Review
{
 public string VoterName { get; set; }
 public int NumStars { get; set; }
 public string Comment { get; set; }
}

List<Review> ReviewsList = new List<Review>
{
 new Review
 {
 VoterName = "Jack",
 NumStars = 5,
 Comment = "A great book!"
 },
 new Review

Examples of LINQ operators, grouped by purposeTable A.1

Group Examples (not all operators shown)

Sorting OrderBy, OrderByDescending, Reverse

Filtering Where

Select element First, FirstOrDefault

Projection Select

Aggregation Max, Min, Sum, Count, Average

Partition Skip, Take

Boolean tests Any, All, Contains

AListing A.5 Review class and a ReviewsList variable containing two Reviews

565Introduction to IQueryable<T> type, and why it’s useful
 {
 VoterName = "Jill",
 NumStars = 1,
 Comment = "I hated it!"
 }
};

The ReviewsList field in LINQ code is shown in table A.2. This table should give you
a feel for how various LINQ operators work.

Introduction to IQueryable<T> type, and why it’s usefulA.2
Another important part of LINQ is the generic interface IQueryable<T>. LINQ is
rather special, in that whatever set of LINQ operators you provide isn’t executed
straightaway but is held in a type called IQueryable<T>, awaiting a final command to
execute it. This IQueryable<T> form has two benefits:

 You can split a complex LINQ query into separate parts by using the IQuery-
able<T> type.

 Instead of executing the IQueryable<T>’s internal form, EF Core can translate
it into database access commands.

Splitting up a complex LINQ query by usingA.2.1
the IQueryable<T> type

In the book, you learn about Query Objects (see section 2.6), and you build a com-
plex book list query by chaining together three Query Objects. This operation works
because of the IQueryable<T> type’s ability to hold the code in a specialized form,
called an expression tree, so that other LINQ operators can be appended to it.

 As an example, you’re going to improve the code from listing A.1 by adding your
own method that contains the sorting part of the query, allowing you to alter the sort
order of the final LINQ query. You’ll create this method as an extension method,

Table A.2 Four uses of LINQ on the ReviewsList field as data. The result of each LINQ operator is
shown in the Result value column.

LINQ group Code using LINQ operators Result value

Projection string[] result = ReviewsList
.Select(p => p.VoterName)
.ToArray();

string[]{"Jack", "Jill"}

Aggregation double result = ReviewsList
.Average(p => p.NumStars);

3 (average of 5 and 1)

Select element string result = ReviewsList
.First().VoterName;

"Jack" (first voter)

Boolean test bool result = ReviewsList
.Any(p => p.NumStars == 1);

true (Jill voted 1)

566 APPENDIX A A brief introduction to LINQ

tr
the

o
IQ

ou
nu
an

which allows you to chain the method in the same way that the LINQ operators do.
(LINQ operators are extension methods.)

DEFINITION An extension method is a static method in a static class; the first
parameter of the method has the keyword this in front of it. To allow chain-
ing, the method must also return a type that other methods can use as an input.

Listing A.6 shows the extension method MyOrder, which takes in an IQueryable<int>
type as its first parameter and returns an IQueryable<int> result. It also has a sec-
ond boolean parameter called ascending that sets the sort order to ascending or
descending.

public static class LinqHelpers
{
 public static IQueryable<int> MyOrder
 (this IQueryable<int> queryable,
 bool ascending)
 {
 return ascending
 ? queryable
 .OrderBy(num => num)
 : queryable
 .OrderByDescending(num => num);
 }
}

This listing uses this IQueryable<int> extension method to replace the OrderBy
LINQ operator in the original code in listing A.1.

var numsQ = new[] { 1, 5, 4, 2, 3 }
 .AsQueryable();

var result = numsQ
 .MyOrder(true)
 .Where(x => x > 3)
 .ToArray();

Your method encapsulates part of your LINQ code viaListing A.6 IQueryable<int>

Using theListing A.7 MyOrder IQueryable<int> method in LINQ code

Extension method
needs to be defined

in a static class

Static method Order returns an
IQueryable<int> so other extension
methods can chain on

Extension method’s first
parameter is of IQueryable and
starts with the this keyword

Provides a second parameter
that allows you to change the
order of the sorting

Uses the Boolean parameter ascending to control
whether you add the OrderBy or OrderByDescending
LINQ operator to the IQueryable result

Ascending
parameter is

ue, so you add
 OrderBy LINQ
perator to the
ueryable input

Ascending parameter is false, so
you add the OrderByDescending
LINQ operator to the IQueryable
input

Turns an array of integers
into a queryable object

Calls the MyOrder IQueryable<int>
method, with true, giving you an
ascending sort of the data

Filters
t all the
mbers 3
d below

Executes the IQueryable and turns
the result into an array. The result is
an array of ints { 4, 5 }.

Extension methods, such as the MyOrder example, provide two useful features:

 They make your LINQ code dynamic. By changing the parameter into the MyOrder

method, you can change the sort order of the final LINQ query. If you didn’t
have that parameter, you’d need two LINQ queries—one using OrderBy and

567Querying an EF Core database by using LINQ

one using OrderByDescending—and then you’d have to pick which one you
wanted to run by using an if statement. That approach isn’t good software prac-
tice, as you’d be needlessly repeating some LINQ code, such as the Where part.

 They allow you to split complex queries into a series of separate extension methods that you
can chain. This approach makes it easier to build, test, and understand complex
queries. In section 2.9, you split your Book App’s book list query, which is rather
complicated, into separate Query Objects. The following listing shows this process
again, with each Query Object highlighted in bold.

A.2.2

A.3

The book list query with select, order, filter, and page Query ObjectsListing A.8

public IQueryable<BookListDto> SortFilterPage
(SortFilterPageOptions options)

{
var booksQuery = _context.Books

.AsNoTracking()

.MapBookToDto()

.OrderBooksBy(options.OrderByOptions)

.FilterBooksBy(options.FilterBy,
options.FilterValue);

options.SetupRestOfDto(booksQuery);

return booksQuery.Page(options.PageNum-1,
options.PageSize);

}

The book list query uses both features I’ve mentioned: it allows you to change the
sorting, filtering, and paging of the book list dynamically, and it hides some of the
complex code behind an aptly named method that tells you what it’s doing.

How EF Core translates IQueryable<T> into database code

EF Core translates your LINQ code into database code that can run on the database
server. It can do this because the IQueryable<T> type holds all the LINQ code as an
expression tree, which EF Core can translate into database access code. Figure A.1
shows what EF Core is doing behind the scenes when it translates a LINQ query into
database access code.

EF Core provides many extra extension methods to extend the LINQ operators
available to you. EF Core methods add to the LINQ expression tree, such as Include,
ThenInclude (see section 2.4.1), and so on. Other EF methods provide async versions
(see section 5.10) of the LINQ methods, such as ToListAsync and LastAsync.

Querying an EF Core database by using LINQ
Using LINQ in an EF Core database query requires three parts, as shown in figure A.2.
The query relies on an application’s DbContext, which is described in section 2.2.1.
This section concentrates on only the format of an EF Core database query, with the
LINQ operators shown in bold.

568 APPENDIX A A brief introduction to LINQ
These three parts of an EF Core database query are as follows:

 Application’s DbContext property access—In your application’s DbContext, you
define a property by using a DbSet<T> type. This type returns an IQueryable<T>
data source to which you can add LINQ operators to create a database query.

 LINQ operators and/or EF Core LINQ methods—Your database LINQ query code
goes here.

 The execute command—Commands such as ToList and First trigger EF Core to
translate the LINQ commands into database access commands that are run on
the database server.

In chapter 2 and onward, you’ll see much more complex queries, but they all use the
three parts shown in figure A.2.

LINQ query translation

1. EF Core translates the LINQ expression tree
(shown below, as ellipsis) into an internal
form ready for the database provider.

2. Then EF Core’s database provider converts
the translated expression tree into the correct
database access commands for the database
it supports.

Database commands, such as

SELECT
Books.BookId, ...

WHERE
Books.AvailableFrom
... etc.

var books = context
.Books
.Where(p =>

p.AvailableFrom
< DateTime.Today

.ToList();

Database provider

Database

SQL

server

DateTime

constant
AvailableFrom

Where

Book

Figure A.1 Some book query code (bottom left) with its expression tree above it. EF Core takes the
expression tree through two stages of translation before it ends up in the right form for the database
that the application is targeting.

Application’s DbContext
property access

LINQ operators and/or
EF Core LINQ methods

An execute
command

co text.Books. .T List()n oWhere(p => p.Title.StartsWith("Quantum")

An example database access, with the three partsFigure A.2

index
A

access methods 413
action method 135, 140, 348
ActiveProvider property 211
Adapter pattern 105
AddAsync method 319, 344
AddAutoMapper method 176
AddColumn command 282
AddControllersWithViews method 129
AddDbContextFactory method 134
AddDbContext method 133, 286, 505
AddDbContextPool<T> method 460
AddError method 102, 414
AddEvent method 389, 499
AddHostedService method 157
Add method 62–63, 103, 105, 184, 316, 341,

343–344, 359, 458, 522
Add-Migration command 37–38, 147, 151, 286,

523
add migration command 272–279

custom migration table to allow multiple
DbContexts to one database 278–279

EF Core migrations with multiple
developers 277–278

running 275–276
seeding database via EF Core migration

276–277
Add-Migration MyMigrationName -Project

DataLayer command 38
AddPromotion access method

calling via class-to-method-call library 424–426
calling via repository pattern 422–423

AddRangeAsync method 344
AddRange method 344
AddRemovePriceOffer method 112

AddReview 430, 475, 477, 480
AddReviewDto class 427
AddReviewHandler 432
AddReviewService class 82
AddReviewViaEvents method 432
AddReviewWithChecks method 114
AddUdfToDatabase method 311
AddUpdateChecks method 357
AddUserSecrets method 537
AdminController 142
advanced features, configuring 306–339

computed columns 313–315
database column, setting default value for

315–319
using HasDefaultValue method to add con-

stant value for column 316–317
using HasDefaultValueSql method to add

SQL command for column 317–318
using HasValueGenerator method to assign

value generator to property 318–319
marking database-generated properties

320–323
marking column’s value as set on insert of new

row 322
marking column/property as normal

322–323
marking column that’s generated on an addi-

tion or update 321
sequences 319–320
UDFs (user-defined functions) 307–312

adding UDF code to database 311
registered, using in database queries 312
scalar-valued, configuring 308–309
table-valued, configuring 310–311

Aggregate method 173
aggregates pattern 417
569

INDEX570
anemic domain model 98
AppDbContext 14–15
ApplyConfigurationsFromAssembly method 201
architecture

ASP.NET Core 126
Book App’s evolving architecture 406–410

applying clean architecture 410
building modular monolith to enforce SoC

principles 408–409
using DDD principles architecturally and on

entity classes 409–410
clean architecture 435–436
effect on ease of building and maintaining

applications 406
AsNoTracking 19–21, 40, 59, 62, 160–163, 214,

341, 345, 364, 416, 447, 449, 457, 552
AsNoTrackingWithIdentityResolution

method 161–163, 457
ASP.NET Core 125–158

architecture 126
async/await 151–154

changing over to async/await versions of EF
Core commands 153–154

usefulness of 151–152
when to use 152–153

calling database access code from 134–136
ASP.NET Core MVC 135
where EF Core code lives 135–136

dependency injection 127–131
basic example of 128–129
importance of 128
lifetime of service created by 129–131
making DbContext available via 131–134
special considerations for Blazor Server

applications 131
deploying ASP.NET Core apps with

database 146–147
creating and migrating database 147
location of database on web server 146

EF Core migration feature 147–151
having app migrate database on startup

148–151
updating production database 147–148

implementing book list query page 136–140
injecting instances of DbContext via DI

137–138
using DbContext Factory to create instances

of DbContext 138–140
implementing database methods as DI

service 140–145
improving registering database access classes

as services 143–145
injecting ChangePubDateService into

ASP.NET action method 142–143
registering class as DI service 141

overview 126
running parallel tasks 154–157

obtaining instances of DbContext to run
in parallel 155–157

running background services in ASP.NET
Core 156–157

ASPNETCORE_ENVIRONMENT variable
146

Assert method 528
AsSplitQuery 166, 451
AsSqlQuery Fluent API method 365–366
async/await 151–154

changing over to async/await versions of EF
Core commands 153–154

usefulness of 151–152
when to use 152–153

asynchronous programming 151
atomic unit 23
Attach method 63, 341, 347, 359
AttachRange method 347
Author class 13–14
AuthorsString 485–486
AuthorsStringUdf 470–471
[AutoMap] attribute 175–176
AutoMap attribute 175
AutoMapper 173–176

complex mappings 175–176
registering configurations 176
simple mappings 175

AutoMapper.Extensions.Microsoft.Dependency-
Injection NuGet package 176

auto scaling 126
AVG command 523
await statement 152, 157

B

backing fields 214–218
accessed by read/write property 215
configuring 216–218

by convention 217
configuring how data is read/written

to backing field 218
via Data Annotations 217
via Fluent API 217–218

hiding data inside class 215–216
read-only columns 215

ball of mud 408, 433
BizActionErrors class 101–102
BizDbAccess class 111
BizDbAccess method 105, 111
Biz method 120
BizRunner class 106, 118
Blazor Server apps 131
Blazor Server hosting model 131

INDEX 571
Book App 28–34, 406–410
altering entities to follow DDD approach

411–421
applying DDD’s bounded context to applica-

tion’s DbContext 420–421
changing properties in Book entity to read-

only 411
controlling how Book entity is created

415–416
deciding when business logic shouldn’t be run

inside entities 418–420
differences between entities and value

objects 416
grouping entity classes 417–418
minimizing relationships between entity

classes 416–417
updating Book entity properties via methods

in entity class 413–414
applying clean architecture 410
architecture 52–53, 126, 405
async/await 151–154
building complex queries 49–52
building modular monolith to enforce SoC

principles 408–409
calling database access code from 134–136
classes that EF Core maps to database

33–34
client vs. server evaluation 47–49
complex business logic 97
creating rows 62–67
database queries 38–40
database showing all tables 32–33
DbContext class 35–38
deploying ASP.NET Core apps with

database 146–147
EF Core migration feature 147–151
filtering

books 55–56
searching text for specific string 56–58

implementing book list query page
136–140

implementing database methods as DI
service 140–145

loading related data 40–46
making DbContext available via DI

131–134
nonrelational properties 193–196

adding indexes to columns 208–209
applying Fluent API commands based on

database provider type 211–212
backing fields 214–218
configuring by convention 196–198
configuring Global Query Filters 211
configuring naming on database side

209–210

configuring primary key 206–208
configuring via Data Annotations

198–199
configuring via Fluent API 199–202
excluding properties and classes from

database 202–203
setting column type, size, and nullability

203–204
shadow properties 212–214
value conversions 204–206

paging books in list 58
reading from databases 160–180
relational databases 28–31
running parallel tasks 154–157
simple business logic 111–113
sorting books 54–55
updating relationships 74–88
updating rows 67–74
using DDD principles architecturally and on

entity classes 409–410
validation business logic 113–115
writing to databases 180–188

Book class 13–14
BookDbContext 500
BookListFilter method 455
bounded context 384, 410
BuildDeleteEntitySql method 372
business logic 94–124

adding extra features to 115–123
daisy-chaining sequence of code

119–122
RunnerTransact2WriteDb class

122–123
validating data 115–119

complex business logic 97
advantages of 111
calling order-processing business logic

108–109
design pattern 98–99
disadvantages of 111
guidelines for building 98–99
overview 96–97
placing an order 109–111

levels of complexity 95–97
simple business logic 111–113

advantages of 113
design approach 112
disadvantages of 113
overview 96
writing code 112

validation business logic 113–115
advantages of 115
disadvantages of 115
overview 96

business rules 94–95

INDEX572
C

caching, LINQ and 473–488
adding cache properties to Book entity with con-

currency handling 480–486
adding checking/healing system to event

system 486–488
adding code to update cached values

477–480
adding way to detect changes that affect

cached values 475–477
camel case 217
CancellationToken 154
cascade deletes 90, 232, 246
CD (continuous delivery) 148
ChangedNotifications 353
ChangePriceOfferService class 111–113

advantages of 113
design approach 112
disadvantages of 113
writing code 112

ChangePubDateService class 142–143
change scripts 287
ChangeTracker.Clear 553–554
ChangeTracker.DetectChanges 345, 351–355, 357,

362
ChangeTracker events 358
ChangeTracker property 350
ChangeTracker.StateChanged event 358
ChangeTracker.Tracked event 358
ChangeTracker.TrackGraph method 349
CheckFixCacheValuesService class 486
CheckFixReviewCacheValues method 484–485
CI (continuous integration) 148
class-to-method-call library 422, 427–428
clean architecture 407, 410
CLI (command-line interface) 38, 275
client vs. server evaluation 47–49
collation 57, 204
Collection<T> interface 240
[Column] attribute 199, 206
columns

adding indexes to 208–209
naming 210
read-only 215
setting type, size, and nullability 203–204

Command and Query Responsibility Segregation.
See CQRS

command-line interface (CLI) 38, 275
Commit command 122, 542
complex business logic 97

advantages of 111
calling order-processing business logic

108–109
design pattern 98–99

disadvantages of 111
guidelines for building 98–99

first call on defining database structure 100
in-memory data 102–104
isolating database access code into separate

project 105–106
no distractions 101–102
not calling SaveChanges 106–108

overview 96–97
placing an order 109–111

composite keys 85, 198, 206, 228
computed columns 313–315
Computed setting 321
concurrency conflicts 323

disconnected concurrent update issue
334–338

EF Core’s concurrency conflict-handling
features 325–331

detecting concurrent change via concurrency
token 325–328

detecting concurrent change via timestamp
328–331

handling DbUpdateConcurrencyException
331–334

overview 323–325
concurrency handling, adding cache properties to

Book entity with 480–486
code to capture any exception thrown by

SaveChanges/SaveChangeSAsync 482
concurrency handler for problem with

AuthorsString cached value 485–486
concurrency handler for problem with review’s

cached values 484–485
top-level concurrency handler that finds

Book(s) that caused exception 483
concurrency token 325
Configuration class 133
Configure method 144–145, 150, 176, 316
ConfigureServices method 133, 141
connection string 128, 132
constructor injection 129
Contains command 57
Contains method 520
context.Add method 64, 262
context.Books.IgnoreQueryFilters() method 89
context.Books.ToList() 448
context.Database.EnsureCreated() method 289,

320, 540
context.Database.Migrate method 38, 148, 296
context.Entry(entity).Metadata 369–371
context.Entry(myEntity).State command 62,

342
context.Model 371–372
continuous delivery (CD) 148
continuous integration (CI) 148

INDEX 573
continuous-service applications 296
Controller class 135
convention

configuring nonrelational properties by
196–198

backing fields 217
conventions for entity classes 196
conventions for name, type, and size 197
conventions for parameters in an entity

class 196
naming convention identifies primary

keys 198
nullability of property based on .NET

type 197
recommendations for 219

configuring relationships by 229–234
entity classes 229–230
entity class with navigational properties

230
finding foreign keys by convention 231–232
nullability of foreign keys 232
when configuration by convention configura-

tion doesn’t work 234
when foreign keys are left out 232–234

CosmosBook entity 504, 506
Cosmos DB

building command and CQRS system
using 495–497

differences in other database types 522–523
displaying books via 507–514

Cosmos DB vs. relational databases 508–511
EF Core 5 Cosmos DB database provider

limitations 512–514
migrating Cosmos database 511–512

ease/difficulty using two-database CQRS design
in application 521–522

evaluating performance of two-database CQRS
in Book App 515–517

fixing features that EF Core 5 Cosmos DB
database provider couldn’t handle 518,
520–521

creating by Tags drop-down filter 520
filtering by TagIds because IN command not

supported 520–521
how CosmosClass is stored in 506–507
overview 494–495
structure of 505
unit testing 549–551

CosmosDbContext 550
CosmosSaveChangesWithChecksAsync

method 503
CosmosTag class 501
CountLong method 172
Count method 172
coupling 135

CQRS (Command and Query Responsibility
Segregation) 383, 439, 490

building command and CQRS system using Cos-
mos DB 495–497

design of two-database CQRS architecture
application 497–504

adding events to Book entity send integration
events 499–500

creating Cosmos entity classes and
DbContext 500–501

creating Cosmos event handlers 502–504
creating event to trigger when SQL Book

entity changes 498–499
using EfCore.GenericEventRunner to over-

ride BookDbContext 500
CreateDummyBooks method 547
CreateHostBuilder(args).Build() method 37, 148
CreateMap<TSource,TDestination> method 413
CreateOptions method 544
CreateProxy<TEntity> method 354
CreateUniqueClassCosmosDbEmulator

method 550
CreateUniqueClassOptions method 539–540
CRUD (Create, Read, Update, and Delete) 6, 61
CUD (create, update, and delete) 96

D

Dapper 471–473
Data Annotations

configuring backing fields via 217
configuring nonrelational properties via 198–199

from System.ComponentModel.Data-
Annotations 199

from System.ComponentModel.Data-
Annotations.Schema 199

configuring primary key via 206
configuring relationships via 234–236

ForeignKey Data Annotation 234–235
InverseProperty Data Annotation 235–236

excluding properties and classes from database
via 202

recommendations for 219
DataAnnotations 114
database access code, calling from ASP.NET

Core 134–136
ASP.NET Core MVC 135
where EF Core code lives 135–136

database column, setting default value for 315–319
using HasDefaultValue method to add constant

value for column 316–317
using HasDefaultValueSql method to add SQL

command for column 317–318
using HasValueGenerator method to assign

value generator to property 318–319

INDEX574
database connection problems 373–375
altering or writing own execution strategy 375
handling database transactions with EF Core’s

execution strategy 374
DatabaseGeneratedOption.Computed setting 321
database-generated properties, marking 320–323

marking column’s value as set on insert of new
row 322

marking column/property as normal 322–323
marking column that’s generated on an addi-

tion or update 321
Database.GetPendingMigrations method 151
database initializers (EF6.x) 150
Database.MigrateAsync method 150
Database.Migrate method 151, 295

calling from main application 296–298
executing from standalone application 298

database migrations 268–305
add migration command 272–279

custom migration table to allow multiple
DbContexts to one database 278–279

EF Core migrations with multiple
developers 277–278

running 275–276
seeding database via EF Core migration

276–277
applying migrations to database 295–300

applying migration via SQL change
script 298–299

Database.Migrate method, calling from main
application 296–298

Database.Migrate method, executing from
standalone application 298

SQL change scripts, applying by using migra-
tion tool 300

command for, requirements before running
migration command 275

complexities of changing application’s
database 269–271

handling migration that can lose data 271
view of what databases need updating 270

editing migration to handle complex
situations 280–286

adding and removing MigrationBuilder meth-
ods inside migration class 281–282

adding custom migration commands
284–285

adding SQL commands to migration
282–284

altering migration to work for multiple data-
base types 285–286

reverse-engineering tool 292–295
installing and running Power Tools reverse-

engineering command 294
running 294

updating entity classes and DbContext when
database changes 294–295

SQL scripts to build 287–292
checking that SQL change scripts matches EF

Core’s database model 291–292
handcoding SQL change scripts to migrate

database 289–291
using SQL database comparison tools to pro-

duce migration 287–288
while application is running 300–304

handling application breaking changes when
can’t stop app 302–304

handling migration that doesn’t contain
application breaking change 302

database queries 27, 38–60, 450, 455
adding sorting, filtering, and paging 54–58
allowing too much of data query to be moved

into software side 453
architecture 52–53
building complex queries 49–52
classes that EF Core maps to database 33–34
client vs. server evaluation 47–49
combining Query Objects 58–59
database showing all tables 32–33
DbContext class 35–38

creating database 37–38
creating instances of 35–37
defining 35

DbContext property access 39
execute command 39–40
filtering 55–58
loading related data 40–46

eager loading 40–42
explicit loading 43–44
lazy loading 45–46
select loading 44–45

missing indexes from property you want to
search on 451–452

not minimizing number of calls to
database 450–451

not moving calculations into database 453
not precompiling frequently used queries

454–455
not replacing suboptimal SQL in LINQ

query 454
not using fastest way to load single entity 452
paging 58
relational databases 28–31

many-to-many relationships 30–31
one-to-many relationships 29
one-to-one relationships 28–29
other relationship types 31–32

series of LINQ/EF Core commands 39
sorting 54–55
two types of 40

INDEX 575
database queries (continued)
using EF Core database queries 38–40

DbContext property access 39
execute command 39–40
series of LINQ/EF Core commands 39
types of 40

database queries, performance-tuning 463–491
comparing performance approaches with devel-

opment effort 488–489
improving database scalability 489–491
LINQ+caching approach 473–488

adding cache properties to Book entity with
concurrency handling 480–486

adding checking/healing system to event
system 486–488

adding code to update cached values
477–480

adding way to detect changes that affect
cached values 475–477

LINQ+UDFs approach 469–471
SQL+Dapper 471–473
test setup and performance approaches

464–466
using Select query 466–469

loading only parts needed 468
loading only properties needed for

query 467–468
moving calculations into database 468
using indexed properties to sort/filter

on 468–469
database round-trips 42
databases 61–93, 159–188

accessed by MyFirstEfCoreApp application
11–12

creating rows 62–67
creating book with review 64–67
creating single entity on its own 63–64

deleting entities 88–92
deleting book with its dependent

relationships 91–92
deleting dependent-only entity with no

relationships 90
deleting principal entity that has

relationships 90–91
soft-delete approach 88–90

modeling 15–17
querying 27
reading from 17–20, 160–180

AsNoTracking and AsNoTrackingWith-
IdentityResolution methods 161–163

AutoMapper 173–176
Global Query Filters 168–171
how EF Core creates entity classes when read-

ing data 176–180
Include method 165–166

LINQ commands 172–173
loading navigational collections in fail-safe

manner 166–167
reading in hierarchical data efficiently

163–164
relational fixup stage in query 160–161

State entity property 62
updating 20–23

relationships 74–88
rows 67–74

writing to 180–188
copying data with relationships 186–187
deleting entities 187–188
how DbContext handles writing out

entities/relationships 182–185
how EF Core writes

entities/relationships 181–182
database schema 268
database sharding 372
DataLayer 53
data-loss breaking change, migrations 271
Data Transfer Object (DTO) 49
DbContext 14–15, 35–38, 108, 340–377, 458–459

accessing information about entity classes and
database tables 368–372

using context.Entry(entity).Metadata to reset
primary keys 369–371

using context.Model to get database
information 371–372

applying DDD’s bounded context to 420–421
commands that change entity’s State 343–349

Add command 344
Attach method 347
modifying entity class by changing data 345
Remove method 344–345
setting State of entity directly 347–348
TrackGraph 348–349
Update method 346–347

creating Cosmos entity classes and 500–501
creating database 37–38
creating instances of 35–37
database connection problems 373–375

altering or writing own execution
strategy 375

handling database transactions with EF Core’s
execution strategy 374

defining 35
dynamically changing connection string of

372–373
getting ready for unit testing EF Core

applications 530–532
application’s DbContext options are pro-

vided via its constructor 530–531
setting application’s DbContext options via

OnConfiguring 531–532

INDEX576
DbContext (continued)
how EF Core tracks changes 341–343
injecting instances of via DI 137–138
making available via DI 131–134

providing location information 131–132
registering DbContext Factory with DI

provider 134
registering DbContext with DI provider

132–134
multiple DbContexts to one database 278–279
obtaining instances of to run in parallel

155–157
properties of, overview of 341
property access 39
SaveChanges 349–363

catching entity class’s State changes via
events 358–361

EF Core interceptors 362–363
how finds all State changes 350
triggering events when SaveChangesAsync is

called 361–362
triggering events when SaveChanges is

called 361–362
using entities’ State within SaveChanges

method 356–358
what to do if ChangeTracker.DetectChanges is

taking too long 351–355
test code by using multiple of, instances in dis-

connected state 554
updating when database changes 294–295
using DbContext Factory to create instances

of 138–140
using pooling to reduce cost of new

application’s 460
using SQL commands inEF Core

application 363–368
AsSqlQuery Fluent API method 365–366
ExecuteSqlInterpolated 365
ExecuteSqlRaw 365
FromSqlInterpolated 364
FromSqlRaw 364
GetDbConnection 367–368
Reload method 367

DbContext class 35
DbContext Factory

registering with DI provider 134
using to create instances of DbContext 138–140

DbContextOptionsBuilder<T> type 505, 531, 544
DbContextOptionsDisposable<T> class 544
DbContextOptions<T> parameter 133
DbFunction attribute 308
DbSet<T> property 12, 36, 39, 88, 209, 229, 257,

365
DbUpdateConcurrencyException 325, 481
DbUpdateException 247

DDD (Domain-Driven Design) 98, 168, 214, 384,
405

altering Book App entities to follow DDD
approach 411–421

applying DDD’s bounded context to applica-
tion’s DbContext 420–421

changing properties in Book entity to read-
only 411

controlling how Book entity is created
415–416

deciding when business logic shouldn’t be
run inside entities 418–420

differences between entities and value
objects 416

grouping entity classes 417–418
minimizing relationships between entity

classes 416–417
updating Book entity properties via methods

in entity class 413–414
downside of DDD entities 428
overview 410–411
performance issues in DDD-styled entities

429–433
allowing database code into entity

classes 430–431
make Review constructors public and writing

nonentity code to add Reviews 431
using domain events to ask event handlers to

add reviews to databases 432–433
principles 434
using DDD-styled entity classes in

applications 421–428
adding Review to Book entity class via class-to-

method-call library 427–428
adding Review to Book entity class via reposi-

tory pattern 426–427
calling AddPromotion access method via

class-to-method-call library 424–426
calling AddPromotion access method via

repository pattern 422–423
DDD persistence 421
DEFAULT command 315, 317, 322
DefaultConnection 132
DELETE command 365
deleting entities 88–92

deleting book with its dependent
relationships 91–92

deleting dependent-only entity with no
relationships 90

deleting principal entity that has
relationships 90–91

soft-delete approach 88–90
delta updates 477
dependent entities 75–76, 90, 227
DetectChanges 68, 79, 116, 350, 449, 457

INDEX 577
DetectChanges.Detect method 457–458
DI (dependency injection) 127–131, 391

basic example of 128–129
implementing database methods as DI

service 140–145
improving registering database access classes

as services 143–145
injecting ChangePubDateService into

ASP.NET action method 142–143
registering class as DI service 141

importance of 128
lifetime of service created by 129–131
making DbContext available via 131–134

providing location information 131–132
registering DbContext Factory with DI

provider 134
registering DbContext with DI provider

132–134
special considerations for Blazor Server

apps 131
disconnected updates 69–74

sending all data 72–74
with reload 70–72

Distinct method 509, 519
Domain-Driven Design. See DDD
domain events

example of using 382–383
implementing domain event system with EF

Core 387–396
adding code to entity classes to hold domain

events 389–390
altering entity class to detect changes to trig-

ger events on 390
building Event Runner that finds and runs

correct event handler 391–393
creating domain-events classes to be

triggered 388–389
creating event handlers that are matched to

domain events 390–391
overriding SaveChanges and inserting Event

Runner before SaveChanges is called 394
registering Event Runner and all event

handlers 395–396
improving implementations 400–403

adding support for async event handlers 402
generalizing events 401–402
handling event sagas in which one event kicks

off another 403
handling multiple event handers for same

event 403
using to ask event handlers to add reviews to

databases 432–433
domain logic 94
domain model 98
domain rules 94

don’t repeat yourself (DRY) 409
dotnet ef database update command 298
dotnet-ef tools 275
down for maintenance migration 298
Down method 282, 285
DoWorkAsync method 156
DropColumn command 282
DROP VIEW command 285
DRY (don’t repeat yourself) 409
DTO (Data Transfer Object) 49
DTO class 70
dto variable 87

E

eager loading 40–42
EF6.x (Entity Framework library) 4
EF6.x developers 6–7
EF.CompiledQuery method 454
EF Core (Entity Framework Core) 3–26

author’s lightbulb moment with 5–6
downsides of O/RMs 7–8
EF6.x developers and 6–7
inner workings of 15–23

modeling database 15–17
reading data from database 17–20
updating database 20–23

migration feature 147–151
having app migrate database on startup

148–151
updating production database 147–148

MyFirstEfCoreApp application 9–11
adding EF Core library to 10–11
creating .NET Core console app 10
database accessed by 11–12
installing development tools 9–10
setting up 13–15

NoSQL and 8
overview 7–8
reasons to use EF Core 24–25

high-performance 25
multiplatform apps and development 24
.NET is future software platform 24
open source and open communication 24
rapid development and good features 25
well supported 25

stages of development 23
when not to use EF Core 26

EfCoreContext 35, 37, 137, 143, 200, 460
EfCore.GenericEventRunner 386, 400, 475, 500
EfCore.GenericServices.AspNetCore NuGet

package 114
EfCore.GenericServices library 373, 424
EfCore.SoftDeleteServices library 89, 168
EfCore.TestSupport library 529–530

INDEX578
EF.Function.Like method 57
EF.Functions.Collate method 57
EF.Property command 214
EF.Property method 214
EnableRetryOnFailure option 123, 374
EnableSensitiveDataLogging method 446, 556
EndsWith command 57
EnsureClean method 541
EnsureCreatedAsync method 512, 540, 551
EnsureCreated method 288–289, 540, 543, 545,

551
EnsureDeletedAsync method 551
EnsureDeleted method 540
entity classes 33

allowing database code into 430–431
DDD-styled, using in applications (Book App

example) 421–428
adding Review to Book entity class via class-to-

method-call library 427–428
adding Review to Book entity class via reposi-

tory pattern 426–427
calling AddPromotion access method via class-

to-method-call library 424–426
calling AddPromotion access method via

repository pattern 422–423
grouping 417–418
mapping to queries 365–366
minimizing relationships between 416–417
modifying by calling Update method 346–347
modifying by changing data 345
tracking 347

entity events 381–404
defining where domain events and integration

events are useful 384
domain event system, implementing with EF

Core 387–396
adding code to entity classes to hold domain

events 389–390
altering entity class to detect change to trigger

an event on 390
building Event Runner that finds and runs

correct event handler 391–393
creating domain-events classes to be

triggered 388–389
creating event handlers that are matched to

domain events 390–391
overriding SaveChanges and inserting Event

Runner before SaveChanges is called
394

registering Event Runner and all event
handlers 395–396

implementing integration event system with EF
Core 396–399

building service that communicates with
warehouse 398

overriding SaveChanges to handle integration
event 399

improving domain event and integration event
implementations 400–403

adding support for async event handlers
402

handling event sagas in which one event
kicks off another 403

handling multiple event handers for same
event 403

using to solve business problems 382–383
example of integration events 383
example of using domain events

382–383
where to use with EF Core 385–387

Entity Framework library (EF6.x) 4
EntityState type 341
EntityTypeConfiguration<T> class 200
Entry(<entityInstance>).Property method

214
Entry property 359
Enum type property 204
Equal command 57
Errors property 104
EventHandlerRunner class 393
EventHandlerRunner<T> class 393
event handlers 388
Event Runner 388

inserting before SaveChanges is called
394

registering 395–396
that finds and runs correct event handler

391–393
events classes

adding code to for holding domain events
389–390

altering to detect changes to trigger events
on 390

creating domain-events classes to be
triggered 388–389

event sourcing 325
evolutionary architecture 406
ExampleEntity 63
ExcludeFromMigrations command 279
execute command 39–40
ExecuteScriptFileInTransaction method 543
ExecuteSqlCommand method 367
ExecuteSqlInterpolated 365
ExecuteSqlRaw 311, 365, 372
ExecuteStrategy method 375
ExecuteValidation method 117–118
explicit loading 43–44
expression body definitions 274
expression tree 39, 568
extension method 52

INDEX 579
F

FilterDropdownService 509
filtering

books by publication year, categories, and cus-
tomer ratings 55–56

searching text for specific string 56–58
Find method 71, 452, 486
Find<T> method 88
First method 452
FirstOrDefault method 452
FKs (foreign keys) 19, 32, 228

finding by convention 231–232
nullability of 232
updating relationships 87–88
when left out 232–234

flattening 174
Fluent API

automating adding commands by class/property
signatures 220–224

configuring backing fields via 217–218
configuring nonrelational properties via

from 199–202
configuring primary key via 206–207
configuring relationships via 236–243, 245–251

creating many-to-many relationships 240–243
creating one-to-many relationships 239–240
creating one-to-one relationships 237–239
HasConstraintName method 251
HasPrincipalKey method 249–250
IsRequired method 248–249
MetaData property 251
OnDelete method 245–248

excluding properties and classes from database
via 203

recommendations for 220
fluent interface 38
foreach statement 39
ForeignKey Data Annotation 234–235
foreign keys. See FKs
FromQuery property 359
[FromServices] attribute 140
FromSqlInterpolated 364, 454, 508
FromSqlRaw 364, 454, 508
fully defined relationship 228, 230

G

generated column 313
GenericEventRunner library 477, 482, 499, 522
GenericServices library 424, 429
GenericServices.StatusGeneric library 414
GenericServices.StatusGeneric NuGet

package 114
GetAppliedMigrations method 297

GetConfiguration method 537
GetDbConnection 363, 367–368
GetEventsThenClear method 389
GetFilterDropDownValues method 55
GetOriginal method 112, 140
GetPendingMigrations 151, 297
GetService method 403
globally unique identifiers (GUIDs) 65, 323
Global Query Filters 88, 168–171

configuring 211
creating multitenant systems 169–171
soft delete 168–169

GroupBy command 173
GUIDs (globally unique identifiers) 65, 323

H

HandleCacheValuesConcurrency method 483
HasCollation(“collation name”) command 204
HasColumnName method 213, 218
HasColumnType(“date”) Fluent API 195
HasConstraintName method 245, 251
HasConversion<string>() command 205
HasData method 151, 276, 551
HasDefaultValue method 315–318
HasDefaultValueSql method 316–318
HasForeignKey<T>(string) method 249
HashSet<T> 240, 458
HasKey method 206
HasNoKey() command 207
HasOne/HasMany command 237
HasOne/WithMany command 241
HasPrecision(precision, scale) command 204
HasPrincipalKey method 245, 249–251
HasValueGenerator method 316, 318–319
hierarchical data 32, 163–165
high load 440
HomeController class 129, 135
HTTP caching 442
hybrid DDD entities 428

I

IAsyncEnumerable<T> class 455
IBizAction<PlaceOrderInDto,Order>

interface 104
IChangePubDateService interface 141
ICollection<Tag> 42
ICreatedUpdated interface 356
IDbContextFactory<TContext> interface 134
idempotent parameter 299
IDENTITY command 319, 322
identity resolution 162–163
IDesignTimeDbContextFactory<TContext>

class 286

INDEX580
IDesignTimeDbContextFactory<TContext>
interface 275

IDisposable interface 37, 544
IEntityTypeConfiguration<T> interface 200
IEnumerable<T> interface 230, 240, 455
IEventRunner parameter 395
IExecutionStrategy interface 375
IgnoreAllPropertiesWithAnInaccessibleSetter

method 413
Ignore command 203
IgnoreQueryFilters method 89, 365
IHttpContextAccessor 171
ILazyLoader interface 180
IList<T> interface 240
ILogger interface 360
ILoggerProvider class 555
IMapper interface 176
immutable list 102
IMutableEntityType interface 220
IMutableModel interface 220
Include method 40–42, 46, 71, 77, 81, 84, 86, 88,

165–166, 240, 247, 255–256, 364, 447, 451,
458

IncludeThen attribute 427–428
IN command 518, 520–521
indexes, adding to columns 208–209
Index method 153
IndexOf command 57
INNER JOIN command 4
INotifyPropertyChanged 352–354, 457
INSERT command 62, 64, 317, 322
integration events

example of 383
improving implementations 400–403

adding support for async event handlers 402
generalizing events 401–402
handling event sagas in which one event kicks

off another 403
handling multiple event handers for same

event 403
integration testing 136, 526
InvalidOperationException 47, 49
InverseProperty Data Annotation 235–236
IPlaceOrderDbAccess interface 106, 547
IQueryable<T> type 565–567

splitting up complex LINQ query by using
565–567

translating into database code 567
IServiceProvider interface 118
IServiceScopeFactory 155
IsMemoryOptimized method 212
IsModified property 342, 348
IsRelational() method 212
IsRequired method 234, 245, 248–249, 251, 254
IsSqlite() method 211

IsSqlServer() method 211
IStatusGeneric interface 114, 414
IsUnicode(false) Fluent API 195, 204
IValidatableObject interface 118
IValidatableObject.Validate method 64, 116

K

[Key] attribute 206
[Keyless] attribute 207

L

lambda syntax 39
Language Integrated Query. See LINQ
LastUpdatedUtc property 487
lazy loading 45–46, 448–449
LIKE command 57
LineItem entity class 100, 116
LINQ (Language Integrated Query) 18, 561–568

adding SQL to LINQ code 469–471
caching and 473–488

adding cache properties to Book entity with
concurrency handling 480–486

adding checking/healing system to event
system 486–488

adding code to update cached values
477–480

adding way to detect changes that affect
cached values 475–477

commands 172–173
aggregates need nulls 172–173
for database query creation 39
GroupBy command 173

introduction to LINQ language
data operations with LINQ 564–565
writing LINQ queries 562–563

IQueryable<T> type 565–567
splitting up complex LINQ query by using

565–567
translating into database code 567

not replacing suboptimal SQL in LINQ
query 454

querying EF Core database by using 567–568
using ToQueryString method to show SQL gen-

erated from LINQ query 558
LINQ method 39
LoadBookWithReviewsAsync method 427
Load command 39
loading related data 40–46

eager loading 40–42
explicit loading 43–44
lazy loading 45–46
select loading 44–45

LocationChangedEvent 387, 403

INDEX 581
LocationChangedEventHandler 387
LogChange method 357
logging provider 445
LogTo method 555
LogTo option extension 555–558
LogToOptions class 556
LTS (long-term-support) 23

M

Main method 148
many-to-many relationships

autoconfigured 30–31
configuring using linking entity class 241
configuring with direct access to other

entity 242–243
creating 240–243
manually configured 30
updating 83–87

creating new rows directly 87
via linking entity class 84–86
with direct access to other entity 86–87

MapBookToCosmosBookAsync method 503,
522

MapBookToDto method 51, 468, 471, 496
mapping

AutoMapper 173–176
complex mappings 175–176
registering configurations 176
simple mappings 175

entities to database tables 251–266
owned types 252–256
property bag 264–266
table per hierarchy 256–261
table per type 261–263
table splitting 263–264

Martin, Robert C. 435–436
[MaxLength] attribute 194–195, 199
MetaData property 251
microservices architecture 409
Microsoft.AspNetCore.Mvc.Testing NuGet

package 136
Microsoft.EntityFrameworkCore.Abstractions

NuGet package 180
Microsoft.EntityFrameworkCore NuGet

library 105
Microsoft.EntityFrameworkCore.Proxies

library 354–355
Microsoft.EntityFrameworkCore.SqlServer

package 275
Microsoft.EntityFrameworkCore.Tools

package 275
MigrateAsync command 150
Migrate command 512
MigrateDatabaseAsync method 148–149

Migrate method 151, 268, 295–296
MigrationBuilder 281–284
migrationBuilder.Sql method 284, 311
MigrationsAssembly method 279, 286, 523
MigrationsHistoryTable method 278
modelBuilder.ApplyConfiguration 201
ModelBuilder class 199, 211
ModelState 114
modular monolith 407–409, 433–434
MVC (Model-View-Controller) 126
MyFirstEfCoreApp application 9–11

adding EF Core library to 10–11
creating .NET Core console app 10
database accessed by 11–12
installing development tools 9–10
setting up 13–15

Book and Author classes 13–14
DbContext class 14–15

MyMigrationName command 38
MyUdfMethods class 309
MyView class 285

N

navigational property 228
NetCore.AutoRegisterDi library 144
NetCore DI containers 144–145
NextAsync method 344
Next method 319
nonbreaking change 271
nonquery commands 365
nonrelational properties 191–225

adding indexes to columns 208–209
applying Fluent API commands based on data-

base provider type 211–212
backing fields 214–218

accessed by read/write property 215
configuring 216–218
hiding data inside class 215–216
read-only column 215

configuring by convention 196–198
conventions for entity classes 196
conventions for name, type, and size 197
conventions for parameters in an entity

class 196
naming convention identifies primary

keys 198
nullability of property based on .NET

type 197
configuring Global Query Filters 211
configuring naming on database side

209–210
column names in table 210
schema name and schema groupings 210
table names 209

INDEX582
nonrelational properties (continued)
configuring primary key 206–208

configuring entity as read-only 207–208
via Data Annotations 206
via Fluent API 206–207

configuring via Data Annotations 198–199
from System.ComponentModel.Data-

Annotations 199
from System.ComponentModel.DataAnnota-

tions.Schema 199
configuring via Fluent API 199–202
excluding properties and classes from

database 202–203
via Data Annotations 202
via Fluent API 203

overview 192–193
recommendations for using EF Core

configuration 218–224
automating adding Fluent API commands by

class/property signatures 220–224
use by convention configuration first 219
use Fluent API for anything else 220
use validation Data Annotations wherever

possible 219
setting column type, size, and nullability

203–204
shadow properties 212–214

accessing 213–214
configuring 212–213

value conversions 204–206
normal query 40
NoSQL 8, 493
NotificationEntity class 352, 354
NotifyEntity class 353
[NotMapped] data attribute 202

O

O/RMs (object-relational mappers), downsides
of 7–8

object-relational impedance mismatch 7
object-relational mappers (O/RMs), downsides

of 7–8
OfType<T> method 261
OnConfiguration method 128
OnConfiguring 15, 35, 157, 286, 530–532
OnDelete method 245–248
one-to-many relationships 29

creating 239–240
updating 80–83

altering/replacing all one-to-many
relationships 81–82

connected state update 80–81
creating new rows directly 83
disconnected state update 82–83

one-to-one relationships 28–29
creating 237–239
updating 76–79

connected state update 76–77
creating new rows directly 79
disconnected state update 77–79

one-to-zero-or-one relationships 239
OnModelCreating method 16, 36, 171, 193, 199,

201, 203, 210, 217, 220–221, 241
optional dependent relationship 92
optional relationship 228
options.StopNextDispose method 545
options.TurnOffDispose method 545
Order (byte) property 84
OrderByDescending method 42, 54
OrderBy method 42, 54, 364
ORDER BY parameter 469
Order entity class 100, 108
OrderId 109
Order property 42, 84
owned types 31, 252–256

held in same table as entity class 252–255
held in separate table from entity class 255–256

OwnsOne method 255

P

Package Manager Console (PMC) 37, 147, 275
paging, books in list 58
parallel tasks 154–157

obtaining instances of DbContext to run in
parallel 155–157

running background services in ASP.NET
Core 156–157

parameter injection 140
performance tuning 438–462

deciding which to fix 439–442
cost of finding and fixing performance

issues 441–442
what’s slow and needs performance

tuning 440
diagnosing 442–446

beginning by measuring user’s
experience 443

finding all database code involved in feature
being tuned 444

inspecting SQL code to find poor
performance 444–446

fixing 446–447
performance antipatterns

database queries 450–455
writes 455–459

scalability of database accesses 459–461
adding scalability with little effect on overall

speed 460

INDEX 583
performance tuning (continued)
by making queries simple 461
picking right architecture for applications

needing high scalability 461
scaling up database server 461
using pooling to reduce cost of new applica-

tion’s DbContext 460
using good patterns 447–450

always adding AsNoTracking method to read-
only queries 449

ensuring that database access code is
isolated/decoupled 449–450

lazy loading will affect database
performance 448–449

using async version of EF Core commands to
improve scalability 449

using paging and/or filtering of searches to
reduce rows loaded 448

using Select loading to load only columns
needed 447

persisted computed column 313
PkResetter class 369
PKs (primary keys) 32, 206–208

configuring entity as read-only 207–208
configuring via Data Annotations 206
configuring via Fluent API 206–207
using context.Entry(entity).Metadata to

reset 369–371
PlaceOrderAction 102, 105, 108, 546–547
PlaceOrderBizLogic class 419
PlaceOrderDbAccess class 102, 105–106, 547–548
PlaceOrder method 110
PlaceOrderService class 108, 110
PMC (Package Manager Console) 37, 147, 275
POCOs (plain old CLR objects) 33, 196
polyglot database structure 495
POST method 142, 427
Power Tools reverse-engineering command 294
primary keys. See PKs
primitive types 197
principal entities 75–76, 90–91, 227
principal key 227
procedural pattern 98
production-type database, using in unit tests

536–543
making sure database’s schema is up to date

and database is empty 540–542
mimicking database setup that EF Core migra-

tion would deliver 542–543
providing connection string to database to use

for unit test 536–537
providing database per test class to allow xUnit

to run tests in parallel 537–539
Profile class 175–176
Program class 148

projections 500
ProjectTo method 173, 175
property bag 264–266
property method 213
Property<T> method 213
proxy change tracking 354–355
PublishedOn property 68

Q

Query method 43
query syntax 39

R

RawSqlDto class 367
reading from databases 17–20, 160–180

AsNoTracking and AsNoTrackingWithIdentity-
Resolution methods 161–163

AutoMapper 173–176
Global Query Filters 168–171
how EF Core creates entity classes when reading

data 176–180
injecting certain services via entity

constructor 179–180
problematic constructors 177–179

Include method 165–166
LINQ commands 172–173
loading navigational collections in fail-safe

manner 166–167
reading in hierarchical data efficiently 163–164
relational fixup stage in query 160–161

ReadSingleAsync<T> method 428
read-write query 40
recalculate updates 477
ReferenceEquals method 498
referential integrity 90
RegisterAssemblyPublicNonGenericClasses 145
registered UDFs, using in database queries 312
registering services 128
relational databases 28–31

many-to-many relationships
autoconfigured 30–31
manually configured 30

one-to-many relationships 29
one-to-one relationships 28–29
other relationship types 31–32
vs. Cosmos DB 508–511

all properties are indexed 510–511
complex queries may need breaking

up 509–510
Cosmos DB provides only async

methods 508–509
skip is slow and expensive 510

vs. NoSQL databases 493

INDEX584
relational fixup 19, 116, 163, 458
relationships 226–267

configuring by convention 229–234
entity classes 229–230
entity class with navigational properties

230
finding foreign keys by convention

231–232
nullability of foreign keys 232
when configuration by convention

configuration doesn’t work 234
when foreign keys are left out 232–234

configuring via Data Annotations 234–236
ForeignKey Data Annotation 234–235
InverseProperty Data Annotation 235–236

configuring via Fluent API 236–243, 245–251
creating many-to-many relationships

240–243
creating one-to-many relationships 239–240
creating one-to-one relationships 237–239
HasConstraintName method 251
HasPrincipalKey method 249–250
IsRequired method 248–249
MetaData property 251
OnDelete method 245–248

controlling updates to collection navigational
properties 243–245

disconnected updates with 348–349
mapping entities to database tables 251–266

owned types 252–256
property bag 264–266
table per hierarchy 256–261
table per type 261–263
table splitting 263–264

navigational properties 228–229
terminology 227–228

Reload method 367
RemoveDuplicateEvents attribute 498
Remove method 63, 90, 187, 341, 343–345
RemovePromotion method 414
RemoveRange 344
RemoveReview 430, 475, 480
RenameColumn method 281
repository pattern 426–427
[Required] attribute 194, 199
required relationships 228
reverse-engineering tool 292–295

installing and running Power Tools reverse-
engineering command 294

running 294
updating entity classes and DbContext when

database changes 294–295
reverting migration 291
ReviewAddedHandler class 477
Review entity 64

Review entity class 65
Review NumStars property 96
Reviews

adding to Book entity class via class-to-method-
call library 427–428

adding to Book entity class via repository
pattern 426–427

making Review constructors public and writing
nonentity code to add Reviews 431

RollBack method 122
root aggregates 168, 417
rows

creating 62–67
creating books with reviews 64–67
creating single entity on its own 63–64

creating directly
updating many-to-many relationships 87
updating one-to-many relationships 83
updating one-to-one relationships 79

deleting from database 344–345
inserting into database 344
updating 67–74

rowversion 325
RunEventsAsync method 402
RunEventsBeforeDuringAfterSaveChanges

method 402
RunEvents method 402–403
RunnerTransact2WriteDb class 122

S

SaveChanges 349–363
after successful return 65–66
calling multiple times 456
catching entity class’s State changes via

events 358–361
ChangeTracker.DetectChanges taking too

long 351–355
INotifyPropertyChanged 352–354
proxy change tracking 354–355

code to capture any exception thrown by 482
EF Core interceptors 362–363
how finds all State changes 350
inserting Event Runner before SaveChanges

called 394
not calling 106–108
overriding and inserting Event Runner before

SaveChanges is called 394
triggering events when called 361–362
using entities’ State within 356–358

SaveChangesAsync 154, 345, 349, 388, 398, 477,
497, 522, 527

code to capture any exception thrown by
482

triggering events when called 361–362

INDEX 585
SaveChangesWithValidation method 117–118
scaffold command 294
scalability 439
scalar properties 191
scalar-valued function 307
scalar-valued UDFs, configuring 308–309
scaling out 126, 148, 295, 442, 490
scaling up 442, 490
schema of database 12, 38, 209
scoped DI service 155
scoped lifetime 130
scoped service 155
script-dbcontext command 289
Script-Migration command 299
SeedDatabaseAsync method 150
seeding 150, 552
SELECT command 4, 44, 471
select loading 44–45, 447
Select method 44, 447, 468
Select query, performance-tuning database queries

using 466–469
loading only parts needed 468
loading only properties needed for query

467–468
moving calculations into database 468
using indexed properties to sort/filter on

468–469
Separation of Concerns (SoC) 52, 135, 384, 406,

433–434
sequences 319–320
SequentialGuidValueGenerator 323
ServiceLayer 53
ServiceProvider 391
services 129
ServiceScopeFactory 156
SetConnectionString method 372
Set<T> method 88
SetWithNotify method 352–353
shadow properties 212–214, 232

accessing 213–214
configuring 212–213

sharding 490
shared entity types 265
simple business logic 111–113

advantages of 113
design approach 112
disadvantages of 113
overview 96
writing code 112

SingleOrDefault method 71
singleton 130
Skip method 42, 58, 510, 517
slow load 440
SoC (Separation of Concerns) 52, 135, 384, 406,

433–434

soft-delete approach
deleting entities 88–90
EfCore.SoftDeleteServices 89, 168
Global Query Filters 168–169

SoftDeleted property 89, 500
software time 472
SortFilterPage method 59, 138, 154
sorting books by price, publication date, and cus-

tomer ratings 54–55
source of truth 271
SQL (Structured Query Language) 4

adding SQL commands to database
migrations 282–284

adding to LINQ code 469–471
applying migration via SQL change script

298–299
applying SQL change scripts by using migration

tool 300
creating own 471–473
Dapper and 471–473
inspecting SQL code to find poor

performance 444–446
capturing logging output 445–446
extracting SQL commands sent to

database 446
logging output produced EF Core 445

not replacing suboptimal SQL in LINQ
query 454

scripts to build database migrations 287–292
checking that SQL change scripts matches EF

Core’s database model 291–292
handcoding SQL change scripts to migrate

database 289–291
using SQL database comparison tools to pro-

duce migration 287–288
SQLite in-memory database 534–535
using HasDefaultValueSql method to add SQL

command for column 317–318
using SQL commands inEF Core

application 363–368
AsSqlQuery Fluent API method 365–366
ExecuteSqlInterpolated 365
ExecuteSqlRaw 365
FromSqlInterpolated 364
FromSqlRaw 364
GetDbConnection 367–368
Reload method 367

SQL index 195
SqliteConnection connection 545
SqliteInMemory.CreateOptions method 544–545
SqliteInMemory.CreateOptionsWithLogTo

method 557
SqlServerExecutionStrategy class 375
SSMS (SQL Server Management Studio) 446
StartsWith command 57

INDEX586
Startup class 37, 132–133, 141, 144–146, 176
State

catching entity class’s State changes via
events 358–361

commands that change entity’s State
343–349

Add command 344
Attach method 347
modifying entity class by changing data

345
Remove method 344–345
setting State of entity directly 347–348
TrackGraph 348–349
Update method 346–347

finding all changes in 350
setting directly 347–348
using within SaveChanges 356–358

StateChanges event 359
State entity property 62
State property 341
StatusGenericHandler class 114, 414
stored generated column 313
stored procedure 363
StringComparison parameter 172
String.Equal method 172
Structured Query Language. See SQL
StubPlaceOrderDbAccess class 547
subbing 106, 127, 546–548
System.ComponentModel.DataAnnotations

namespace 199
System.ComponentModel.DataAnnota-

tions.Schema namespace 199

T

[Table] attribute 199
table per hierarchy. See TPH
table per type (TPT) 31, 252, 261–263
table splitting 31, 252, 263–264
table-valued UDFs, configuring 310–311
Tag entity class 86, 501
TagId property 501
TagIds 470, 520–521
Tags drop-down filter 520
Tags property 42
TagsStringUdf 470–471
Take method 42, 58, 510
TestData.GetFilePath method 543
ThenBy command 42
ThenByDescending command 42
ThenInclude method 40–42
thread-safe 130
timestamp 325
ToArray operation 39
ToDictionary operation 39

ToListAsync method 39, 154
ToList method 39, 55, 138, 154, 173, 508
ToQueryString method 555, 558
ToSqlQuery method 207
ToTable command 208
ToTable method 255
ToView("ViewNameString") command 207
TPH (table per hierarchy) 31, 252, 256–261

accessing entities 260–261
configuring by convention 257–258
using Fluent API to improve 259–260

TPT (table per type) 31, 252, 261–263
tracked entities 62, 341
Tracked event 359
TrackGraph 348–349
tracking snapshot 20
transaction.Commit method 122, 542
transactions 23, 119
transactions script 98
transient lifetime 129

U

UDFs (user-defined functions) 306–312, 454
adding UDF code to database 311
registered, using in database queries 312
scalar-valued, configuring 308–309
table-valued, configuring 310–311

UniqueISBN 249
uni testing EF Core applications 525
Unit Of Work pattern 66
unit testing EF Core applications 525–560

capturing database commands sent to
database 555–558

using LogTo option extension to filter and
capture EF Core logging 555–558

using ToQueryString method to show SQL
generated from LINQ query 558

choosing between production-type database and
SQLite in-memory database 534–535

getting application’s DbContext ready for
530–532

application’s DbContext options are pro-
vided via its constructor 530–531

setting application’s DbContext options via
OnConfiguring 531–532

seeding database with test data to test code
correctly 551

simulating database when testing 532–534
solving problem of one database access breaking

another stage of test 552–554
test code by using multiple DbContext

instances in disconnected state 554
testing code using ChangeTracker.Clear in

disconnected state 553–554

INDEX 587
unit testing EF Core applications (continued)
stubbing or mocking EF Core database 546–548
unit testing Cosmos DB 549–551
unit test setup 527–530

EfCore.TestSupport library 529–530
xUnit unit test library 528–529

using production-type database in unit
tests 536–543

making sure database’s schema is up to date
and database is empty 540–542

mimicking database setup that EF Core migra-
tion would deliver 542–543

providing connection string to database to use
for unit test 536–537

providing database per test class to
allow xUnit to run tests in parallel
537–539

using SQLite in-memory database for unit
testing 544–545

updatable view 208
UpdateAndSaveAsync(dto) method 428
UpdateBook method 140
UPDATE command 325, 363, 365
Update-Database command 38, 147
Updated method 349
Update method 62–63, 73, 341, 346–347, 349, 458,

503, 522
UpdateRange method 346
UpdateSalary method 336
updating relationships 74–88

many-to-many relationships 83–87
one-to-many relationships 80–83
one-to-one relationships 76–79
principal and dependent relationships 75–76
via foreign keys 87–88

updating rows 67–74
Up method 285
UseChangeTrackingProxies method 354
UseLazyLoadingProxies method 45
UseLoggerFactory method 555
UsePropertyAccessMode method 218
user-defined functions. See UDFs

user secrets 537
using statement 37

V

Validate method 118
validation 96
ValidationAttribute class 117
validation business logic 113–115

advantages of 115
disadvantages of 115
overview 96

ValidationResult class 102
value conversions 204–206
ValueGenerator<T> class 316, 318
value objects 252, 254, 416
ViewModel class 70

W

Wait method 508
WebUrl property 21, 202
WHERE clause 327
WHERE command 4, 8
Where method 42, 55, 364
WithOne/WithMany syntax 237
WithRequired command 236
WithRequiredPrincipal/WithRequiredDependent

command 236
WorksForMe property 164
WriteLine method 555
writing to databases 180–188

copying data with relationships 186–187
deleting entities 187–188
how DbContext handles writing out

entities/relationships 182–185
how EF Core writes entities/relationships

181–182

X

xUnit unit test library 528–529, 537–539

RELATED MANNING TITLES

For ordering information go to www.manning.com

ASP.NET Core in Action, Second Edition
by Andrew Lock

ISBN 9781617298301
832 pages, $69.99
March 2021

Blazor in Action
by Chris Sainty

ISBN 9781617298646
400 pages (estimated), $59.99
July 2021 (estimated)

Code like a Pro in C#
by Jort Rodenburg

ISBN 9781617298028
391 pages (estimated), $59.99
Summer 2021 (estimated)

C# in Depth, Fourth Edition
by Jon Skeet
Foreword by Eric Lippert

ISBN 9781617294532
528 pages, $49.99
March 2019

Here is a checklist of EF Core performance issues, with the section of the book that
deals with that issue.

Section

Analyze your performance

14.1.2Have you picked the right features to performance tune?

14.2Have you diagnosed your performance issue?

14.2.1Have you measured the user’s experience?

14.2.3Have you inspected the SQL produces for poor performance?

Querying your database

14.4.1Are you loading too many columns?

14.4.2Are you loading too many rows?

14.4.3Are you using lazy loading?

14.4.4Are you telling EF Core that your query is read-only?

14.5.1Are you making too many calls to the database?

14.5.2Have you added indexes to properties you sort/filter on?

14.5.3Are you using the fastest way to load an entity?

14.5.4Is part of your query being run in software?

14.5.5Can you move any calculations to run in the database?

14.5.6Have you replaced any suboptimal SQL produced by a LINQ query?

14.5.7Can you precompile frequently used queries?

Writing to the database

 Are you calling SaveChanges 14.6.1multiple times?

 Are you making DetectChanges 14.6.2work too hard?

 Have you used HashSet<T> 14.6.3for navigational properties?

 Are you calling the Update 14.6.4method when you don’t need to?

The scalability of your application

14.7.1Are you using DbContext pooling?

14.7.2Are you using async/await throughout your application?

14.7.4Have you picked the right architecture for high scalability?

16.3Have you considered using Cosmos DB as a frontend cache?

Jon P Smith

ISBN: 978-1-61729-836-3

E
ntity Framework radically simplifi es data access in .NET
applications. Th is easy-to-use object-relational mapper
(ORM) lets you write database code in pure C#. It auto-

matically maps classes to database tables and enables queries
with standard LINQ commands. It even generates SQL, so
you don’t have to!

Entity Framework Core in Action, Second Edition teaches you to
write fl awless database interactions for .NET applications.
Following relevant examples from author Jon Smith’s extensive
experience, you’ll progress quickly from EF basics to advanced
techniques. In addition to the latest EF features, this book
addresses performance, security, refactoring, and unit testing.
Th is updated edition also contains new material on NoSQL
databases.

What’s Inside
● Confi gure EF to defi ne every table and column
● Update your schema as your app grows
● Integrating EF with existing C# application
● Write and test business logic for database access
● Applying a Domain-Driven Design to EF Core
● Getting the best performance out of EF Core

For .NET developers familiar with relational databases.

Jon P Smith is a freelance software developer and architect with
a special focus on .NET and Azure.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

Entity Framework Core IN ACTION
Second Edition

.NET/DATABASES

M A N N I N G

“Th e most comprehensive
reference for EF Core that

does—or ever will—exist.”—Stephen Byrne, Intel Corporation

“Th e defi nitive guide to EF
Core. Filled with real world

examples, it’s the most practical
way to enhance your EF Core

skill set.”—Paul Brown
Diversifi ed Services Network

“I fi rmly believe anyone
using EF Core will fi nd

something to up their game
 in this book.”—Anne Epstein, Headspring

“Remains a go-to resource
for me while working with

 Entity Framework.”—Foster Haines, J2 Interactive

See first page

	Entity Framework Core in Action
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized
	About the code
	Code conventions
	liveBook discussion forum
	Online resources

	about the author
	about the cover illustration
	Part 1—Getting started
	1 Introduction to Entity Framework Core
	1.1 What you’ll learn from this book
	1.2 My “lightbulb moment” with Entity Framework
	1.3 Some words for existing EF6.x developers
	1.4 An overview of EF Core
	1.4.1 The downsides of O/RMs

	1.5 What about NoSQL?
	1.6 Your first EF Core application
	1.6.1 What you need to install
	1.6.2 Creating your own .NET Core console app with EF Core

	1.7 The database that MyFirstEfCoreApp will access
	1.8 Setting up the MyFirstEfCoreApp application
	1.8.1 The classes that map to the database: Book and Author
	1.8.2 The application’s DbContext

	1.9 Looking under the hood of EF Core
	1.9.1 Modeling the database
	1.9.2 Reading data from the database
	1.9.3 Updating the database

	1.10 The stages of development of EF Core
	1.11 Should you use EF Core in your next project?
	1.11.1 .NET is the future software platform, and it’s fast!
	1.11.2 Open source and open communication
	1.11.3 Multiplatform applications and development
	1.11.4 Rapid development and good features
	1.11.5 Well supported
	1.11.6 Always high-performance

	1.12 When should you not use EF Core?
	Summary

	2 Querying the database
	2.1 Setting the scene: Our book-selling site
	2.1.1 The Book App’s relational database
	2.1.2 Other relationship types not covered in this chapter
	2.1.3 The database showing all the tables
	2.1.4 The classes that EF Core maps to the database

	2.2 Creating the application’s DbContext
	2.2.1 Defining the application’s DbContext: EfCoreContext
	2.2.2 Creating an instance of the application’s DbContext
	2.2.3 Creating a database for your own application

	2.3 Understanding database queries
	2.3.1 Application’s DbContext property access
	2.3.2 A series of LINQ/EF Core commands
	2.3.3 The execute command
	2.3.4 The two types of database queries

	2.4 Loading related data
	2.4.1 Eager loading: Loading relationships with the primary entity class
	2.4.2 Explicit loading: Loading relationships after the primary entity class
	2.4.3 Select loading: Loading specific parts of primary entity class and any relationships
	2.4.4 Lazy loading: Loading relationships as required

	2.5 Using client vs. server evaluation: Adapting data at the last stage of a query
	2.6 Building complex queries
	2.7 Introducing the architecture of the Book App
	2.8 Adding sorting, filtering, and paging
	2.8.1 Sorting books by price, publication date, and customer ratings
	2.8.2 Filtering books by publication year, categories, and customer ratings
	2.8.3 Other filtering options: Searching text for a specific string
	2.8.4 Paging the books in the list

	2.9 Putting it all together: Combining Query Objects
	Summary

	3 Changing the database content
	3.1 Introducing EF Core’s entity State
	3.2 Creating new rows in a table
	3.2.1 Creating a single entity on its own
	3.2.2 Creating a book with a review

	3.3 Updating database rows
	3.3.1 Handling disconnected updates in a web application

	3.4 Handling relationships in updates
	3.4.1 Principal and dependent relationships
	3.4.2 Updating one-to-one relationships: Adding a PriceOffer to a book
	3.4.3 Updating one-to-many relationships: Adding a review to a book
	3.4.4 Updating a many-to-many relationship
	3.4.5 Advanced feature: Updating relationships via foreign keys

	3.5 Deleting entities
	3.5.1 Soft-delete approach: Using a global query filter to hide entities
	3.5.2 Deleting a dependent-only entity with no relationships
	3.5.3 Deleting a principal entity that has relationships
	3.5.4 Deleting a book with its dependent relationships

	Summary

	4 Using EF Core in business logic
	4.1 The questions to ask and the decisions you need to make before you start coding
	4.1.1 The three levels of complexity of your business logic code

	4.2 Complex business logic example: Processing an order for books
	4.3 Using a design pattern to implement complex business logic
	4.3.1 Five guidelines for building business logic that uses EF Core

	4.4 Implementing the business logic for processing an order
	4.4.1 Guideline 1: Business logic has first call on defining the database structure
	4.4.2 Guideline 2: Business logic should have no distractions
	4.4.3 Guideline 3: Business logic should think that it’s working on in-memory data
	4.4.4 Guideline 4: Isolate the database access code into a separate project
	4.4.5 Guideline 5: Business logic shouldn’t call EF Core’s SaveChanges
	4.4.6 Putting it all together: Calling the order-processing business logic
	4.4.7 Placing an order in the Book App
	4.4.8 The pros and cons of the complex business logic pattern

	4.5 Simple business logic example: ChangePriceOfferService
	4.5.1 My design approach for simple business logic
	4.5.2 Writing the ChangePriceOfferService code
	4.5.3 The pros and cons of this business logic pattern

	4.6 Validation business logic example: Adding review to a book, with checks
	4.6.1 The pros and cons of this business logic pattern

	4.7 Adding extra features to your business logic handling
	4.7.1 Validating the data that you write to the database
	4.7.2 Using transactions to daisy-chain a sequence of business logic code
	4.7.3 Using the RunnerTransact2WriteDb class

	Summary

	5 Using EF Core in ASP.NET Core web applications
	5.1 Introducing ASP.NET Core
	5.2 Understanding the architecture of the Book App
	5.3 Understanding dependency injection
	5.3.1 Why you need to learn about DI in ASP.NET Core
	5.3.2 A basic example of dependency injection in ASP.NET Core
	5.3.3 The lifetime of a service created by DI
	5.3.4 Special considerations for Blazor Server applications

	5.4 Making the application’s DbContext available via DI
	5.4.1 Providing information on the database’s location
	5.4.2 Registering your application’s DbContext with the DI provider
	5.4.3 Registering a DbContext Factory with the DI provider

	5.5 Calling your database access code from ASP.NET Core
	5.5.1 A summary of how ASP.NET Core MVC works and the terms it uses
	5.5.2 Where does the EF Core code live in the Book App?

	5.6 Implementing the book list query page
	5.6.1 Injecting an instance of the application’s DbContext via DI
	5.6.2 Using the DbContext Factory to create an instance of a DbContext

	5.7 Implementing your database methods as a DI service
	5.7.1 Registering your class as a DI service
	5.7.2 Injecting ChangePubDateService into the ASP.NET action method
	5.7.3 Improving registering your database access classes as services

	5.8 Deploying an ASP.NET Core application with a database
	5.8.1 Knowing where the database is on the web server
	5.8.2 Creating and migrating the database

	5.9 Using EF Core’s migration feature to change the database’s structure
	5.9.1 Updating your production database
	5.9.2 Having your application migrate your database on startup

	5.10 Using async/await for better scalability
	5.10.1 Why async/await is useful in a web application using EF Core
	5.10.2 Where should you use async/await with database accesses?
	5.10.3 Changing over to async/await versions of EF Core commands

	5.11 Running parallel tasks: How to provide the DbContext
	5.11.1 Obtaining an instance of your application’s DbContext to run in parallel
	5.11.2 Running a background service in ASP.NET Core
	5.11.3 Other ways of obtaining a new instance of the application’s DbContext

	Summary

	6 Tips and techniques for reading and writing with EF Core
	6.1 Reading from the database
	6.1.1 Exploring the relational fixup stage in a query
	6.1.2 Understanding what AsNoTracking and its variant do
	6.1.3 Reading in hierarchical data efficiently
	6.1.4 Understanding how the Include method works
	6.1.5 Making loading navigational collections fail-safe
	6.1.6 Using Global Query Filters in real-world situations
	6.1.7 Considering LINQ commands that need special attention
	6.1.8 Using AutoMapper to automate building Select queries
	6.1.9 Evaluating how EF Core creates an entity class when reading data in

	6.2 Writing to the database with EF Core
	6.2.1 Evaluating how EF Core writes entities/relationships to the database
	6.2.2 Evaluating how DbContext handles writing out entities/relationships
	6.2.3 A quick way to copy data with relationships
	6.2.4 A quick way to delete an entity

	Summary

	Part 2—Entity Framework in depth
	7 Configuring nonrelational properties
	7.1 Three ways of configuring EF Core
	7.2 A worked example of configuring EF Core
	7.3 Configuring by convention
	7.3.1 Conventions for entity classes
	7.3.2 Conventions for parameters in an entity class
	7.3.3 Conventions for name, type, and size
	7.3.4 By convention, the nullability of a property is based on .NET type
	7.3.5 An EF Core naming convention identifies primary keys

	7.4 Configuring via Data Annotations
	7.4.1 Using annotations from System.ComponentModel.DataAnnotations
	7.4.2 Using annotations from System.ComponentModel.DataAnnotations.Schema

	7.5 Configuring via the Fluent API
	7.6 Excluding properties and classes from the database
	7.6.1 Excluding a class or property via Data Annotations
	7.6.2 Excluding a class or property via the Fluent API

	7.7 Setting database column type, size, and nullability
	7.8 Value conversions: Changing data to/from the database
	7.9 The different ways of configuring the primary key
	7.9.1 Configuring a primary key via Data Annotations
	7.9.2 Configuring a primary key via the Fluent API
	7.9.3 Configuring an entity as read-only

	7.10 Adding indexes to database columns
	7.11 Configuring the naming on the database side
	7.11.1 Configuring table names
	7.11.2 Configuring the schema name and schema groupings
	7.11.3 Configuring the database column names in a table

	7.12 Configuring Global Query Filters
	7.13 Applying Fluent API commands based on the database provider type
	7.14 Shadow properties: Hiding column data inside EF Core
	7.14.1 Configuring shadow properties
	7.14.2 Accessing shadow properties

	7.15 Backing fields: Controlling access to data in an entity class
	7.15.1 Creating a simple backing field accessed by a read/write property
	7.15.2 Creating a read-only column
	7.15.3 Concealing a person’s date of birth: Hiding data inside a class
	7.15.4 Configuring backing fields

	7.16 Recommendations for using EF Core’s configuration
	7.16.1 Use By Convention configuration first
	7.16.2 Use validation Data Annotations wherever possible
	7.16.3 Use the Fluent API for anything else
	7.16.4 Automate adding Fluent API commands by class/property signatures

	Summary

	8 Configuring relationships
	8.1 Defining some relationship terms
	8.2 What navigational properties do you need?
	8.3 Configuring relationships
	8.4 Configuring relationships By Convention
	8.4.1 What makes a class an entity class?
	8.4.2 An example of an entity class with navigational properties
	8.4.3 How EF Core finds foreign keys By Convention
	8.4.4 Nullability of foreign keys: Required or optional dependent relationships
	8.4.5 Foreign keys: What happens if you leave them out?
	8.4.6 When does By Convention configuration not work?

	8.5 Configuring relationships by using Data Annotations
	8.5.1 The ForeignKey Data Annotation
	8.5.2 The InverseProperty Data Annotation

	8.6 Fluent API relationship configuration commands
	8.6.1 Creating a one-to-one relationship
	8.6.2 Creating a one-to-many relationship
	8.6.3 Creating a many-to-many relationship

	8.7 Controlling updates to collection navigational properties
	8.8 Additional methods available in Fluent API relationships
	8.8.1 OnDelete: Changing the delete action of a dependent entity
	8.8.2 IsRequired: Defining the nullability of the foreign key
	8.8.3 HasPrincipalKey: Using an alternate unique key
	8.8.4 Less-used options in Fluent API relationships

	8.9 Alternative ways of mapping entities to database tables
	8.9.1 Owned types: Adding a normal class into an entity class
	8.9.2 Table per hierarchy (TPH): Placing inherited classes into one table
	8.9.3 Table per Type (TPT): Each class has its own table
	8.9.4 Table splitting: Mapping multiple entity classes to the same table
	8.9.5 Property bag: Using a dictionary as an entity class

	Summary

	9 Handling database migrations
	9.1 How this chapter is organized
	9.2 Understanding the complexities of changing your application’s database
	9.2.1 A view of what databases need updating
	9.2.2 Handling a migration that can lose data

	9.3 Part 1: Introducing the three approaches to creating a migration
	9.4 Creating a migration by using EF Core’s add migration command
	9.4.1 Requirements before running any EF Core migration command
	9.4.2 Running the add migration command
	9.4.3 Seeding your database via an EF Core migration
	9.4.4 Handling EF Core migrations with multiple developers
	9.4.5 Using a custom migration table to allow multiple DbContexts to one database

	9.5 Editing an EF Core migration to handle complex situations
	9.5.1 Adding and removing MigrationBuilder methods inside the migration class
	9.5.2 Adding SQL commands to a migration
	9.5.3 Adding your own custom migration commands
	9.5.4 Altering a migration to work for multiple database types

	9.6 Using SQL scripts to build migrations
	9.6.1 Using SQL database comparison tools to produce migration
	9.6.2 Handcoding SQL change scripts to migrate the database
	9.6.3 Checking that your SQL change scripts matches EF Core’s database model

	9.7 Using EF Core’s reverse-engineering tool
	9.7.1 Running EF Core’s reverse-engineering command
	9.7.2 Installing and running EF Core Power Tools reverse-engineering command
	9.7.3 Updating your entity classes and DbContext when the database changes

	9.8 Part 2: Applying your migrations to a database
	9.8.1 Calling EF Core’s Database.Migrate method from your main application
	9.8.2 Executing EF Core’s Database.Migrate method from a standalone application
	9.8.3 Applying an EF Core’s migration via an SQL change script
	9.8.4 Applying SQL change scripts by using a migration tool

	9.9 Migrating a database while the application is running
	9.9.1 Handling a migration that doesn’t contain an application-breaking change
	9.9.2 Handling application-breaking changes when you can’t stop the app

	Summary

	10 Configuring advanced features and handling concurrency conflicts
	10.1 DbFunction: Using user-defined functions (UDFs) with EF Core
	10.1.1 Configuring a scalar-valued UDF
	10.1.2 Configuring a table-valued UDF
	10.1.3 Adding your UDF code to the database
	10.1.4 Using a registered UDF in your database queries

	10.2 Computed column: A dynamically calculated column value
	10.3 Setting a default value for a database column
	10.3.1 Using the HasDefaultValue method to add a constant value for a column
	10.3.2 Using the HasDefaultValueSql method to add an SQL command for a column
	10.3.3 Using the HasValueGenerator method to assign a value generator to a property

	10.4 Sequences: Providing numbers in a strict order
	10.5 Marking database-generated properties
	10.5.1 Marking a column that’s generated on an addition or update
	10.5.2 Marking a column’s value as set on insert of a new row
	10.5.3 Marking a column/property as “normal”

	10.6 Handling simultaneous updates: Concurrency conflicts
	10.6.1 Why do concurrency conflicts matter?
	10.6.2 EF Core’s concurrency conflict–handling features
	10.6.3 Handling a DbUpdateConcurrencyException
	10.6.4 The disconnected concurrent update issue

	Summary

	11 Going deeper into the DbContext
	11.1 Overview of the DbContext class’s properties
	11.2 Understanding how EF Core tracks changes
	11.3 Looking at commands that change an entity’s State
	11.3.1 The Add command: Inserting a new row into the database
	11.3.2 The Remove method: Deleting a row from the database
	11.3.3 Modifying an entity class by changing the data in that entity class
	11.3.4 Modifying an entity class by calling the Update method
	11.3.5 The Attach method: Start tracking an existing untracked entity class
	11.3.6 Setting the State of an entity directly
	11.3.7 TrackGraph: Handling disconnected updates with relationships

	11.4 SaveChanges and its use of ChangeTracker.DetectChanges
	11.4.1 How SaveChanges finds all the State changes
	11.4.2 What to do if ChangeTracker.DetectChanges is taking too long
	11.4.3 Using the entities’ State within the SaveChanges method
	11.4.4 Catching entity class’s State changes via events
	11.4.5 Triggering events when SaveChanges/SaveChangesAsync is called
	11.4.6 EF Core interceptors

	11.5 Using SQL commands in an EF Core application
	11.5.1 FromSqlRaw/FromSqlInterpolated: Using SQL in an EF Core query
	11.5.2 ExecuteSqlRaw/ExecuteSqlInterpolated: Executing a nonquery command
	11.5.3 AsSqlQuery Fluent API method: Mapping entity classes to queries
	11.5.4 Reload: Used after ExecuteSql commands
	11.5.5 GetDbConnection: Running your own SQL commands

	11.6 Accessing information about the entity classes and database tables
	11.6.1 Using context.Entry(entity).Metadata to reset primary keys
	11.6.2 Using context.Model to get database information

	11.7 Dynamically changing the DbContext’s connection string
	11.8 Handling database connection problems
	11.8.1 Handling database transactions with EF Core’s execution strategy
	11.8.2 Altering or writing your own execution strategy

	Summary

	Part 3—Using Entity Framework Core in real-world applications
	12 Using entity events to solve business problems
	12.1 Using events to solve business problems
	12.1.1 Example of using domain events
	12.1.2 Example of integration events

	12.2 Defining where domain events and integration events are useful
	12.3 Where might you use events with EF Core?
	12.3.1 Pro: Follows the SoC design principle
	12.3.2 Pro: Makes database updates robust
	12.3.3 Con: Makes your application more complex
	12.3.4 Con: Makes following the flow of the code more difficult

	12.4 Implementing a domain event system with EF Core
	12.4.1 Create some domain events classes to be triggered
	12.4.2 Add code to the entity classes to hold the domain events
	12.4.3 Alter the entity class to detect a change to trigger an event on
	12.4.4 Create event handlers that are matched to the domain events
	12.4.5 Build an Event Runner that finds and runs the correct event handler
	12.4.6 Override SaveChanges and insert the Event Runner before SaveChanges is called
	12.4.7 Register the Event Runner and all the event handlers

	12.5 Implementing an integration event system with EF Core
	12.5.1 Building a service that communicates with the warehouse
	12.5.2 Overriding SaveChanges to handle the integration event

	12.6 Improving the domain event and integration event implementations
	12.6.1 Generalizing events: Running before, during, and after the call to SaveChanges
	12.6.2 Adding support for async event handlers
	12.6.3 Handling multiple event handers for the same event
	12.6.4 Handling event sagas in which one event kicks off another event

	Summary

	13 Domain-Driven Design and other architectural approaches
	13.1 A good software architecture makes it easier to build and maintain your application
	13.2 The Book App’s evolving architecture
	13.2.1 Building a modular monolith to enforce the SoC principles
	13.2.2 Using DDD principles both architecturally and on the entity classes
	13.2.3 Applying a clean architecture as described by Robert C. Martin

	13.3 Introduction to DDD at the entity class level
	13.4 Altering the Book App entities to follow the DDD approach
	13.4.1 Changing the properties in the Book entity to read-only
	13.4.2 Updating the Book entity properties via methods in the entity class
	13.4.3 Controlling how the Book entity is created
	13.4.4 Understanding the differences between an entity and a value object
	13.4.5 Minimizing the relationships between entity classes
	13.4.6 Grouping entity classes
	13.4.7 Deciding when the business logic shouldn’t be run inside an entity
	13.4.8 Applying DDD’s bounded context to your application’s DbContext

	13.5 Using your DDD-styled entity classes in your application
	13.5.1 Calling the AddPromotion access method via a repository pattern
	13.5.2 Calling the AddPromotion access method via a class-to-method-call library
	13.5.3 Adding a Review to the Book entity class via a repository pattern
	13.5.4 Adding a Review to the Book entity class via a class-to-method-call library

	13.6 The downside of DDD entities: Too many access methods
	13.7 Getting around performance issues in DDD-styled entities
	13.7.1 Allow database code into your entity classes
	13.7.2 Make the Review constructor public and write nonentity code to add a Review
	13.7.3 Use domain events to ask an event handler to add a review to the database

	13.8 Three architectural approaches: Did they work?
	13.8.1 A modular monolith approach that enforces SoC by using projects
	13.8.2 DDD principles, both architecturally and on the entity classes
	13.8.3 Clean architecture as described by Robert C. Martin

	Summary

	14 EF Core performance tuning
	14.1 Part 1: Deciding which performance issues to fix
	14.1.1 “Don’t performance-tune too early” doesn’t mean you stop thinking
	14.1.2 How do you decide what’s slow and needs performance tuning?
	14.1.3 The cost of finding and fixing performance issues

	14.2 Part 2: Techniques for diagnosing a performance issue
	14.2.1 Stage 1: Get a good overview, measuring the user’s experience
	14.2.2 Stage 2: Find all the database code involved in the feature you’re tuning
	14.2.3 Stage 3: Inspect the SQL code to find poor performance

	14.3 Part 3: Techniques for fixing performance issues
	14.4 Using good patterns makes your application perform well
	14.4.1 Using Select loading to load only the columns you need
	14.4.2 Using paging and/or filtering of searches to reduce the rows you load
	14.4.3 Warning: Lazy loading will affect database performance
	14.4.4 Always adding the AsNoTracking method to read-only queries
	14.4.5 Using the async version of EF Core commands to improve scalability
	14.4.6 Ensuring that your database access code is isolated/decoupled

	14.5 Performance antipatterns: Database queries
	14.5.1 Antipattern: Not minimizing the number of calls to the database
	14.5.2 Antipattern: Missing indexes from a property that you want to search on
	14.5.3 Antipattern: Not using the fastest way to load a single entity
	14.5.4 Antipattern: Allowing too much of a data query to be moved into the software side
	14.5.5 Antipattern: Not moving calculations into the database
	14.5.6 Antipattern: Not replacing suboptimal SQL in a LINQ query
	14.5.7 Antipattern: Not precompiling frequently used queries

	14.6 Performance antipatterns: Writes
	14.6.1 Antipattern: Calling SaveChanges multiple times
	14.6.2 Antipattern: Making DetectChanges work too hard
	14.6.3 Antipattern: Not using HashSet<T> for navigational collection properties
	14.6.4 Antipattern: Using the Update method when you want to change only part of the entity
	14.6.5 Antipattern: Startup issue—Using one large DbContext

	14.7 Performance patterns: Scalability of database accesses
	14.7.1 Using pooling to reduce the cost of a new application’s DbContext
	14.7.2 Adding scalability with little effect on overall speed
	14.7.3 Helping your database scalability by making your queries simple
	14.7.4 Scaling up the database server
	14.7.5 Picking the right architecture for applications that need high scalability

	Summary

	15 Master class on performance-tuning database queries
	15.1 The test setup and a summary of the four performance approaches
	15.2 Good LINQ approach: Using an EF Core Select query
	15.3 LINQ+UDFs approach: Adding some SQL to your LINQ code
	15.4 SQL+Dapper: Creating your own SQL
	15.5 LINQ+caching approach: Precalculating costly query parts
	15.5.1 Adding a way to detect changes that affect the cached values
	15.5.2 Adding code to update the cached values
	15.5.3 Adding cache properties to the Book entity with concurrency handling
	15.5.4 Adding a checking/healing system to your event system

	15.6 Comparing the four performance approaches with development effort
	15.7 Improving database scalability
	Summary

	16 Cosmos DB, CQRS, and other database types
	16.1 The differences between relational and NoSQL databases
	16.2 Introduction to Cosmos DB and its EF Core provider
	16.3 Building a Command and Query Responsibility Segregation (CQRS) system using Cosmos DB
	16.4 The design of a two-database CQRS architecture application
	16.4.1 Creating an event to trigger when the SQL Book entity changes
	16.4.2 Adding events to the Book entity send integration events
	16.4.3 Using the EfCore.GenericEventRunner to override your BookDbContext
	16.4.4 Creating the Cosmos entity classes and DbContext
	16.4.5 Creating the Cosmos event handlers

	16.5 Understanding the structure and data of a Cosmos DB account
	16.5.1 The Cosmos DB structure as seen from EF Core
	16.5.2 How the CosmosClass is stored in Cosmos DB

	16.6 Displaying books via Cosmos DB
	16.6.1 Cosmos DB differences from relational databases
	16.6.2 Cosmos DB/EF Core difference: Migrating a Cosmos database
	16.6.3 EF Core 5 Cosmos DB database provider limitations

	16.7 Was using Cosmos DB worth the effort? Yes!
	16.7.1 Evaluating the performance of the two-database CQRS in the Book App
	16.7.2 Fixing the features that EF Core 5 Cosmos DB database provider couldn’t handle
	16.7.3 How difficult would it be to use this two-database CQRS design in your application?

	16.8 Differences in other database types
	Summary

	17 Unit testing EF Core applications
	17.1 An introduction to the unit test setup
	17.1.1 The test environment: xUnit unit test library
	17.1.2 A library I created to help with unit testing EF Core applications

	17.2 Getting your application’s DbContext ready for unit testing
	17.2.1 The application’s DbContext options are provided via its constructor
	17.2.2 Setting an application’s DbContext options via OnConfiguring

	17.3 Three ways to simulate the database when testing EF Core applications
	17.4 Choosing between a production-type database and an SQLite in-memory database
	17.5 Using a production-type database in your unit tests
	17.5.1 Providing a connection string to the database to use for the unit test
	17.5.2 Providing a database per test class to allow xUnit to run tests in parallel
	17.5.3 Making sure that the database’s schema is up to date and the database is empty
	17.5.4 Mimicking the database setup that EF Core migration would deliver

	17.6 Using an SQLite in-memory database for unit testing
	17.7 Stubbing or mocking an EF Core database
	17.8 Unit testing a Cosmos DB database
	17.9 Seeding a database with test data to test your code correctly
	17.10 Solving the problem of one database access breaking another stage of your test
	17.10.1 Test code using ChangeTracker.Clear in a disconnected state
	17.10.2 Test code by using multiple DbContext instances in a disconnected state

	17.11 Capturing the database commands sent to a database
	17.11.1 Using the LogTo option extension to filter and capture EF Core logging
	17.11.2 Using the ToQueryString method to show the SQL generated from a LINQ query

	Summary

	Appendix A—A brief introduction to LINQ
	A.1 An introduction to the LINQ language
	A.1.1 The two ways you can write LINQ queries
	A.1.2 The data operations you can do with LINQ

	A.2 Introduction to IQueryable<T> type, and why it’s useful
	A.2.1 Splitting up a complex LINQ query by using the IQueryable<T> type
	A.2.2 How EF Core translates IQueryable<T> into database code

	A.3 Querying an EF Core database by using LINQ

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005B041D04300020043E0441043D043E043204350020044104420438043B044F00200027005000720069006E00650072006700790020005000610067006500730027005D0020005B041D04300020043E0441043D043E043204350020044104420438043B044F00200027005000720069006E00650072006700790020005000610067006500730027005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

